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Estlmates of funda,menta,l solutions for Schrodinger

operators and 1ts apphcatlons

HRIK - H /.”E‘EH?U‘?% (Kazuhiro Kurata)
FEk - D3  EEET (Satoko Sugano)

1 Introduction and Main results

Let V(z) be a non-negative potential and consider the Schrédingér operator —A + V
on R*, n > 3. If V is a non-negative polynomial, Zhong ([Zh]) proved that the op-
erators V2(—A + V)™, V(=A + V)7¥2, and V(-A + V)~'V are Calderén-Zygmund
operators. For the potential V' which belongs to the reverse Holder class, which includes
non-negative polynomials, Shen ([Shl]) generalized Zhong’s results. He proved that the
operators V(—A +V)™1/2, and V(—=A + V)~V are Calderén-Zygmund operators and the
operator V2(—A + V)™ is bounded on L?, 1 < p < co. It is well known that Calderén-
Zygmund operators are bounded on L?, 1 < p < oo. He also proved that the operators
V(-A+ V)™ and V¥2V(—A + V)~! are bounded on L?, 1 < p < oo.

For the operators V(—A+ V)™, V2V(—A+V)~!, and V*(—A+V)~1, Shen’s results
were generalized as follows ([KS]). We replace A by the second order uniformly elliptic
operator Lo = —37';_1(9/ 8x,){a,,(w)(6/83:])} and suppose V satisfy the same condition
as above. Then the operators V(Lo+V) ™}, VY/2V(Ly+V) ™, and V?(Lo+V)~! are bounded
on weighted L? space (1 < p < 0o) and Morrey spaces. (We need proper conditions for i
to prove boundedness of each operator.) It is well known that Calderén-Zygmund operators
are bounded on weighted L? space (1 < p < 00) and Morrey spaces ([CF],[St]).

We shall repeat the definitions of the reverse Holder class (e.g.[Sh2]) and the Morrey
space (e.g.[CF]). |

Throughout this paper we denote the ball centered at z with radius r by B,(z), and
the letter C stands for a constant not necessarily the same at each occurrence.

Definition 1 (Reverse Holder class) Let U > 0.
(1) For 1 <p < oo we say U € (RH),, if U € L},(R") and there exists a constant C
such that ' : '

1 . , 1/p C ‘
(IBr(ﬂé)l- oy ) dy) S 1B.@) Jow " ()dy (1)
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holds for every z € R™ and 0 < r < co. If (1) holds for 0 <r <1, we say U € (RH)poc-
(2) We say U € (RH)co, if U € L}, .(R™) and there exists a constant C such that

C
UllL=(B.(z)) < 75— U(y)d ' 2
“ HL (Br(“)) IBr(iL')l B.(z) (y) Y ( )

holds for eveﬁy z€R" and 0 <7 < oo. If (2) holds for 0 <7 <1, wesay U € (RH)o,t0c-

Remark 1 (1) If P(x) is a polynomial, then U(z) = |P(z)|*, a > 0, belongs to (RH )

([Fe]).
(2) For 1< p < 00, it 1s easy to see (RH)os C (RH)p.

Definition 2 For0<pu<mnandl<p < 0o, the Morrey space is defined by

1" A 1/p
up (5 1, \rwras) <o§}.

[P*(R™) = {f € Li(R") : | fllp =

z€
Note that LP°(R™) = LP(R").

In this paper we consider the following mégnetic Schrodinger operators. Let a(z) =
(a1(2), az(z), -+, an()),
L--—l——a——a-(x) for 1<j<n, n>3
3 ZB.TJ J ) -—.7 — b = Y

where a € C2(R"), and let

n
H=H(V)=) Li+V(z),
J=1
where V € L2 (R") and V > 0.
We use the following notation throughout this paper. Let B(z) = (bjk(z))1<jk<n, Where

Oa; Oa
b]k(w) = —a?‘; - B_xj’

andfor1<j7<n,1<k<n, 1<1l<n,let

o o2

0= dx;’ O3k = Oz ;0zy’

| Lu(z)|? Z |L u(a:)|2 | L?u(x)[? Z |L; Lyu(z) 2,

|LPu(@)|* = 3 |L;LeLiu(z)?, and  [B| = [B(z)] = 3_ |bj(z)|-

gkl

For the operator H, Shen ([Sh2]) proved that the operators VH™!, VY/2LH™!, and
L2H™! are bounded on L?, 1 < p < oo, if V and the magnetic field B satisfy certain
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conditions given in terms of the reverse Holder inequality. These results are extensions of
the case a = 0 which was shown by himself.

