

Ryoto University nesearch information nepository	
Title	POLYNOMIAL HULLS WITH NO ANALYTIC STRUCTURE
Author(s)	Levenberg, Norman
Citation	数理解析研究所講究録 (1998), 1037: 143-146
Issue Date	1998-04
URL	http://hdl.handle.net/2433/61943
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

POLYNOMIAL HULLS WITH NO ANALYTIC STRUCTURE

Norman Levenberg

0. Introduction. Let X be a compact set in \mathbb{C}^N and \hat{X} its polynomial hull:

$$\hat{X} := \{(z_1, ..., z_N) \in \mathbb{C}^N : |p(z_1, ..., z_N)| \le ||p||_X \text{ for all polynomials } p\},$$

where $||p||_X$ denotes the supremum norm of p on X. If X contains the boundary of an H^{∞} disk, i.e., if there exists a bounded, nonconstant holomorphic map $g = (g_1, ..., g_N)$ from the unit disk Δ in C into C^N with radial limit values $g^*(e^{i\theta})$ belonging to X for a.e. θ , then, by the maximum modulus principle, \hat{X} contains the analytic disk $g(\Delta)$. In general, we say a set S has analytic structure if it contains an analytic disk $g(\Delta)$. In this note, we discuss well-known examples of Stolzenberg [S] and Wermer [W] and recent modifications which show that a compact set can have non-trivial hull (i.e., $\hat{X} \neq X$) with \hat{X} (or at least $\hat{X} \setminus X$) containing no analytic structure. We remark that in both examples, the set \hat{X} is constructed as a limit (in the Hausdorff metric) of compact subsets of analytic varieties in C^2 .

1. The Stolzenberg Example. Stolzenberg's set X is a subset of the topological boundary of the bidisk $\Delta \times \Delta$ in \mathbb{C}^2 such that the origin (0,0) lies in \hat{X} . However, the projection of the hull in each coordinate plane contains no nonempty open set; hence \hat{X} contains no analytic structure. The rough idea of the Stolzenberg construction is, first of all, to take a countable dense set of points $\{a_j\}$ in the punctured disk $\{t \in \mathbb{C} : 0 < |t| < 1\}$ and form the algebraic varieties $C_j := \{(z, w) \in \mathbb{C}^2 : (z - a_j)(w - a_j) = 0\}$. These varieties avoid (0,0) and have the property that each of the coordinate projections π_z and π_w of the union $\bigcup_j (C_j \cap (\Delta \times \Delta))$ equals $\{a_j\}$. Then a decreasing sequence of compact subsets X_i of the topological boundary of the bidisk is constructed inductively so that (0,0) lies in \hat{X}_i for each i and $\hat{X}_i \cap (\bigcup_{j=1}^i C_j) = \emptyset$; i.e., the hulls \hat{X}_i avoid more and more of the algebraic varieties C_j . The intersection $X := \cap X_i$ is the desired set.

Remarks. Although the coordinate projections of \hat{X} are nowhere dense, they have positive Lebesgue measure (as subsets of \mathbb{R}^2). This can be seen as follows: first of all, despite the lack of analytic structure in \hat{X} , (holomorphic) polynomials are not dense in the continuous (complex-valued) functions on \hat{X} , or, in the standard notation of uniform algebras, $P(\hat{X}) \neq C(\hat{X})$. Indeed, for any $p \in P(\hat{X})$, $||p||_{\hat{X}} = ||p||_{X}$; thus if $f \in C(\hat{X})$ satisfies $|f(0,0)| > ||f||_{X}$ (such f clearly exist), $f \notin P(\hat{X})$. Now if the coordinate projections of \hat{X} have positive Lebesgue measure, by the Hartogs-Rosenthal theorem, the functions \bar{z} and \bar{w} are in $P(\hat{X})$; then, using the Stone-Weierstrass theorem, we get that $P(\hat{X}) = C(\hat{X})$, a contradiction.

Further Examples. By choosing $\{a_j\}$ a bit more carefully (in particular, to avoid an entire interval [a, b] instead of just the origin), and by slightly modifying the construction of the sets X_i , Fornaess and the author proved the following.

