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Abstract

This paper studies the effect of scheduling (reordering) page requests on the page hit ratio.
First, we define the residence interval of a page, the time duration during which the page resides in
the cache continuously, for off-line page request sequences. Using the residence interval, we show
how to reorder requests to reduce the number of page misses. In particular, we show two page
replacement policies are useful to minimize some criteria. Second, we consider the “semi-online”
model, which assumes that some future requests are known. This model is applicable in practice
if unserviced requests are kept in a queue and reordered before execution. Then we develop an
efficient semi-online algorithm which selects a page to be evicted from k candidates, and analyze
appropriate k. Third, the performance of our scheduling method is examined by simulation, by
varying the mean inter-arrival time of requests and cache size. The results indicate that our method
outperforms the popular LRU (Least Recently Used) and “extended LRU.” ‘

1 Introduction

Caching is a standard technique to achieve an effective speed up of memory access by providing a small
amount of fast (expensive) cache memory. A 2-level hierarchical memory, consisting normally of a
main memory cache and a disk storage, is currently most common. Qur model reflects such a memory
system with a cache which can contain m pages and a slow memory which can contain a large number
of pages. Our model also has an input queue which keeps unserviced page requests.

If the requested page is in the cache, i.e., a page hit occurs, then the access incurs little cost (in
terms of response time). If the requested page is not in the cache, i.e., a page miss or fault occurs,
then the access is much more expensive. In case of a page miss, we have to flush some page out (if
it’s dirty, i.e., it is different from its image in the slow memory) and fetch the requested one from the
slow memory. A page replacement policy determines which page to purge from the cache upon a page
miss. Usual page replacement policies do not take future requests into account, while our model can
examine a queue of unserviced requests to make the optimal decision using this information. In this
paper, for simplicity, we will refer to a page hit (page miss), simply as a hit (miss).

We present a new method for preprocessing the input request sequence to reduce the number of
misses. Intuitively, we can reduce the number of misses, if we are allowed to reorder input requests.
The main contributions of this paper are:

1. A set of new operations which improve the hit ratio for off-line scheduling.

2. They are also effective for “semi-online” scheduling.
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3. Performance is evaluated by simulation, comparing with LRU and “extended LRU.”

First, we define the residence interval of a page, which is the time duration during which the page
resides in the cache continuously. If a page is evicted and called back again in processing a sequence
of requests, we may be able to extend the page s residence interval slightly and reduce the number of
misses. That is, if we are allowed to reorder the requests in advance, we can get a history with the
minimum number of misses. Second, we observe that the operation above can be used even if all the
future requests are not known. This will be the case in practice when the arrived requests are kept in
the input queue, which we call the “semi-online” scheduling, to contrast it with the on-line scheduling,
where no future requests are known. We develop a semi-online algorithm which selects a page to be
evicted from k candidates. What value is appropriate for k is also analyzed in terms of two criteria.
Third, we investigate the performance of our method by simulation, assuming that the queue length is
determined by the following parameters.

e mean inter-arrival time of requests
o hit ratio and the time overhead associated with a hit and a miss

Our simulation results show that our method outperforms the conventional LRU and “extended LR
which we call “partial LRU.”

Our work reported here is a continuation of the study on page replacement algorithms, started by
Belady [3]. He presented an optimal off-line algorithm MIN. Since then, a large number of papers on
the problem has been published on the subject [9, 10], and various algorithms, e.g., LRU, FIFO and
MFU; have been proposed. It is of interest to evaluate different page replacement algorithms. Sleator
and Tarjan[8] studied a well-known evaluation method, called competitive analysis. It has been widely
applied to on-line algorithms, because they are difficult to analyze by conventional methods. This
method, however, is sometimes criticized to be too pessimistic. Recently, [1, 4, 5, 7, 11] investigated
the effect of a lookahead policy on the paging problem. The weak model! of lookahead policy has
a queue of length [, containing ! future requests. However, Ben-David and Borodin [4], and also
Koutsoupias and Papadimitriou [7] showed that the weak model of lookahead does not improve the
competitive ratio, which indicates the limit of lookahead policies. Albers [1] and Breslauer [5] showed
that other models of lookahead, e.g., containing at most ! miss requests in the queue, can improve the
competitive ratio. Yanbe and Sakurai [11] discovered that game theory can evaluate the performance
of lookahead policy under the weak model. Previously, some authors studied the effect of scheduling
requests for disk scanning [6].

The rest of this paper is organized as follows. Section 2 1nvest1gates off-line scheduling. We develop
an operation to-improve the hit ratio, and show that our algorithm is effective. Section 3 applies it to
semi-online scheduling, assuming that we know some future requests. We compare our algorithm with
the conventional LRU and “extended LRU” by simulation. Section 4 concludes the paper.

2 Off-line Scheduling
2.1 Definitions

To begin with, we give some definitions.

