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On the Accuracy of Finite Difference Solution
for Dirichlet Problems

Tetsuro Yamamoto (U4 #HEA)
Department of Mathematical Sciences

 Ehime University
Matsuyama 790-8577, Japan

1. Introduction

Let §) be a bounded domain of R? and consider the Dirichlet problem

{—Au-l—c(ac,y)u = f(z,y) in : (1.1)
v =g(z,y) on I =90 | (1.2)

where c,f and g are given functions satisfying ¢ > 0,
o, f€C™(Q)=C*Q) and g€ C(T)

with the Holder exponent o € (0,1). Then it is known [2,4] that there exists a unique
solution u € C() N C%*(Q) of (1.1) and (1.2). Furthermore, if [ is a nonnegative
integer, ' '

¢, f €CH(Q), g€ Q)

and  is a C*%* domain, then it is also knowﬁ that
ue e q), | (13)

Finite difference methods for solving the problem (1.1)-(1.2) have extensively been
studied in much literature (e.g., [3],[5-6],[8-9],[12]) usually for the case u € C*4(Q).
We can find there many estimates on the accuracy of finite difference formulas. The
accuracy of the formula, however, does not necessarily imply that of the approximate
solution. Furthermore, it appears to the author that there is no explicit mention about
superconvergence of discretized solution in any literature.

In this paper, we shall first give a convergence theorem for the Shortley-Weller dis-
cretization, which also asserts a superconvergence of the discretized solution near the
boundary I'. Furthermore, our argument can be applied to the equations in polar co-
ordinate systems to obtain the similar result. Finally we point out that the argument

can also be applied to a Dirichlet problem of a semilinear equation of the form

—AU + f(‘r,y’u) = Oa
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where f € C*(Q2 x R) a‘nd?—iZOianR. »

* Throughout this paper, we put C*°(Q) = CYQ)(C*°()) = C'(Q)) and use the
notation C"*(Q)(C»*(Q)) as the set of functions whose I-th order partial derivatives are
Holder (locally Holder) continuous in Q(€2). Recall that u is called Hélder continuous
with exponent o(0 < o < 1) in a domain D if

[u(P) —w(@Q)| _

sup < 00,
roep ||[P— Q|
P#Q .
where || - || stands for the Euclidean norm, and locally Holder continuous in D if u

is Holder continuous on any compact subset of D. This definition is extended to.the
case @ = 1, where “Holder (or locally Hélder)” is replaced by “Lipschitz (or locally
Lipschitz).”

2. Accuracy of the Shortley-Weller Approximation

Let h = Az and k = Ay be the mesh sizes in z,y directions and put
si=aigth, yi=yiatk i=12-1 ,5=1,2,,].

The grid point (z;,y;) in € is often written as P;;. We shall say that the point F;; is
near I if the distance d(P;;,T') between P;; and I is at most O(h + k). P;; is called
a quasi-boundary point if at least one of the four points (z; £ h,y;), (zi,y; = k) does
not belong to Q = QUT. Otherwise, P; is called a normal (grid) point. We denote by
P, and Pr the set of normal points and the set of quasi-boundary points, respectively
and put Qux = Po U Pr.

Let the four neighbor points of P € Qy; be denoted by Pg, Pw, Ps and Py and their
distances to P be denoted by hg, hw, ks and ky, respectively (cf. Figure 1).
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Furthermore, we denote by U(P) the finite difference solution at P. Then the Shortley-
Weller (S-W) approximation (cf. [3], [5]) for —Au is a five point formula defined by

| 2 2
—AuU(P) = (hEhW + kskN) U(P)

2 2
% U(Pg) - ——
2 2
.t UP)— — 2
ks(ks + kn) (Ps) kn(ks + kn)

which reduces to the usual five point formula if Ay = hyy = h and kg = kny = k.

U(Pw)

U(PN)a (21)

If u € C4(Q), then the truncation error of u at P is given by

T(P) = —(Ahku(P) — AU(P))

hE—hW kN—kS

= "—"'?)—_uxm:(P) + - uyyy(P)

hi — hgh +h2 k2—kEkw+k2
& 1512W Wumrz(QH) + =2 19 Nuyyyy(QV)

{ O(h2+ k) (if PePp) (2:2)
O(h+k) (f PePr), (2.3)

where Qg and Qv are points on the lines Py Pg and PNPS, respectively. (Note that
(2.2) and (2.3) also hold for the case u € C>'(f).)
Similarly, if u € C'*2%(Q), then we have

O(hHte + E"*) (if pe€Py and [ =0 or 1) (2.4)

7(P) ={ O(h* + k%) (if pePr and [=0) (2.5)

O(h + k) (if pePr and [=1). (2.6)

Let N be the number of the grid points P,; in §) and arrange them as P;,---, Py in

appropriate order. We then put

T = (T(Pl)a"',T(PN))t = (T17'.”"TN)t’
U= (U(P1)>>U(PN))t = (Uh""UN)t?
u= (U(Pl)""au(PN))t = (ul_"“’uN)t

and
C = diag(cy,- -+, en),

where ¢; = ¢(P;). Then the vectors U and u satisfy the following systems of linear
equations

(A+C)U=b
and

(A—I—'C)u =b+r
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where A = (a;;) is an N x N irreducibly diagonally dominant L-matrix and b is an
N-dimensional vector which comes from the boundary condition (1.2). Recall that a
matrix A is called an L-matrix if a; > 0 and a;; < 0(z # 7) (cf. [13]) and that an
irreducibly diagonally dominant L-matrix is an M-matrix.

