

Squares of Characters in Finite Groups

清田 正夫
Masao KIYOTA
College of Liberal Arts and Sciences
Tokyo Medical and Dental University
Kounodai，Ichikawa， 272 JAPAN
e－mail ：g38098＠m－unix．cc．u－tokyo．ac．jp

This is a report of my joint paper［K，S］with Hiroshi Suzuki（Department of Mathematics，International Christian University）．

Let G be a finite group and let χ ，be a real valued character of G ．The representation diagram of G with respect to χ ，denoted by $D(G, \chi)$ ，is a graph with $\operatorname{Irr}(G)$ as the vertex set such that vertices χ_{i} and χ_{j} are adjacent if and only if $\left(\chi \chi_{i}, \chi_{j}\right)>0 . D(G, \chi)$ is undirected as χ is real valued，but $D(G, \chi)$ may have some loops．Note that $D(G, \chi)$ is connected if and only if χ is faithful．The problem we are interested in is that if we know the graph structure of the representation diagram $D(G, \chi)$ ，then what can be said about the group structure of G ．Here we consider the simplest case i．e．the case $D(G, \chi)$ is a path（open polygon）possibly with some loops．The following lemma is fundamental but easy to prove．

Lemma 1．Let χ be a real valued character of a finite group G ．Let the representation diagram $D(G, \chi)$ be a path possibly with some loops．Then $\chi=a 1_{G}+b \chi_{1}$ ，for some faithful real valued χ_{1} in $\operatorname{Irr}(G)$ and for some integers $a \geqq 0, b>0$ ．In particular the diagrams $D(G, \chi)$ and $D\left(G, \chi_{1}\right)$ are identical modulo loops，i．e．neglecting loops．

If $D(G, \chi)$ is a path then we may assume χ is irreducible，and so we have （＊）$\quad \chi^{2}=1_{G}+a \chi+b \psi$,
for some ψ in $\operatorname{Irr}(\mathrm{G})$ and for some integers $a \geqq 0, b \geqq 0$ ，since in the diagram χ
is adjacent to 1_{G} and ψ and possibly χ itself (loop). The groups with irreducible characters χ and ψ satisfying (*) are completely determined in the next theorem.

Theorem 2. Let χ and ψ be irreducible characters of a finite group G. Suppose that the equation (*) holds. If χ is faithful and real valued, then one of the following holds.
(1) $\chi(1)=1$ and G is cyclic of order at most two.
(2) $\chi(1)=2$ and G is the symmetric group of degree 3 .
(3) $\chi(1)=2$ and G is one of the binary polyhedral groups of order 24, 48 or 120 .
(4) $\chi(1)=3$ and G is the alternating group of degree 5 .

For the proof we refer to $[K, S]$. By inspection of the representatipon diagram of each group listed in Theorem 2, we have the following

Corollary 3. Let χ be a real valued character of a finite group G of order at least two. Let the representation diagram $D(G, \chi)$ be a path possibly with some loops. Then G is the cyclic group of order two, or the symmetric group of degree 3.

If you are familiar with some terminology in algebraic combinatorics (for example in $[B, I])$, you may find that Corollary 3 is equivalent to the following

Corollary 4. Let G be a finite group of order at least two. Suppose that the group association scheme $\mathrm{X}(G)$ is Q-polynomial. Then G is the cyclic group of order two, or the symmetric group of degree 3 .

Here, we state some open problems.

Problem 5. Study the structure of finite groups G when $D(G, \chi)$ is a tree
possibly with some loops.

Problem 6. Determine all finite groups whose group association scheme is P-polynomial. In other words, prove the dual statement of Corollary 4.

Problem 7. Study the structure of finite groups G with χ and ψ in $\operatorname{Irr}(G)$ satisfying

$$
(* *) \quad \chi \bar{\chi}=1_{G}+a(\chi+\bar{\chi})+b \psi
$$

There are many interesting examples such as $G L(2,3), \operatorname{PSL}(2,7)$ and $\operatorname{PSU}\left(4,2^{2}\right)$.

references

[B,I] E. Bannai and T. Ito, "Algebraic Combinatorics I", Benjamin, 1984.
[K,S] M. Kiyota and H. Suzuki, Character products and Q-polynomial group association schemes, preprint.