Theorem 1 ([FL]). Let D be a bounded domain in C^2 with $\widehat{\overline{D}} = \overline{D}$ and such that both coordinate projections of D yield the unit disk. Let 0 < a < b < 1. Then there exists a compact set $X \subset \partial D$ such that \widehat{X} contains no analytic structure but with $[a,b] \times [a,b] \subset \widehat{X} \setminus X$.

We remark that $[a,b] \times [a,b]$ is non-pluripolar in \mathbb{C}^2 ; i.e., if a plurisubharmonic function u is equal to $-\infty$ on $[a,b] \times [a,b]$, then $u \equiv -\infty$.

Abstracting the concrete ideas in [FL], Duval and the author generalized Theorem 1.

Theorem 2 ([DL]). Let D be a bounded domain in \mathbb{C}^N with $\widehat{D} = \overline{D}$. Given $K \subset D$ with $K = \widehat{K}$ (or $K \subset \overline{D}$ with $K = \widehat{K} = K \cap \partial D$), there exists $X \subset \partial D$ compact with $K \subset \widehat{X}$ such that $\widehat{X} \setminus K$ contains no analytic structure. In particular, if K contains no analytic structure, then \widehat{X} contains no analytic structure.

As a corollary, by taking $K = \Gamma \times ... \times \Gamma$ (N times) where Γ is a Jordan arc in \mathbf{C} with positive Lebesgue measure (in \mathbf{R}^2), we get a compact set X in ∂D whose hull \hat{X} contains no analytic structure but such that $\hat{X} \setminus X$ has positive Lebesgue measure in \mathbf{R}^{2N} .

Remarks. Intuitively, one might expect that if $\hat{X} \setminus X$ is nonempty but contains no analytic structure, then $\hat{X} \setminus X$ should still be "small" in some sense. The previous two theorems show that $\hat{X} \setminus X$ can still be quite

"large" in certain cases. The next result, due independently to Alexander and Sibony, shows that $\hat{X} \setminus X$ is always "large" when $\hat{X} \setminus X$ is nonempty but contains no analytic structure. Below, $h_2(S)$ denotes the Hausdorff 2-measure of a set S.

Theorem 3 (Alexander [A1], Sibony [Si]). Let $X \subset \mathbb{C}^N$ be compact and let $q \in \hat{X} \setminus X$. If there exists a neighborhood U of q in \mathbb{C}^N with $h_2(\hat{X} \cap U) < +\infty$, then $\hat{X} \cap U$ is a one-dimensional analytic subvariety of U.

As a corollary, if $\hat{X} \setminus X \neq \emptyset$ and $\hat{X} \setminus X$ contains no analytic structure, then $h_2(\hat{X} \setminus X) = +\infty$.

2. The Wermer Example. In 1982, Wermer [W] constructed a compact set X in $\partial \Delta \times \mathbf{C} \subset \mathbf{C}^2$; i.e., $\pi_z(X) = \partial \Delta$ (recall π_z denotes the projection onto the first coordinate), with $\pi_z(\hat{X}) = \overline{\Delta}$ and such that $\hat{X} \setminus X \subset \Delta \times \mathbf{C}$ does not contain any topological disk; i.e., there is no continuous nonconstant $g: \Delta \to \mathbf{C}^2$ with $g(\Delta) \subset \hat{X} \setminus X$. Clearly since $\pi_z(\hat{X} \setminus X) = \Delta$, the reason $\hat{X} \setminus X$ contains no analytic structure is not because of "small" coordinate projections as in the Stolzenberg example. Here, \hat{X} is constructed as a limit (in the Hausdorff metric) of Riemann surfaces Σ_n over $\overline{\Delta}$ which branch over more and more points. Starting with a countable dense set of points $\{a_j\}$ in $\overline{\Delta}$, one chooses a sequence $\{c_j\}$ of positive numbers decreasing rapidly to 0 so that the graphs of the 2^n -valued functions

$$g_n(z) := c_1 \sqrt{z - a_1} + c_2(z - a_1) \sqrt{z - a_2} + \dots + c_n(z - a_1) \cdots (z - a_{n-1}) \sqrt{z - a_n}$$

over $\overline{\Delta}$ form the desired Riemann surfaces Σ_n . To be precise, the actual construction done in [W] takes place over the disk of radius one-half centered at the origin in the z-plane; this yields the estimate |a-b|<1 for |a|, |b|<1/2.

