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RECURSIVE ENUMERABILITY IN SET THEORY

MASAMICHI WATE AND TAKEO YAKU

(Received Jun. 19, 1997)

ABSTRACT. The rank[1] of a set in thP class V represents the comple\nt} of the
construction of the set with respect to power operation. The rank w{'K of the set
of all recursively enumerable ordinals was introduced in [2]. Accordmglv the rank

wEK derives a certain constructible set Lyex (1,2, 3], where L,cx is the set of all

constructxble sets with a rank less than wC" (2, 3]

The purpose of this paper is to investigate the ranks and the recursive enumer- -
ability in constructible sets.

We will extend recursive enumerability wS¥ from the ordinals Ord to the con-
structible sets L and define the set L™*. It is shown that L satisfics sevral axioms
and does not satisfy remained axioms. It is also shown that L™ C L, oK. It is
noted that the ranks of L™ and L ¢k are equal.

l. INTRODUCTION

Recursive enumerability seems to represent the limit of computers. Recursive en-
merability in Ord, which is an extension of the natural numbers, has been introduced
and studied by several authors. In this paper, we deal recursive onumemhlhtv in gen-
eral sets. in order to investigate the limit of computers, beyond the ordinal numbers.
A set denotes a collection which has an upper bound. A class denotes collection which
may have no upper bound. The class V was defined in (1]. An ordinal is an exten-
sion of the set w of natural numbers. The class L of constructible sets was defined
in [1]. The set w&™ of all recursively enumerable ordinals was defined in [2. 3]. by
the notion of Godel numbering, which is also called the set of constructive ordinals.
We note that ¢ C Ord ¢ L C V', where Ord denotes the class of all ordinals.
Godel introduced the notion of rank in V' [1]. which is defined by power set and
represents a complexity of construction of a set in V. (iddel ELIb() introduced in (1]
L, =%/ {&x € L | rank(z) < a}. by the notion of “rank" :

We deal with the relation of “rank” and “recursive enumerability™ in the class L.
We will extend recursively enumerability in the ordinals Ord and define a set L'
contained the class L. by Godel numbering. The definition of L™ is regarded as
reasonable, since it will be shown that L7 N Ord = &,

In §2, we will review the Godel numbering with respect to number theoretic func-
tions, and the notion of recursively enumerable ordinals. In §3, we will define L'
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and will show properties of L™ with respect to ZIF'C'. In §4, we will show that

L= cClL, oK, i.e. the recursive enumerability (Godel numbering) does not correspond

to the constxuctlblllty with a rank less than w{". Hence, in L, the notion of re-

cursive enumerability (Godel numbering) is essentml]y different from the notion of
constructibility restricted by the rank w¢™, while, in Ord. the recursive enumerability
CK are the same.

and the constructibility restricted by the rank wj

2. PRELIMINARIES

In this section, we introduce preliminary definitions and methods [4, 5] and (2, 3].

A Gédel numbering of a certain set is an onto mapping from a certain subset of
the natural numbers to the set, i.e. each member of the set corresponds to at least
one natural number and each natural number corresponds to at most one member
~of the set.

When a natural number n corresponds to a member a of the set, we call n a Godel
number of a. and we denote n = gn(a) or ¢ = ng(n). The gn is not necessarily a
one-valued functiou.

We define (ng....,n;) = 2" pi*, where p is the &+ L-th prime number. A
function f from the n-tuples of the natural numbers to the natural nunbers is genaral

recursive if it is obtained by finite applications of the following (1) ~ (6).
1) C(z) =0,
2) S(z)=v+ L
3) UMayy....rn) =2 (1 <0< n)
4y f(zyyeeovln) =hlgr(ey, .o Xn) e, G (T )
~when ¢1,....¢m, and h are general recursive.

