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On exterior problems in elasiticy

BY MISHIO KAWASHITA $(\} \iota\backslash \mathrm{T}\sim\#_{/^{A}}’’\Phi )$

Faculty of Education, Ibaraki University

\S 0 Introduction

Let $\Omega$ be a domain containing in $\mathrm{R}^{n}$ representing an elastic medium in
the three dimensional case. A motion of elastic medium is described by the
displacement vector $u(t, x)={}^{t}(u_{1}(t,X),$ $\cdots$ , $u_{n}(t, x))$ which is defined as the
displacement of a point $x\in\Omega$ in the elastic medium at time $t$ . In elasticity
theory, the displacement vector $u(t, x)$ should satisfy the following equation:

(0.1) $(\partial_{t}^{2}-A(\partial_{x}))u(t, X)=0$ in $\mathrm{R}\cross\Omega$ ,

where the differential operator $A(\partial_{x})$ is of the form

れ

$A( \partial_{x})u=\sum_{i,j=1}\partial_{x:}(aij\partial x_{j}u)$
.

Thus, the elastic wave equation is a typical example of the second order
hyperbolic system.

The most famous example of the elastic waves appears in the waves in
earthquakes. lt is well known $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\wedge$ there are two different type of waves
named as $\mathrm{P}$-waves (primary waves) and $\mathrm{S}$-waves (secondary waves) in earth-
quakes. Since these waves propagate inside of the elastic medium, in this
case, that is in earth, such waves are called as body waves.

In the case of the Neumann boundary problem of the equation (0.1), we
have different types of waves which propagate along the boundary of the
elastic media. Since these waves on the elastic media were found by Lord
Rayleigh, we call these waves as the Rayleigh surface waves. The existence
of the Rayleigh surface waves is a conspicious feature of the elastic wave
equation with the Neumann boundary condition. The purpose in this article
is to consider how the existence of the Rayleigh surface waves affect on the
properties of the solutions of the elastic wave equations with the Neumann
boundary condition.

To formulate this problem precisely, we consider the case of exterior prob-
lems. In exterior problems for hyperbolic equations, we have many fruitful
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results in the bamework of the scattering theory for the hyperbolic equa-
tions. In particular, for exterior problems of the usual wave equation for
a scalar valued function, we have many works. $\ln$ this case, trappness of
singularities of the solution of the wave equation are closely related to the
asymptotic behaviour of the local energy near the boundary and the location
of the poles of the resolvent (that is, so cffied as “resonances”).

$\ln$ the case of the exterior problem in the isotropic elastic wave equation
with the Neumann boundary condition, by the existence of the Rayleigh sur-
face waves, we can see the trappness phenomenon in the sense of propagation
of singularities (cf. \S 2). Thus, by the analogue in the case of the usual wave
equaion, we can expect that even in the elastic case, the local energy de-
caying very slowly and the poles of the resolvent appear near the real axis
although the causes for the trappness are quite different.

In the isotropic case, Ikehata and Nakamura [3] show that these analogues
hold if the boundary is the unit sphere in $\mathrm{R}^{3}$ . After obtaining this result,
the studies from the point of view in these analogues developed. In the
isotropic case, the existence of the poles approaching the real axis is obtained
by Stefanov and Vodev [16], [17] and [18], even in the case of the general
curved boundary. In their proof, they proposed a new approach to show the
existence of the poles of the resolvent converging the real axis.

In this approach, we treat the stationary problem directly. It is quite
different from the methods via the time dependent problem used to show
the existence of the poles in the case of the usual wave equations (cf. \S 3,
3.2).

This new approach is applicable to the various types of problems since we
essentially treat elliptic problems with large parameter which can be treated
for very general class. Indeed, by this strategy, even in the quite general
anisotropic case $\mathrm{w}\mathrm{h}\mathrm{i}_{\mathrm{C}}\dot{\mathrm{h}}$ is physically natural class, we can obtain the same
results as in the isotropic case (cf. \S 3, 3.3).