The purpose of this paper is to show the following two results. The first is that the
operators VH™!, VI2LH1, and L?H~! are bounded on Morrey spaces. The second is
that the operator of the type LZH ™! is a Calderén-Zygmund operator. To show this we
need to assume a € C*(R") and V € C*(R").

In his paper [Sh2], Shen established the estimates of the fundamental solutions of the
Schrodinger operator by using the auxiliary function m(z,U) which was introduced by
himself. The estimate plays an important role in the proof of L? boundedness of above
operators. We need his estimates to prove our results.

We shall repeat the definition of the function m(z, U).

Definition 3 ([Shl], [Sh2]) For z € R", the function m(z,U) is defined by

,'..2
| Br(z)| /B ()

Remark 2 0 < m(z,U) < 00 for U € (RH)njs, and 1 < m(z,U) < oo for U €
(RH)n/Zloc'

o1
m(z,U)

‘=sup{r>0: U(y)dygl}.

We state Theorem 1 and Theorem 2 which are main results of this paper.
Theorem 1 Suppose a € C*(R"), V € L2, (R™), n >3, and V > 0. Also assume that

IB| +V € (RH)n /2,
V(z) < Om(z, |B|+ V)2,
|[VB(z)| < Cm(z, |B| + V)3

(1) Let 1 < p < oo and let 0 < p < n. Then VH™! and VY2LH™! are bounded on
LPH(R™). , | _
(2) Let 1 < p < oo and let 0 < p < n. In addition assume that

Va(z)| < Om(z, [B| + V)?,
la(z)| < Cm(z,|B|+V).
Then L2H™! is bounded on LP*(R").

Remark 3 IfV € (RH)y then there exists a constant C' such that V(z) < Cm(z, V)2
In Theorem 1, if a = 0 then the conclusion was shown in [KS] under the assumption
Ve (RH)w.
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Theorem 2 Suppose a € C4R"), V € C}3(R"), n >3, and V > 0. Also assume that

Bl +V € (RH).ys, | |
V3V (z)| < Cm(z)%, |V2V(z)| < Cm(z)!, |VV(z)| < Cm(z)®,
|V3B(z)| < Cm(z)®, |V?B(z)| < Om(a)*,

|V2a(z)| < Cm(z)?, |Va(z)| < Cm(z)?, |a()] < Om(z),

(3)

where m(z) = m(z, |B| + V). Then L*(H 4+ 1)" is a Calderon-Zygmund operator.

~ We denote the kernel function of the operator (H(a, V) + 1)~ by I'(z,y).
We prove Theorem 2 by using Shen’s estimate for I'(z,y) and the following inequality
which holds for A = 1. For A >0 and V >0, ‘ ‘

(H(a, V) + )7 (@) < (-A+0)7Yfl@),  feLl*RY, (4)
([LS, Lemma 6]). ‘

Remark 4 Assume the same assumption as in Theorem 2. If we use (4) which holds for
all X > 0 and the estimate for the kernel function of the operator (H + X)™!, we can prove
that, for all A > 0, L*(H + X\)7! is a Calderdn-Zygmund operator. This can be done in the
same way as in the proof of the case A = 1.

Remark 5 In Theorem 2, the condition (3) hold if the components of a are polynomials
and V is a non-negative polynomial (see [Sh2, page 820]). If a = 0 then the conclusion
of Remark 4 also holds for A = 0, namely, it follows that the operator V*(—A 4+ V)™
with non-negative potentials V which satisfy the same condition as in Theorem 2 is a
 Calderén-Zygmund operator. This is an extension of Zhong’s result on the above operator
with non-negative polynomials V' ([Zh, Proposition 3.1]). ‘

It is known that the operator L2(H +1)~! is bounded on L?(R") ([Sh2, Theorem 0.9]).
Hence, to prove Theorem 2, it suffices to show that the estimates

|L; LT (z,9)| < 10; L LiT'(z, y)| <

_<¢ _°¢
|z —y|*’ |z =y~

hold. (see e.g.[Ch, page 12]). As a matter of fact, stronger estimates hold as the following
two theorems state.