Remarks. Although $\hat{X} \setminus X$ contains no analytic structure, there remains some semblance of analyticity in this set. A result of Goldmann [G] shows that functions in the uniform algebra P(X) behave like analytic functions in the sense that if $f \in P(X)$ vanishes on an open set U (relative to \hat{X}), then f vanishes identically. Such a uniform algebra is called an analytic algebra.

Further Examples. One can choose the parameters in the Wermer construction so that the intersection of $\hat{X} \setminus X$ with any analytic disk is "small".

Theorem 4 ([L]). There exist X compact in $\partial \Delta \times \mathbf{C}$ with $\pi_z(\hat{X}) = \overline{\Delta}$ and such that $g(\Delta) \cap (\hat{X} \setminus X)$ is polar in $g(\Delta)$ for all H^{∞} disks g.

Note that in the Wermer example, we have no analytic structure in $\hat{X} \setminus X$; however, the set X itself can contain lots of analytic disks. Indeed, we have the following "fattening lemma" of Alexander.

Theorem 5 (Alexander [A2]). There exists a Wermer-type set X (X compact in $\partial \Delta \times \mathbf{C}$ with $\pi_z(\hat{X}) = \overline{\Delta}$ and such that $\hat{X} \setminus X \subset \Delta \times \mathbf{C}$ contains no analytic structure) such that for all proper, closed subsets α of $\partial \Delta$ and all M > 0, setting

$$Z := X \cup \{(z, w) : z \in \alpha, |w| < M\},\$$

we have $\hat{Z} \setminus Z = \hat{X} \setminus X$.

Remarks. One can also construct the Wermer set \hat{X} as a decreasing intersection of the generalized lemniscates

$$X_n := \{(z, w) : |z| \le 1/2, |p_n(z, w)| \le \epsilon_n\}$$

where $\{p_n\}$ are polynomials in (z, w) which satisfy

- 1. $\Sigma_n = \{(z, w) : |z| \le 1/2, \ p_n(z, w) = 0\};$
- 2. $p_n(z, w) = c_n^{2^n} z^{m_n} + R_n(z, w)$ where $\deg R_n < m_n := \deg p_n$;
- 3. $\{c_n\}$, $\{\epsilon_n\}$ tend to 0 rapidly enough so that $X_{n+1} \subset X_n$ for all n and $\hat{X} = \bigcap_n X_n$

(cf., [W]). Thus, from results in [LT], if

$$\lim_{n\to\infty} \left(\frac{\epsilon_n}{c_n^{2^n}}\right)^{1/m_n} = 0,$$

the set $\hat{X} \setminus X$ is pluripolar in \mathbb{C}^2 (see [L]).

In general, if X is compact in $\partial \Delta \times \mathbf{C}$ with $\pi_z(\hat{X}) = \overline{\Delta}$, then $\hat{X} \setminus X \subset \Delta \times \mathbf{C}$ is pseudoconcave in the sense of Oka; i.e., $(\Delta \times \mathbf{C}) \setminus (\hat{X} \setminus X)$ is pseudoconvex. In the terminology of set-valued functions, $\hat{X} \setminus X$ is the graph of an analytic multifunction over Δ (cf. [Sl]). Yamaguchi [Y] has shown in this setting that the function $z \to \log C(\hat{X}_z)$, where $\hat{X}_z := \{w : (z, w) \in \hat{X}\}$ is the fiber of \hat{X} over z and C(S) denotes the logarithmic capacity of the compact set S, is subharmonic on Δ . Thus, if there exists one z in Δ such that the fiber \hat{X}_z is non-polar in \mathbb{C} , then $\hat{X} \setminus X$ is non-pluripolar as a subset of \mathbb{C}^2 .

- 3. Final comments and open questions. Theorem 1 gives a concrete example of a compact set X with $\hat{X} \setminus X$ being non-pluripolar without containing any analytic structure. It is unknown if the Wermer example can be modified in this manner.
 - 1. Does there exist X compact in $\partial \Delta \times \mathbf{C}$ with $\pi_z(\hat{X}) = \overline{\Delta}$ such that $\hat{X} \setminus X$ contains no analytic structure but is non-pluripolar?