We then have

(A+C)u—-U)=r. (2.7)

This implies ,
' u—U=(A+C)'7

and
U= U] < (44 C)"rl < A7 7| < [frflA”'e @8)
where we put
lu=U| = (jug=Uil,-- -, Juny — Unl)',
Irl = (ml,- Il

e :v(l,...’l)t,

and we have used the fact that A+ C is an M-matrix and 0 < (A+C)~! < A~! since
C is a nonnegative matrix (cf. [12]). Hence, estimating A~'e in the right-hand side
of (2.8) yields error bounds for the finite difference solution. This technique can be
found in Varga [12] and Ortega [6], and extended arguments are found in Hackbush [5],
where it is assumed, however, that u € C*(Q) or C3!(Q) and h = k. More sophisticated
analysis along this line leads to the following result.

Theorem 1 (Superconvergence of the S-W Approximation).

(i) If ue C3>Y(R), then

O(h* + k) (P € Po)

lu(P) - U(P)| < { O(h® 4+ k®) (P is near I)

(i) fue CH2(Q),l =0o0r1and 0 < & < 1, then

O(hl+a + kH—a) (P € PO)

— <
lu(P) — U(P)| < { O(h'+ite 4 fH+1+e) (P is near I)

Remark 2.1. For the S-W approximation, the truncation error at every quasi- bound-
ary point is at most O(h + k) if u € C*'(Q). Nevertheless, Theorem 1 shows the
third-order accuacy of the finite difference solution at the points near I' and the second
order accuracy at other points.
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3. Accuracy of the Swartztrauber-Sweet Approximation in
Polar Coordinate Systems

If Q is the open disk {(z,y)|z? + y*> < R?} where R is a positive constant, then the
problem (1.1)-(1.2) is usually solved by tranforming into the polar coordinate systems

3 |-

— |22 (r%) + 5] + c(r,0)u= f(r,0), 0<r<RO<8<2r (31)
u = g(6), r=R,0<0<2m

According to Swartztrauber-Sweet [11], we discretize this as follows :

h:Arzmi;l— , rizih,izo,-;‘—,l, m+2,m-|—1 (3.2)
k:M:%’r , ajzjk,j=0,1,z,---,n_1,n (3.3)
- [T}W {U+%(Uz‘+1j - Uy) — Ti-l Uij — Ui- 1:)}
+ #(Uiﬂl —2U;; + Uij—l)] +ci;Uij = fij, (3.4)
i=1,2,--,m, j=0,1,2,--,n—1
U =Upp (V1),Ug; = Upo (V) (3.5)

where U;; stand for approximate solutions at P;; = (r;,8;). At the origin, we employ
the formula

17l pt
(1+ )Uoo—- ZU,J_— 00, (3.6)

whose truncation error is 7990 = O(h*) + o(k*). For the case ¢ = 0, they proposed the
scheme (3.2)-(3.6) without any convergence proof. Furthermore, in 1986, Strikwerda-
Nagel [10] showed the second-order accuracy of the scheme by numerical experiments,
but with no proof. It appears that any convergence proof for the above scheme has
not been given since then.

For the Swartztrauber-Sweet (S-S) approximation (3.2)-(3.6), we have the following
superconvergence result :

Theorem 2 (Superconvergence of the S-S Approximation).
(i) If w e C?*(Q) with « € (0,1), then

Oh® + k%) (P e Pp)

[w(P) = U(P)| < { O((he + k*)h) (dis(P,r = R) = O(h))
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(ii) If u € C>*(Q), then

| O(h* + k) (P €Po)
[u(P) = U(P)| < { O(h® + k*h) (dis(P,r = R) = O(h))

Remark 3.1. In [6], adding the condition

Samarsky-Andreev have considered another scheme for solving (3.1) with ¢ =0

h>07 T2=(7’+%)h7 i=0a1a2""am+lv | ' (37)
. , h
kz%n-v ej:jka j=0,1,2,---,n—1,n',p(r)=7‘-—§ (38)
1/ Uysy=Uy;  Uij— Ui—lj)
’ [rz_ (p2+1 h Pz h
11 )
+ g (Ui = 205 + Uz’j-l)] =f; 121 (3.9)
1 ‘ 11 ' .
- l;o—h(Ulj —Upj) + —g?(Uoj+1 —2Up; + Uoj—-l)] = fo; (1=0), (3.10)

where p; = p(r;). With the use of the maximum principle, they proved
|u2-j — Uijl < O(h2 + k‘z), Vl,j
We remark here that Theorem 2 holds true for the scheme (3.7)-(3.10), too.

Remark 3.2. In [1], Chen considered asymptotic behavior of finite difference approx-
imation for a radially symmetric solution u = u(r) of a quasilinear parabolic equation

?:—Auﬁ—u (t,z) € (0,T) x Q,

where  is an N-dimensional ball. He proved the O(h?)-convergence of his scheme which

discretizes g 22 and 3" in Ay = £y 4 N-1 a“ with the use of the centered difference. It

Br2 r

is easy to see that a superconvergence result similar to Theorem 2 holds in this case,

too.

4. Final Comments

(i) If Q is a rectangle, then the smoothness of the solution will generally decrease at
corners. However, some conditions are known for guaranteeing u € C>*(Q),C>*(Q),

etc. For such cases, the similar superconvergence property as in Theorem 1 holds.
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(i) Our argument can easily be applied to the problem

{—Au—l—f(:z:,y,u):O in Q

u=g on I

where f € C?(Q x R) and %5 > 0 in Q x R. This, together with the case where f is
not necessarily smooth, will be disussed elsewhere.

Note : The content of this paper is a summany of an invited talk entitled “Revisit to
finite difference methods in a bounded Dirichlet domain” by the author in the meeting
“Study of Numerical Algorithms” organized by Prof. M.Mori which was held at RIMS,
Kyoto University in November 27, 1997. The detail of the arguments including proofs
of theorems and results of numerical experiments will be given in the forthcoming pa-

_ per [7].
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