Theorem 3 Let k > 0 be an integer. Suppose a € C3(R™), V € C*(R"), n > 3, and
V > 0. Also assume that

|B| +V € (RH)n/2,
V2V (z)| < Cm(z)*, |VV(z)| < Cm(z)?,
|V2B(z)| < Cm(z)?, |VB(z)| < Cm(z)?.
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Then there exists a constant Cy such that
Cy 1
{L+m(@)|lz -y} |z -y’

|L; LiT'(z, y)| <

where m(z) = m(z, |B| + V)

Theorem 4 Letk > 0 be an znteger Assume the same assumptzon as in Theorem 2.
Then there exists a constant Cy such that
Ck 1
{1 +m(z)z —y[}F Iﬂf -y~
Theorem 3 and Theorem 4 can be proved by the method similar to the one used in the

proof of [Sh2, Theorem 1.13].
The plan of this paper is as follows. In section 2, we prove Theorem 1. In section 3,

|0; Ly LiT (z,y)| <

we establish Caccioppoli type inequalities which are necessary to complete the proof of
Theorem 3 and Theorem 4. In section 4, we prove Theorem 3. In section 5, we prove

Theorem 4.

2 Proof of Theorem 1

Theorem 1 is easily proved by the following pointwise estimates. These estimates generalize
the results in [Zh, Lemma 3.2] to magnetic Schrodinger operators.

Lemma 1 Assume the same assumptzon as in Theorem 1 (1). Then there exist constants
Cl,Cz such that

[m(z, IBI + V) f(z)] < CIM(IH(a,V)f + fl)(z),  f€CRRM, (5)
Im(z, B| + V)Lf(z)| < C:M(|H(a,V)f + f)(z),  fe€CPR), (6)
where M is the Hardy-Littlewbod mazimal operator.
To prove Lemma 1 we use the following estimates of the fundamental solutions.‘

Theorem 5 Let k > 0 be an integer. Suppose a € Cz(R") Ve L2 R"), n >3, and
V > 0. Also assume that

|B|+V € (RH)pn/2,
[VB(z)| < Cm(z, |B| + V)3.

Then there exists a constant Cy, such that
Ck 1
I'(z, < . . .
Pl S GG, B+ Ve — ol o=y
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Theorem 6 Let k > 0 be an integer. Suppose a € C*(R™), V € L (R™), n > 3, and
V > 0. Also assume that

|B| +Ve (RH)n/g,
V(z) < Cm(z,|B| +V)?
VB(z)| < Cmi(s, |B| + V)2,

Then there exists a constant Cy such that

Ck 1
Ll(z,y)| < ' '
L@l < GG B+ Ve —yr Jo— vl

Remark 6 For|z—y| <1, estimates for |I'(z,y)| and |L;T'(x,y)| like above were obtained
in [Sh2, Theorem 1.138, Theorem 2.8] respectively under the conditions given in terms of
the inequality (1) which holds for 0 < r < 1. Theorems § and 6 are obtained by the same
way. as in the proof of Shen’s theorems. '

Proof of Lemma 1. Estimate (5) can be proved as follows. Let u = H(a,V) f+ f and let
r =1/m(z,|B| + V). Then it follows from Theorem 5 that '

m(a, 1B+ V@] < [ m(@ Bl + V)0 y)l@)dy
m(z, |B| + V)?lu(y)|

< ' d
= % e TG, B+ V)l =yl la =3l y
lu(y)|
<
IU(y)I

<

= 22(.7 1)+n 1
< )
- C’“j;w (14 291k (2ir)n /|z—y]521‘r |u(y)ldy
< 00 S B M(ue)
= k p ujnrj.

j=—o00 (14 29)k

Therefore we obtain the desired estimate, if we take k = 3 for example.