For the other example, Popov and Vodev [11] treat the existence of the
poles in the case of transmission problems of the usual wave equation with
a strictly convex transmission boundary. Thus, this approach can be used
to the various types of the pro.blems. This largeness in terms of applicable
classes is an advantage of this new method, however, by this approach, we
can not know how and where the poles of the resolvent appear precisely. On
the other hand, the approach via the time dependent problem gives more
precise infomation though it need to trace every path on which singularities
propagate. By this reason, the method treating the time dependent problem
restricts the class to which this approach can be applied. This is a differences
between both approachs.
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\S 1 Elastic wave equations

Let $\Omega\subset \mathrm{R}^{n}(n\geq 3)$ be an exterior domain with smooth and compact
boundary $\Gamma$ . We consider the exterior mixed problem for the elastic wave
equation with the Neumann boundary condition:

(1.1)

where the boundary operator $N(\partial_{x})$ is the conormal derivative of the opera-
tor $A(\partial_{x})$ , that is, $N(\partial_{x})$ is represented as $N( \partial_{x})u=\sum_{i,j=1}^{n}\nu i(X)a_{i}j\partial xu|_{\Gamma}j$

by using the unit outer normal $\nu(x)={}^{t}(\nu_{1}(x), \cdots , \nu_{n}(x))$ of the boundary $\Gamma$ .
We denote by $a_{ipjq}$ the $(p, q)$-component of the coefficient matrices $a_{ij}$ of the
operator $A(\partial_{x})$ . Throughout in this article, we assume each $a_{ipjq}$ does not
depend on the variables $t$ and $x$ . Further, we always assume the following
physicaly natural assumptions:

(A.1) $a_{ipjq}=a_{jqip}=a_{pijq}$

for any $i,p,j,q=1,$ $\cdots$ , $n$ ,

(A.2) there is a constant $\delta>0$ such that

$\sum_{i,p,j,q=1}^{\text{れ}}aipjqj\epsilon qi\overline{\epsilon}\geq\delta p\sum_{i,p=1}^{n}|\epsilon ip|2$ ,

for any $n\cross n$-symmetrix matrix $(\epsilon_{ip})$ .
These assumptions (A.1) and (A.2) are derived from some physical investi-
gation in elasticity theory. They \^express some physical situations of elastic
media.

We call that material is isotropic if and only if each coefficient is of the form
$a_{ipjq}=\lambda 0sip\delta_{j}q+\mu \mathrm{o}(\delta_{ij}\delta_{pq}+\delta_{iq}\delta_{jp})$ by some constants $\lambda_{0},$

$\mu 0$ called Lam\’e
constants. $\ln$ this case, we have $A(\partial_{x})u=\nu_{0}\triangle u+(\lambda_{0}+\mu_{0})\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}(\mathrm{d}\mathrm{i}\mathrm{v}u)$ .
Note that in the isotropic case, (A.1) and (A.2) are satisfied if and only if
$\lambda_{0}+\frac{2}{n}\mu_{0}>0,$ $\mu_{0}>0$ hold. In what follows, we call the material is anisotropic
if and only if the elastic tensors $a_{ipjq}$ satisfy (A.1) and (A.2) and it is not
isotropic.

\S 2 Existence of the Rayleigh surface waves

Rayleigh [13] found special solutions of the isotropic elastic wave equation
with the Neumann boundary condition in the half space in $\mathrm{R}^{3}$ . They are
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considered as the surface waves, which are the prototype of the Rayleigh
surface waves. At the present time, mathematically, we consider the Rayleigh
surface waves as solutions having singularities in the elliptic region $\mathcal{E}$ of the
operator $\partial_{t}^{2}-A(\partial_{x})$ . They appear in the case that Lopatinski matrix is not
invertible at some point in $\mathcal{E}$ . Indeed, corresponding to that point, in the
half space case, we can construct exact solutions which can be considered as
the Rayleigh surface waves.