f(os Loy 7"1‘71.) = 9(41‘21 . '-,In)

floy + Loxg ooorg) = ”(f(xy, 00,0000 Cp)eily e Tgenn. s r,)
when ¢ and h are general recursive,
(6)  flay,....xn) = py (gly, 2. .. .2,) = 0)
when g¢ is general recursive, and for each n-tuple xy,....x,, there exists
a y, such that g(y.xy....,2,) =0, '
where, py (g(y.xq,... .. tn) = 0) means minimum natural number y such that

gy, 1. ovxn) =0 for wp..ooon.
Now, we carry out the (10(1(’1 numbering of the general recursive functions according

to the 01(181 of the construction of them. We define
(i) gn(C) = (1),
(i) gn(S) = (2).
(ii) gn((_/'{’) = (3,n,7).
(iv) gn(f) = (4.g0(gy). .. .gn(gm).gn(n)) when f is of the form ().
(v) gn(f) = (5.gn(y).gn(h)) ‘ when f is of the form (5),
(vi) gn(f) = (6,gn(yg)) when f is ol the form (6).
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For example, in the case of f(z) =1, gn(f) = (4,(1),(2)), since f(z) = S(C(x)),
and in the case of f(z,y) = z+y, gn(f) = (5,(3,1,1), (4, (3,3,1),(2))), since f is got-
ten by the application of the form (5) for g(y) = U} (y) and h(z,z,y) = S(U3(z,z,y)).
Both of (1) and (4, (3,1, 1), (1)) are Gédel numbers of the constant function f(z) = 0,
since C(U}(z)) = C(z) = 0. Thus, a Godel number of a general recursive function
is determined but not uniquely. This technic of Gédel numbering owes [4, 5]. When
gn(f) = e, we write f = {e}, i.e. Vn € w f(n) = {e}(n) [4].

S.C.Kleene introduced the set w¢? of recursively enumerable ordinals and its Godel
numbering O, in (2, 3]. He named the members of w{™ “constructive ordinals”. The
set w&™ of the constructive ordinals and the set O of natural numbers which express
them (the ordinal which a natural number n is expressed by |n|), are defined by
simultaneos induction as follows: ~

1. 1 € O and |1| =0, i.e. the natural number 1 expresses the ordinal 0,

2. if ¢ € O then 2 € O and |27| = |z| + 1, i.e. if a natural number x expresses an
ordinal «, then the natural number 2% expresses the ordinal a + 1,

3. if x is a Godel number of a certain partial recursive function, and there is a
sequence of integers yo,¥1,: .+ Yn,--. such that y, € O, |y.| =n, {x}(y) is defined,
{z}(y.) € O for each n € w, and [{z}(yo)| < e} y1)] < -+ < e} w)| < ...,
then 3-5% € O and |3 - 5%| = limy— [{z}(yn)], i.e. if a natural number ¢ is a Godel
number of such a function f, then the natural number 3-5% expresses the limit ordinal
a = lim,_ an, where a,, = |f(yn)]- Then w{™ =%/ |0} =%/ sup, 0 In|.

w is the set of all natural numbers. I,m,n,7,j,k,... are variables which range over
w. w&h is the set of all recursively enumerable ordinals. Ord is the class of all ordinal
numbers. a,/3,7,... are variables which range over Ord. V is the class of all sets.
le.

L Vo=0,

2. Vg =V U p(hy),

3. Va=Usca Vs (o is a limit ordinal),

4.V =Usecora Vo '

r,y.=,... are variables which range over V. L is the class of all constructible sets.
1e.

1. Ly=10.

2. Lgp = LyU{z|e € LsA(xis gotten by Godel operation)},

3. Ly =Usca Ly (« is.a limit ordinal),

1. L= UaEQrd L.

3. THE SET L™ AND ITS PROPERTIES

In this section, we introduce the set L™, and describe its properties in the axiomatic
set theory ZF (.
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Definition Let f be a general recursive function with one variable such that if
f(x) = 0 then also f(x + 1) = 0. If the range of f except 0 is a family of Gddel
numbers of all members of a set a, we define that a Godel number of f is a Godel
number of the set a. Namely, if a = {ng({e}(z))|{e}(x) > 0} then e = gn(a).