The proof of (6) can be done in the same way as above by using Theorem 6. U
Pioof of Theorem 1 (1). The boundedness of the operators V(H+1)"! and V/2L(H+1)™!
immediately follows from the fact that the Hardy—Littlewood maximal operator is bounded
on Morrey spaces ([CF]). Then from the argument of scale invariance (e.g.[Sh2, pp.839-
840]), the desired conclusion follows. O
Proof of Theorem 1 (2). Let f € Cg°(R™). Note that

1
Lij = —Bfk - aij - aij - —Z,-Bjak — G50k,
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H(aV)=-A+V -2 oL, ldlva a2,
=
Also note that for 1< p < oo an inequality

2 P » C »
~/BR/2($0) |V f((L‘)I de < C/ |Af(x)l dz + R2P/ l (:L')I dz . (7)

holds ([Sh2, page 836]).
From Theorem 1 (1) it follows that

”L2f”p,# C{llH(a, V) fllpu + ImLfllpu + ”mzf”p,u}
C{IIH@, V) fllpu + Il fllp}-

Then from the argument of scale invariance, desired estimate follows. O

<
<

3 Caccioppoli type inequalities

In this section we prepare the following lemmas. We call these estimates Caccioppoli type
inequalities.
For the rest of this paper, we let m(z) = m(z, |B| + V).

Lemma 2 ([Sh2, Lemma 1.2]) Suppose H(a,V)u+ u = 0 in Br(xy). Then there exists
a constant C such that

- C
Lu:v2dx<—/ w(z)|?dz.
/BR/z(m)i @Pde <55 [ lu(z)

Lemma 3 Suppose H(a,V)u + u = 0 in Bg(zg) and

|VV(z)| < Cm(z)?,
|IVB(z)| < Cm(z)3.
Then there exist constants C, k1 such that

C{1 + Rm(z)}*
Lu(z)|?dz < 2dz.
/BR/4<mo>| (2)"de < Rt /BR(zo) fu(@)l"de

Remark 7 |VB(z)| < Cm(z)? implies |B(z)| < Cm(x)? (see [Sh2, Remark 1.8]), which

is also used to prove Lemma 3.

Lemma 4 Suppose H(a,V)u +u=01n Bgr(zg) and

{ V2V (z)| < Cm(z)t, |VV(2)| < Cm(z)?,
V?B(z)| < Cm(z)!, |VB(z)| < Cm(z)®.
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Then there exist constants C, ko such that

C{1 + Rm(zo)}*2
L3u(z)|?dx < lu(z) |’ dz.
/BR/B(xo)I @) RS BR(zo)| @)l

Lemma 2 implies Lemma 3. Since we can prove Lemma 4 using the same idea as in the

proof of Lemma 3, we prove only Lemma 3.
We also need following Lemma 5 to prove Lemma 3.

Lemma 5 ([Shl, Lemma 1.4(b)]) Suppose U € (RH)nj2 and U > 0. Then there exist
constants C, ko such that

m(y,U) < C{1+ |z — y|m(z, U)}**m(z, V).

Now we give
Proof of Lemma 8. Note that, for 1 <j <n, 1<k <n,

1 ' 1
[Lj, L] = L;jLy — Ly L = ;(akaj — Ojar) = gbjk, (8)
[Lk7L§ + V] = L; [Lkn J] + [Lk) ] j + [Lka ]
2
= Eb’“ij + ;akv - 8jbk,-. (9)
‘Hence
(H(a,V)+1)Lsu = —[Ly, H(a, V) +1ju= —Z Lk,L2 +V]u

L 2
= Z {——i‘bkij’U; - (;&CV - ajbkj) U} .

j=1

Let 1) € C°(Bry2(z0)) such that n = 1 on Bgys(xo) and |Vn| < C/R.
Multiply the equation by n?Lju, integrate over R™ by integration by parts, we have
[, LT L (o Licw)
<3 [ {2t - (F0V - o) urt G} (10
Jj=1 :
The left hand side of (10) is equal to