In the case of general curved boundary, the existence of the Rayleigh sur-
face waves are treated in the sense of propagation of singularities by analysing
the time dependent outgoing (resp. incoming) Neumann operator $T^{+}$ (resp.
$T^{-})$ . The Neumann operator $T^{\pm}$ are defined as

$T^{\pm}f(t,x)=N(\partial_{x})w(\pm t, x)|\mathrm{R}\cross\Gamma$ ,
where $w^{\pm}(t, x)$ is the following problem:

$1^{(\partial_{l}^{2}}w^{\pm}(t,x)=\mathrm{o}fw^{\pm}(t,x)=(t,x)<-A(\partial_{x}))w_{\mathrm{i}\mathrm{f}\pm t0}^{\pm}(t,x)=\mathrm{o}\mathrm{i}\mathrm{s}$

sufficiently small.

$\mathrm{i}\mathrm{n}\mathrm{R}\mathrm{x}\Omega \mathrm{o}\mathrm{n}\mathrm{R}\mathrm{X}\Gamma’$

,

Since the principal symbol $\sigma_{p}(T^{\pm})$ of the Neumann operator coincides with
the Lopatinski matrix, we can show the existence of the Rayleigh surface
waves by showing $T^{\pm}$ is a pseudo-differential operator of real principal type in
$\mathcal{E}$ (cf. Taylor [20] in the isotropic case, and Nakamura [10] in the anisotropic
case).

The anisotropic case, Stroh [19] and Barnett and Lothe [1] investigate the
existence of the Rayleigh surface waves if the material consists of the half
space in $\mathrm{R}^{3}$ . In this case, the Rayleigh surface waves do not always appear.
They give a sufficient and necessary condition of the existence of the Rayleigh
surface waves by so called “the surface impedance tensor”. Nakamura [10]
define the surface impedance tensor in the case of general curved boundary.
By using this, he gives the condition of the existence of the Rayleigh surface
waves.

The surface impedance tensor $Z(\zeta,\tau)$ is a $n\cross n$-Hermit matrix valued
$C^{\infty}$ function on $\mathcal{E}$ . This can be extended on $\overline{\mathcal{E}}\subset T^{*}(\mathrm{R}\cross\Gamma)$ continuously
(cf. [1], [10], [9]). Here, we do not write $t$ in the variable of $Z$ since the
surface impedance tensor $Z=Z(\zeta,\tau)$ does not depend on $t$ of $(t,\tau, \zeta)\in \mathcal{E}\subset$

$T^{*}(\mathrm{R}\cross\Gamma)$ . In what follows, for simplicity, we write $(\zeta, \tau)\in \mathcal{E}$ instead of
$(t,\tau, \zeta)\in \mathcal{E}$ .

By using the surface impedance tensor $Z(\zeta,\tau)$ , the necessary and sufficient
condition (ERW) of the existence of the Rayleigh surface waves is described
as follows:

(ERW) $\{_{\mathrm{t}\mathrm{h}\mathrm{e}}^{\mathrm{T}\mathrm{h}\mathrm{i}_{\mathrm{S}}}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{x}\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{t}\mathrm{S}\mathrm{a}\mathrm{p}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}_{\mathrm{X}}\mathrm{t}\mathrm{i}\mathrm{n}(\zeta Z(\zeta^{0}’,\mathcal{T}0\mathcal{T}00)\in\partial \mathcal{E}_{\mathrm{S}\mathrm{u}}\mathrm{c})\mathrm{i}_{\mathrm{S}}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{n}\mathrm{e}\mathrm{g}\mathrm{a}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{t}\mathrm{i}_{\mathrm{V}}$

definite.
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Remark 2.1
In the three dimensional case, the condition (ERW) is the same as that in

[1] and [10].

Between the Neumann operator $T^{\pm}$ and the surface impedance tensor
$Z(\zeta, \tau)$ , we have the following relation:

$\sigma_{p}(T^{\pm})(\zeta,\mathcal{T})=||\zeta||\mathrm{r}z(\zeta, \tau)$ on $\mathcal{E}$ ,

where $||\zeta||_{\Gamma}$ is the fiber metric of $T^{*}(\Gamma)$ inducing by the ordinary Riemann
metric of $\Gamma$ . By this relation, the same argument as in [1], [10] implies that
the condition (ERW) is equivalent to the fact that $T^{\pm}$ is a real principal type
in some neighbourhood of a point on the boundary. We do not introduce
the surface impedance tensor by only the historical reason why it is used to
argue the existence of the Rayleigh surface waves in elasticity theory. In the
anisotropic case, it is rather difficult to show the properties of the principal
symbol of the Neumann operator from its form directly. We can know these
properties via analysing the surface impedance tensor.