In this way, Godel numbers of sets are defined inductively, but it is impossible to
do Godel numbering about all sets. So, we define the set L™ be all sets which have
Godel numbers. |

It is familiar by the Lowenheim-Scolem theorem that there is a countable model
of ZFC. However, we can see that L™ is not only a countable model, but also
an effective model of ZFC, if we restrict the axiom of power set and replacement
(separation). ' '

Proposition 1. L™ satisfies the following arioms in ZF(C':

(Aziom of Empty). (Aziom of Pairing),
(Axziom of Extensionality), (Aziom of Union),
(Aziom of Infinity), (Aziom of Regularity),

(Aziom of Choice).

Let A(r,y.xy....,x,) be a lormula such that Ye3ly A(e, y,¢q.. .., c,) for constants
Cly.--.Cy. Putting y = f(x) if and only if A(x.y.cy.... . c,), f1s a function from the
class of all sets V" to V. But, there is not necessarily an algorithm to get y from a
given x. For example, let A(x,y) be the formula

(v €wAT=T(r,x.2)Ay=2x)V(~(r EwAATzTi(x.2.2)) Ay =0)

(cf. [4] about T7). Then y is determined uniquely from & for all w, but there is no
algorithm to get y from x. Hence, {y € w|3z A(x,y)} is in V41, possibly isin L,4.1.
but is not in L. However, if we modify the axiom of replacement as follows, L'

satisfies the modified replacement.

Axiom 1. Modified Replacement Let f(z.z.....z,) be general recursive func-
tion such that when constants ¢y, ..., ¢, are given. lor each set a. f(gn(a),c¢1.....¢y)
is a Godel number of a certain set. Then

YudoVrVs(s € v=r € uA f(gnl(r),ci,....cn) = gn(s))

This axiom is a special case of usual axiom, since y = f(x.z1....,2,) is expressed
by a certain formula of set theory when f is general recursive.

Proposition 2. L' satisfies the modified replacement.
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The Axiom of Separation does not necessary hold as well as Axiom of Replacement.
For example, nevertheless w € L', the set {x € w|Jy € wTi(z,x,y)} is not in L',
since there is no algorithm to decide whether 3y € wT\(z, z,y) for given r € w. So.
we will mofify Axiom of Separation as well as Axiom of Replacement as follows. Then
we can show that Modified Axiom of Separation is derived from Modified Axiom of
Replacement in L™, as well as in ZFC. . :

Axiom 2. Modified Separation Let A(z.z,...,z,) be a general recursive pred-
icate. Then, VzIyVw(w € y = w € 2 A A(gn(w), cy, . .., ¢qn)) for each fixed ¢y,. .., c,.

Proposition 3. Modified Separation is derived from Modified Replacement.

It seems natural to define power set of aset ain L™ as p,.(¢) = {z|z C aAzx € L™}.
However, p..(a) may not have a Gddel number itself, even though each element of it
has a Godel number. In the case of a being an infinite set, putting

f(n) = { py (ng(y) € a) if n =0,
py (ng(y) SaAny > f(n—1)) otherwise,

[ is certainly a mapping from natural numbers to natural numbers and the range of
f is a set of Godel numbers of the elements of p,.(a). But, the formula ng(y) C «a
may not be general recursive, and hence f may not so. for there is not necessarily an
algorithm to deside whether a C b or not, for two sets a and b.

On the other hand, since the subsets of {z|x CaAx € L™} in L™ are countable,
we can express them ay,a,,...,a,,.... Putting p..(a) = U2, an, pre(a) determines
uniquely. But, f(n) = gn(a,) is not necessarily general recursive, hence p,.(a) & L™
in general.

However, if we weaken the axiom of power set as {ollowing, L™ satisfies the modified
axiom of power set, too:

Axiom 3. Modified axiom of power set Tor a given a € L. there is a set
b € L™ such that each element of b is a subset of a. and b contains all finite subset
of a.

Proposition 4. L™ satisfies the modified axiom of power set.

Now, we classify L™ to hierarchy. Define
re .
Ly = 0.
re _ re re
%= lae L7 L)
re __ re e st
L =Ujeo LY (cis alimit number).

L’ may not be in L™, in general.