Definition 2.1 Let U = {a,b,...} be the set of all pages. A history of length n is an onto mapping
h:{1,2,...,n} = U(h), where U(h) C U. If the ith request of h is for ¢ € U, i.e., h(i) = q, then
we refer to this request as ¢). The distance from p® to ¢U) in h is defined by d(p®),q")) = |i — j|.
If the index is clear from the context, we sometimes use q instead of ¢¥). For technical reasons, we
assume that a history h always starts with the initial sequence Iy, where every request in U(h)
appears ezractly one. A cache is a set of m pages, called a cache size. If replacement policy R is used

! Albers[1] named it in contrast to her “strong model”.
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in processing request sequence represented by history h, CR(q(i); h) denotes the contents of the cache at
the time g9 € U(h) is requested. We may omit some of the subscripts/superscripts/arguments from
Cr(q);h), when they are clear from the conteat. i

To motivate our idea, let us consider a simple example. Suppose that the cache currently holds
three pages, {a,b,c}, and that the current request is for d. Suppose also that pages in the cache will
be requested in the order ---a---b---c---, where the replacement policy R evicts page ¢ now. Then
we know that the next request for ¢ will cause a miss. We shift the request for ¢ to immediately before
the request for d, resulting in the shifted one does not cause a miss. If we similarly shift all the future
requests for c, the page ¢ can be evicted without causing future page miss. Note that some pages in
Cr(qD;h), e.g., the page c in the example above, may not be requested by h in the future.

The residence interval of a page a is the maximal time interval during which a is in the cache.
For any two requests = and y in a history h, let [z, y] denote the time interval from when z is requested
until when y is requested. We have the following important proposition. :

Proposition 2.1 For an arbitrary request a, if there are two miss requests a?,a®) such that there is
no miss request aV) with i <1 < k in the history h, then there is a miss request b9 (i < j < k) which
evicts the page a, and the interval [a(’),b(’)] is a subset of a residence interval of a.

Proof In the interval [a(),a(*)], page a must be evicted once. Let b¥) (i < j < k) be the request
that causes the eviction. Then there must exist a miss request b) which evicts the page a such that
[a(),b9)] is a subset of a residence interval of a. 1

2.2. Algorithm

We now present an off-line optimal algorithm SRRI (Shifting Requests to Residence Interval). It
converts any history to one causing the minimum number of misses. Further, we can reduce the
number of reordering requests or maximum delay if we choose appropriate replacement policy. Hence
we consider LSD (Least Sum of Distances) and LFU (Least Frequently Used) here as replacement policy
R, because the former minimizes the number of reordering and guarantees no starvation, and the latter
minimizes the maximum delay. The LSD counts the sum of distances from the current request for each
request of page in the cache, and picks the least one. The LFU counts the number of requests for each
page in the cache, and picks the least one. Suppose that a(® causes an eviction of page = under the
re%)%acemer(lt) policy R. Let o (a(?) be the request for z such that there is no 29 (i < j) in the interval
[a : ’UR(G' : )]

Algorithm SRRI

Input: an arbitrary history h
Output: a scheduled history h* with the minimum number of misses

o Given h, suppose that we use replacement policy R.

1. If there exists o (a) for any request a, shift oz (a) to immediately before a.

2. Tterate step 1 from beginning to end of h.

The following theorem proves the correctness of the algorithm.

Theorem 2.1 Given an arbitrary history h of length n, let H be a set of histories containing the same
requests as h. The algorithm SRRI produces a history h* with the minimum number of misses in H.
That is, h* has O(1) misses for h having O(n) misses. ‘
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Proof The algorithm SRRI produces a history A* such that no two misses for a request occur in h*.
Since every page in U(h) causes a miss at least once, h* has the minimum number of misses, |U(h)[, in
H. 1

There are several criteria to be achieved, e.g., minimizing reordering cost, maximum delay, mean
delay, and so forth. We have a few choices of page replacement policy by which criterion should be
achieved. Now we consider two policies in the following. The number of reordering between p(* and
q¥) (i < j) is defined as the distance from p®) to ¢\¥). We also call it an exchange (of p(!) and ¢®).
The reordering cost for ¢, denoted by re(g), is the sum of the necessary number of reordering for all
the references of g. Let us also define starvation as some requests more than distance D are possibly
reordered.

Theorem 2.2 If we adopt LSD as the page replacement policy R, SRRI can minimize the reordering
cost and is free from starvation.

Proof Suppose that the request for a(®) € Iy causes a miss and the page b\%) is picked by LSD. After
exchanging a(® and b9, their positions in h are changed to () and a(**1). Thus if we sum up all the
distances over h, the reordering cost for b,

re(b) = Z d(a(“rk), b(jl:))’
£>0,bUk) €U (R)

is obtained.