2
/Rn {(Liju)2n2 + ;U(LijU) : 6jnLkU} .
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Then we have : o
fpo Pu@Pn@Pds < C [ [9n(@)PILu(e)Pds +C [ [B(@)l|Lu(e)Fn(a)ds
+C [ (IVV(@)| +|VB(@))lu(@)l| Lu(@)n(@)*do.
By Lemmas 2 and 5, we obtain

| L2u(zx)|?dx
fon o )

o)
c .
< = Lu(z)|*d
T R? /J;R/z(mo)l () dz
C{1+Rm(ac0)}2(k°+1)/
+ Lu(z)|?dz
: R? BR/z(Eo)l ( )i
- C{1+ Bm(zg)}3ke+D) ( g 1
‘R L = 2)
+ T Brateo) | Lu(z)| +R2|u(ac)| dz
C{1 + Rm(zy)}* '
¢ AL Bl [ uw)Pas

where k; = 3(ko + 1). O

4 Proof of Theorem 3

Theorem 3 follows easily from |
Lemma 6 Suppose H(a,V)u+u=20 in Br(zo) for some zo € R™ and
IB|+V € (RH)nj2,
V2V ()] < Cm(z)*, |VV(z)| < Cm(z)?,
|V2B(z)| < Cm(z)t, |VB(z)| < Cm(z)3.
Then for any positive integer k there exists a constant Cy such that
Ck 1 ( 1

) 1/2
su Lu(y)| < ‘ e — u(z 2dx) . 11
yEBR/Iz)(-TO)| W< {14+ Bm(zo)}* R? \|Br(z0)| BR(aco)| @) i

Assuming this lemma for the moment, we give
Proof of Theorem 3. By using (4), we have

o .
IT'(z,y)| < W (12)

Fix 2o, yo € R™. If we put R = |zo—o|, then u(z) = I'(z, yo) is a solution of H(a, V)u+u =
0 on Bg/a(zo). Hence combining (11) and (12) we arrive at the desired estimate. O

To prove Lemma. 6, we need Lemmas (3 and 5) prepared in Section 3 and the following
subsolution estimates.
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Lemma 7 Suppose H(a,V)u+u =0 in Br(xo) for some 1o € R" and

IB|+V € (RH)n/2,
|VB(z)| < Cm(z)3.

Then for any positive integer k there exists a constant Cy such that

v 1/2
sup |u(y)| < i +RC7'72($0)}k (|BR1 |u(x)|2dx) ) (13)

yEBR/2(x0) (:BO)I Bg(zo)

Proof. By using the same way as in the proof of [Sh2, Lemma 1.11], for all 0 < R < 0o we
obtain the estimate for |u(zo)|, i.e. '

o) < eyt (B
V1= {1+ Rm(zo)}* \|Br(eo)]| /5ato
Then, (13) follows easily from (14). Indeed, for all y € Bg/2(zo), H(a,V)u+u = 0 in
Br/a(y). Then from (14) it follows that

. 1/2
|u(x)|2da:) . (14)

Ck 1 , 1/2
)| S T R (I el /B @ dx) .

Then we have

CCy ( 1
sup

1/2
u(y)| < u(z)|dz .o
S S T (o) \[Ba@] Jaaen ) )

Lemma 8 Suppose H(a,V)u+ u =0 in Br(zo) for some 2o € R" and

IB| +V € (RH)yn 2,
V(z) < Cmia)’,
VB(z)| < Cm(a)*

Then for any positive integer k there exists a constant Cy such that

1/2
| S et (g oy M) - 09

yEBR2(z0) | Br(%0)| /Br(z0)

Proof. By using the same way as in the proof of [Sh2, Lemma 2.7], for all 0 < R < o0 we
obtain the estimate for |Lu(zo)], i.e.

L Ci L ( 1 Iu(z)|2dx)1/2. (16)

To)| < = | =
S AT Rm@n))* B \[Br@o)] Joate

Combining (16) and the argument in the proof of Lemma 7, we arrive at (15). O
To prove Lemma 6, we also need
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Lemma 9 ([Sh, Lemma 1.3]) Suppose H(a,V)u+u = f in Br(xo). Then there exists a
constant C' such that ' :

1 1/q 1 1/2
_ ul(x)|?dx < C|———-— u(z)2dz
(lBR/s(xon L ) < <|BR(mo>| —— )

1
|BR(5L'0)| }BR(f':O)

1/
+CR? ( |f (2) Ipdx) p,

where 2<p<qg<oocandl/qg>1/p—-2/n.