Proposition 5. For each o, L1* C L,.
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Remark Of course, V,, = L, = LI°. since any finite set have a Godel number e
such that {e}(n) = 0, for all sufliciently large n and this is general recursive. And
Ly C L, CV,,in general.

4. MAIN THEOREM

Now, we describe a few Lemmas to prove Main Theorem.
Lemma 1. If a < wfh | then a € L.

Proof Suppose that v is an ordinal less than wi ™. By induction on the construction

of a.

Case 1. a = 0. Clearly. 0 =0 is in L.

Case 2. o = 3+1. By the hypothesis of induction. B is in L™. Therefore. a = JU{/}}
is in L.

Case 3. a is a limit number. Then, there is a strictly increasing sequence converging
toa (Bo <P < - < fBn <+ <a)and a partial recuesive function {y} such that
[{y}(yn)| = n when |y,| = n. By the hypothesis ol induction, fo, By,..../3n,... are
in L. Therefore, there is a general recursive function g, such that for each fixed n,
the range of g(n,m) is a set of Godel numbers of all ordinals less than 3,.

KR
1

begin ¢ := 0;
for j := 0 to co do
for k:=0to j do
if g(k,j — k) > 0 then begin f(i) :=g(k,j —k); t:=1+ 1 end
end.
Then the function f is general recursive and gn(f) is a Godel number of «. O

Lemma 2. [fa € L™, then o < w{™,

Proof Suppose that « is an ordinal in L™, By induction on the construction of a.
Case 1. « = 0. Then |I| =0 and 1 € O.

Case 2. a = 3 + 1. By the hypothesis of induction. there is a natural number y in O
such that |y| = 3. Then, |2Y| = a and 2¥ € O. '

Case 3. « is a limit number, and there is a general recursive function f such that
the range of f is the set of Godel numbers of ordinals less than «. Since a is a limit
number, f(n) > 0 for each n. By the hypothesis of induction, there is a natural
number y, € O such that |y,| = ng(f(n)). for each n. Put

{g(l)=yo,

9(2™) = Yum(lym|>lg(n))-

Then, the function ¢ is partial recursive. So. g has a (Gddel number =. Hence 3 - 5°
is in O and |3-57] = «. O

Lemma 3. [fx € L', then rank(x) € L"*
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Proof Let a = rank(r). By transfinite induction. We can assume that o is a limit
ordinal, since it is clear in the case of being an isolated ordinal. Let e be a Godel
number of z. Then, Vn rank(ng({e}(n))) < «, hence rank(ng({e}(n))) € L™. So,
we put r(.)(n) = gn(rank(ng({e}(n)))). Since r(.}(n) is a Godel number of an ordinal
number, the range of {r{}m}(m) (m =0,1,...) is the set of the Gédel numbers of
all ordinal numbers less than ng(l {e}(n))- S0, we put
begin'i := 0, ' '

for 7 := 0 to co do

for k:=0tojdo \

if {rieyx}(j—%)>0 then begin (1) 1= {reym}(J — k)i =1+ | end

end.
Then, r. is a general recursive function, and the Godel number of re i1s a Godel
number of rank(z), since ng(re) is a limit ordinal. 0

Remark (1) Thereisno algorithm to get rank(x) for given z. To insist o = rank(x),
we must show 2 € V41 — Va, by the definition of “rank™. That is &£ € V, and x gV,
But we have no algorithm to decide whether x C V|, or not.

(2) rank(L™) = rank(L,cr) = Wi,

Main theorem L™ C L er and if a < wih Lre g L,.

Proof Let . bein L™. Then rvank(x) is in L™ by Lemma 3. So. rank(z) < wt by
Lemma 2. Therefore, x is in Lwlc"" Namely, L™ C Lw;:u. It is easy from a comment
in §3 that L™ is a proper subset of L cx

Let a < wCI‘ Then o is in L™ by Lemma 1, but a is not in L,. Hence. L™ € L.

a

The result of Main Theorem is shown in the following figure.

Ord(rank)

Ord(x an)()

The rank w€F corresponds to the set of recursively enumerable ordinals. The rank
w corresponds to the set w of the natural numbers.
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