Since |U(h)| —m requests in Iy cause misses and LSD picks a page for each miss, we evict |[U(h)|—m
pages whose reordering costs are not larger than those of other m pages. Next, let us consider the page
z with largest rc(z) among the pages to be evicted (i.e., within |U(h)| — m pages). Without loss of
generality, we assume that rc(z) < n, that is, the length of history is larger than re(z). Any request for
y, appearing after the distance of rc(z) from the current request, is not reordered by SRRI because
of re(z) < re(y). If we regard such re(x) as D, LSD provides no starvation. ]

Let'u(z) be the number of references of = after Iy. If A is a set, let u(A) be the set of the number
of references for each element in A. '

Theorem 2.3 If we adopt LFU as the page replacement policy R, SRRI can minimize the mazimum
delay.

Proof Suppose that the requests for 71,72 ...,7: (t = |U(h)|—m) cause misses in Iy, and that for each
miss the page x;, 72 .. ., z; are picked, respectively. Then we can express z; = min{u(z)|z € Crry(r1)},
zo = min{u(z)|x € Crry(re)}, ..., and z; ='min{u(z)|z € Crpy(rt)}. Combining (¢ — 1)st and ¢th
expressions, we have p(z:—1) < p(r:) < minu(Crry(r:) — z¢). Combining (¢ — 2)nd and (¢ — 1)st
expressions provides p(z:—2) < p(zi—1) < p(z) < minu(Crpy(ry) — ), and so forth. Hence LFU
picks the ¢ pages whose usage is less frequent than others.

The maximumly delayed requests are within [u, v], where v is the last request in Iy and v is the
request immediately before the earliest (/) for all y and j. These requests are delayed once for an
exchange. Since LFU picks t pages causing the minimum number of exchanges, SRRI minimizes the
maximum delay. I

The following theorem describes the efficiency of SRRI.
Theorem 2.4 The algorithm SRRI runs in O(n) time.

Proof  Suppose that SRRI keeps an array corresponding U(h) and that it counts the number of
_references of each page by scanning a history once. Next, it determines cache contents for miss requests
in Iy, then it scans the history once more and shifts requests. 1
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3 Semi-Online Scheduling

Now we consider the semi-online version of SRRI, where we have an input queue keeping some future
requests. Though the term “online” is usually used when we cannot use future information, our method
assume that we can know it to some extent. Hence, we do not call it “online” but “semi-online”.

Suppose that a page ¢ is now replaced by a miss request r, and the end of queue at the time is
end,.. We say that the output history is queue interval safe if the evicted page g will not be called
back during the interval [r, end,] for any r and end,.

3.1 Algorithm

Here we present a semi-online version of SRRI, called partial LRU 4+ SRRI, that is, a hybrid method
of LRU and SRRI. Let AA(r) be a set of pages in Cr(r) (AA(r) C Cr(r)) for which requests have
already arrived in the queue at the current request r. If [AA(r)| > k for some constant k (1 < k < m),
the replacement policy R specifies a page s to be evicted. Then the future requests for s (in the queue)
are shifted to its residence interval. If |AA(r)| < k, a page is evicted by the past information. That is,
the least recently used page in the past is specified from the unappeared requests in the queue. Note
that once evicted page is determined by R, it will not be changed ? for simplicity.

Algorithm partial LRU 4+ SRRI

Input: arbitrary page requests
Output: a scheduled history h* with queue interval safe.

e For an input request g, iterate 1 and 2 for each miss request p until the latest AA(p) is defined.

1. Add g to AA(p) if |AA(p)| < k and q € Cr(p) — AA(p).
Pick s € AA(p) by the replacement policy R if |[AA(p)| > k.

2. Shift s to immediately before p for every s in the queue satisfying o (p) = s. (SRRI)
¢ For the current miss request r, examine if |AA(r)| > k.

— If so, the page s picked by R is replaced by r.

— If not, the page with least recently used (in the past) in Cr(r) — AA(r) is replaced by r.
(partial LRU)

The following theorem proves correctness.
Theorem 3.1 Any history h* produced by partial LRU + SRRI is queue interval safe.

Proof Let s be the page replaced by any miss request p, and end, the end of queue at the time.
Assume that the request of s is contained in [p, end,]. Then we have to execute the step 2. As a result,
s is shfted to immediately before p. This property is kept until p is executed. Thus the output history
h* is queue interval safe. i

For the part of the partial LRU, it takes constant time if we keep the information of AA(r) for each
miss request r. The efficiency of partial LRU + SRRI is shown in the following theorem.

2Some picked request may not be picked by R rule if new request comes.
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Theorem 3.2 Let! be the queue length at any time, then it takes O(l) to shift all requests for an input
request q.