From the discussion in section 3, once \hat{X}_z is non-polar in C for one z in Δ , then $\hat{X} \setminus X$ is non-pluripolar in \mathbb{C}^2 .

Suppose $S \subset \Delta \times \mathbb{C}$ is pseudoconcave. Sadullaev has shown [Sa] that S is pluripolar in \mathbb{C}^2 if and only if each fiber S_z is polar ("only if" follows from Yamaguchi's result).

2. Let $S \subset \Delta \times \mathbb{C}$ be pseudoconcave with each fiber S_z being polar. Is it true that for each r < 1, $S^r := S \cap \{|z| < r\}$ is complete pluripolar; i.e., there exists u plurisubharmonic in $\{|z| < r\} \times \mathbb{C}$ such that

$$S^r = \{(z, w) : u(z, w) = -\infty\}?$$

Is it true that $S \cap \{|z| \le r\}$ is polynomially convex for each r < 1?

Recall that for the Stolzenberg example, $P(\hat{X}) \neq C(\hat{X})$. Recently, Izzo [I] has constructed an example of a compact set X in the unit sphere ∂B in \mathbb{C}^3 which is polynomially convex $(\hat{X} = X)$ but with $P(X) \neq C(X)$. Note that a subset of the unit sphere ∂B in \mathbb{C}^N contains no analytic disk; thus there is no analytic obstruction to P(X) being dense in C(X). However, it is unknown if such an example can be constructed in \mathbb{C}^2 .

3. Suppose $X \subset \partial B \subset \mathbb{C}^2$ is compact and polynomially convex. Is P(X) = C(X)?

We end this note by remarking that Alexander [A3] has recently constructed a compact set X in the unit torus $\partial \Delta \times \partial \Delta$ in \mathbf{C}^2 such that the origin (0,0) lies in \hat{X} but such that \hat{X} contains no analytic structure.

References

- [A1] H. Alexander, Structure of certain polynomial hulls, Mich. Math. J. 24 #1 (1977), 7-12
- [A2] H. Alexander, Polynomial hulls of sets in C³ fibered over the unit circle, Mich. Math. J. 43 (1996), 585-591.
- [A3] H. Alexander, private communication.
- [DL] J. Duval and N. Levenberg, Large polynomial hulls with no analytic structure, to appear in Complex Analysis and Geometry, Trento 1995.
- [FL] J.-E. Fornaess and N. Levenberg, A nonpluripolar hull without analytic structure, to appear in Complex Analysis in Several Variables, T. M. Rassias, ed.
- [G] H. Goldmann, An analytic algebra without analytic structure in the spectrum, Ark. Mat. 27 (1989), 89-95.
- [I] A. Izzo, Failure of polynomial approximation on polynomially convex subsets of the sphere, Bull. London Math. Soc. 28 #4 (1996), 393-397.
- [L] N. Levenberg, On an example of Wermer, Ark. Mat. 26 (1988), 155-163.
- [LT] N. Levenberg and B. A. Taylor, Comparison of capacities in C^N, Analyse Complexe, Proceedings, Toulouse 1983, pp. 162-172, Lecture Notes in Math 1094, Springer-Verlag, 1984.
- [Sa] A. Sadullaev, A criterion for rapid rational approximation in Cⁿ, Math. USSR Shornik 53 (1986).
- [Si] N. Sibony, Analytic structure in the spectrum of a uniform algebra, Spaces of Analytic Functions, Kristiansand, Norway 1975, pp. 139-165, Lecture Notes in Math 512, Springer-Verlag, 1975.
- [SI] Z. Slodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), 363-386.
- [S] G. Stolzenberg, A hull with no analytic structure, Jour. of Math. and Mech. 12 (1963), 103-111.
- [W] J. Wermer, Polynomially convex hulls and analyticity, Ark. Mat. 20 (1982), 129-135.

[Y] H. Yamaguchi, Sur une uniformité des surfaces constantes d'une fonction entière de deux variables complexes, J. Math. Kyoto Univ. 13 No. 3 (1973), 417-433.

Department of Mathematics University of Auckland Private Bag 92019 Auckland, NEW ZEALAND