Now we are ready to give
Proof of Lemma 6. (This lemma can be proved by the method similar to the one used in
the proof of [Sh2, Lemma 2.3].) Note that, for 1 <j<n,1<k<n,1<I<n,

[LkLl, L? + V] = Ly [Ll, L? + V] + [Lk, L? + V]Lz
‘ 2 2 1 ‘
= -i-b[ijLj -+ EbkijLz - 23kblej + (;&V - ijlj) Ly,

1 1 -
+ (Eakv - ajbk,) L — (a,’f,v + ;a,f,-bz,-) , (17)

where we have used (9).
Hence

(H@, V) + 1) Ly Liw = —[Lx Ly, H(a, V) + 1]u
= — Z[LkLla L? + V]u

Jj=1

n (9 2
-y {—Zbleiju — by LiLuu + 20k Ly — (%a,v - a,-b,,-) Liu
> .

J
‘ 1
- (%Bkv — ajbk]) Liu+ (6§,V -+ ;:a,%jblj) u} .

It then follows that, if 2 <p < g < oo and 1/¢ > 1/p? 2/n,

) 1/q
» (———l—— |L2u(:c)|qu)

| Br/64(Z0)| /Bryea(zo)
1 \1/2
<(Cl| ——m L2u T 2d.’l})
= (IBR/s(w(])I /I;R/s(il‘o) | ( )l
2 1 ’ , 1
+CR? [ ————— Bl ulz) VP da
(IBR/S(J’.O)I/I;R/s(mO){I ()| L*u(z)|} )

+CR? (

1 ' » 1/p
m BR/S(wo){(IVV(x)| + IVB(m)l)lLu(:p)” dm)



l/_p
+0R2( V(@) + |v2B(x>|)|u<x)|}pdx) |

IBR/s (wo)l /Bx/s(-’co)

C{1 + Rm(zo)}*/? ( 1 _ ) )1/2
< - w(z)|*dz
- R? ‘ 'lBR/2($0)l BR/2($0)| ( )I

1/p
+CR*{1 + Rm(zo)}*m(z)? ( |L2u(x)l”>

IBR/S(xO)| /BR/B(-'EO)
1
|BR/8 (:L'O)I BR/8(930)

1/p
+CR?{1 + Rm(mo) }**m(z0)* ( |Lu(m)|”> )

: ‘1/p

_c+ Rm(a:o)}ks ( /

- "R? | Br/2(20)| /Br/2(@0)
-
| Br/s(0)| /Brs(zo)

|u(x)|2dm) v

+C{1 + Rm(xo)}2 ko) ( | L?u(x) |”das) :
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where k3 is a constant depending only on ko and we have used Lemmas 5, 7, 8, and 9.

A bootstrap argument then yields that

C{1 + Rm(zo) }* ( 1 \ )1/2
L? < d
| | u(zo)| < R2 |BR/2($0)| Bryale0) Iu($)| z

1 .
‘BR/B(-'L'O)l BR/s(wo)
_ C{L+Bmiz )}k1/2+k4( 1
o R? |BR/2($0)| BR/z(zo)

+C{1+ Rm(xo)}k4 ( |L2u(:r)|2dz> v

Iu(sé)l?dx)w

Cy 1 1 1/2
< i (- 24 ,
= {1+ Rm(zo)}* R2(|BR(3:0)| BR(£O)| u(@)l x)

where k; is a constant depending only on n and ko and we have used Lemmas 3 and 7.0

5 Proof of Theorem 4

By the same argument as in the proof of Theorem 3, we obtain Theorem 4 by the following

lemma.
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Lemma 10 Suppose H(a,V)u+ u =0 in Bg(xg) for some o € R® and
lB| +Ve (RH)n/g, ’
V3V (z)| < Om(z)®, |V3V(z)| < Om(z)*, |VV(z)| < Cm(z)?,
|V3B(z)| < Cm(z)®, |V?B(z)| < Cm(x)*,
[V?a(z)| < Cm(z)?, |Va(z)| < Om(z)?, l|a(z)] < Cm(a).

Then for any positive integer k there exists a constant Cy, such that

Crv 1 1 | /2

yEBR/2(z0) IBR(xON Br(zo)

1/2
where |V L?u(z)| = (Ej,k,l IBijLlu(x)lz) :

Proof. This lemma can also be proved by the method similar to the one used in the proof
of [Sh2, Lemma 2.3]. We omit the details. O
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