Proof Suppose that the top request p of the queue has the latest AA(p) with k — 1 elements. If
the input request g increases |AA(p)| to k and picks a page by R rule, the algorithm computes next
miss request and its AA value (step 1). Then it shifts the picked page (step 2). These steps can be
continued until the end of queue. Thus it takes O(l). 1

The following theorem investigates the appropriate value of k.

Theorem 3.3 If we intend to achieve both high performance and low reordering cost, we should set k
to the value minimizing the weighted sum (o, 3: weight)
m+1
Bk)=a - ———— -q(Hpm — Hpp—_y),
(k) = - gy + 8 alHn — Huc)
where m is the cache size and q is a constant satisfying m < q < |[U(h)|. Note that H, is the nth
harmonic number.

Proof To achieve low reordering cost, we have only to contain the page with LSD property in the
cache as probably as possible. This can be modelled as follows. Suppose that m balls numbering
from 1 to m are in the box, where ith number means the page with ith LSD property. If we pick &k
balls at random, find the expected smallest number. The probability that r is the smallest number is
(1/m)(7=7)/(7-;) because arbitrary number more than r is only allowed after we pick r. Thus we
have the expected smallest value

m—k{;l 1 (m—r)

Z e k—1 — m+1 .

To achieve high performance, we have only to shift as many miss requests as possible. Recall that
the algorithm does not shift them until k¥ requests in the cache appear in the queue. Hence if the
pages are assumed to be requested at random, this can be modelled as follows. Suppose that we have
a complete graph with ¢ nodes (m < ¢ < |U(h)|), where each node and edge represent a page and a
transition, respectively. Find the expected number of requests until ¥ nodes appear. Let Y; be the
number of requests from j — 1 to j pages appear in the queue, and p; its probability. Since Y; has
a geometric distribution with Pr{Y; = t} = (1 — p;)*"'p;, where p; = {m — (j — 1)}/q, we have
ElY;]=1/p; = q/(m —j+1). Thus

k B
Y ElY;] = q(Hpn — Hpx)-

=1

Since both are convex, minimizing the weighted sum, B(k), derives a Pareto optimal solution. [2] g

3.2 Simulation

To evaluate our SRRI, we execute simulation experiments and compare with other two methods.
One is the well-known LRU, and the other is a lookahead method with partial LRU (without SRRI
operations). We adopt LSD as the page replacement policy R.

Our simulation model is composed of a slow memory, a cache, an input queue, and a semi-online
sequence of requests. The inter-arrival time of them is simulated as exponential distribution with mean
lambda. They are accumulated in the queue. The top of the queue, the current request r, is picked and
examined if it is a hit or a miss. If it is a hit, we just increase the current time by hitcost. Otherwise,

" we have to determine the page to be evicted. :
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[ Constant | Value | Meaning |

U(h) 100 Number of distinct pages in h
mazreq | 3000 Number of-executed requests

k 5 R picks from k arrived requests
hitcost 0.001 Execution time for a hit
misscost 1 Execution time for a miss

Table 1: Constants

[ Parameter | Range | Standard Meaning
lambda 1—10 5 Mean inter-arrival time of requests
csize .| 5—50 10 : Cache size

Table 2: Parameters

We execute two experiments. Experiment 1 examines the effect of frequency of requests, lambda,
varying from 1 to 10 (keeping csize = 10). Experiment 2 examines the effect of a cache size, csize,
varying from 5 to 50 (keeping lambda = 5). Note that the number of executed requests is 3000 for a
trial, and the number of misses is averaged over 5 trials. The constants and parameters are summarized
in Tables 1 and 2. '

The results of Experiment 1 are depicted in Figure 1(a). It is very interesting that our method
shows a high performance even if requests are in high contention. This is because a long queue is
available. The results of Experiment 2 are depicted in Figure 1(b). When the cache size is small, our
method outperforms others. As the cache size grows, partial LRU gets better.

1200 1400

1000
1000 1200 1400

Number of Misses
600 800

Number of Misses
§0

400
4

0
0

200
2

2 4 (-3 8 10 10 20 30 40 50
Inter-Arrival Time Cache Size
Figure 1: (a) Varying mean inter-arrival time (b) Varying cache size

4 Conclusion

We investigated an effect of lookahead scheduling requests on the paging problem. Given an off-
line history, we showed that scheduling requests can reduce the number of misses. Additionally, the
procedure is efficient. Next, we considered the case in which we can know the future requests to some
extent, called semi-online. We developed an efficient algorithm for the semi-online case, and showed
that it has a property of queue interval safe. The algorithm uses a parameter k from which R picks
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a page. We investigated what & value is appropriate for high performance and low reordering cost.
At last, we executed simulation experiments for semi-online sequences of requests, assuming that the
queue length is determined by frequency of requests and access costs. As a result, our method partial
LRU + SRRI turned out to be far superior to partial LRU and LRU. In particular, our method
showed a high performance when high frequency of requests.
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