Remark 2.2
If the material is isotropic, we can compute the form of $\sigma_{p}(T^{\pm})$ and $Z(\zeta,\tau)$ .

In particular, we can show the Rayleigh surface waves appear from the points
$(\zeta,\tau)\in \mathcal{E}$ satisfying $C_{R}||\zeta||_{\Gamma}-|\tau|=0$ , where the constant $C_{R}>0$ is the
phase speed of the Rayleigh surface waves. Hence, we can show how the
Rayleigh surface waves propagate on the whole boundary $\Gamma$ and the trappness
in the sense of propagation of singularities. Definitely, in the isotropic case,
the condition (ERW) always holds. On the other hand, in the anisotropic
case, the condition (ERW) only ensure the local existence of the Rayleigh
surface waves. Thus, note that $\mathrm{w}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{n}\wedge$ not know the trappness of singularities
from the condition (ERW).

\S 3 Properties of the solutions

For exterior problems of the usual wave equations for scalar valued func-
tion, there are many works investigating precise properties of the solutions
from the point of view in the scattering theory. In general, there are solutions
whose energy mainly propagate along paths on which singularities propagate
(that is, the rays of geometrical optics). Thus, if the obstacle is trapping,
that is, if singularities never escape from near the boundary, the local en-
ergy of solutions hardly go out from that neighbourhood of the boundary
(cf. [12]). It clarify this property to consider the analytic continuation of
the stationary problem with respect to the spectrum parameter. Indeed,
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intuitively, it is known that the locations of the poles of this analytic con-
tinuation make much influence on the speed of the decay of the local energy
decay for the solution of the time dependent problem. lt is considered that
these locations represent the strongness of the trappness (cf. [2], [23] and
their references).

On the other hand, in the case of the exterior Neumann problem for the
elastic wave equation, the solutions have singularities on the boundary which
can be regarded as the Rayleigh surface waves. In the isotropic case, by
Remark 2.2, we can see the obstacle is trapping in the sense of propagations
of singularities. Thus, we can expect that the solutions have the properties
which reflect on this trappness. $\ln$ this direction, the isotropic case were
mainly studied.

In the anisotropic case, as is in Remark 2.2, we can only know the local
existence of the Rayleigh surface waves. Nevertheless, we can show the same
properties hold even in the anisotropic case.

3.1 Asymptotic behaviour of the local energy

For a domain $D\subset \mathrm{R}^{n}$ , we define the local energy $E(u, D,t)$ at time $t$ of
the solution $u(t, x)$ of the problem (1.1) as

$E(u, D,t)= \frac{1}{2}\int_{D\cap\Omega}\{. \sum n aipjq\partial x_{\mathrm{j}}q(ut, x)\overline{\partial x:up(t,X)}+|\partial_{t}u(t, x)|^{2}\}dx$ .
$\iota,p,j,q=1$

In the elastic case, although the Rayleigh surface waves appear, the local
energy of the solution tends to go out near the boundary.

THEOREM 3.1 (Shibata and Soga [14]). Under th$eass$umptions (A.1) and
(A.2), th$e$ local energy decays, $t\Lambda$at is, for any boun$ded$ domain $D\subset \mathrm{R}^{n}$ , we
$\Lambda a\mathrm{v}e\lim_{\mathrm{f}arrow\infty}E(u, D,t)=0$ .

From Theorem 3.1, to clarify the influence of the Rayleigh surface waves,
we need to see more precise properties of the local energy. Thus, we introduce
the uniformity of the decay of the local energy. For $a>0$ , we set $B_{a}=\{x\in$

$\mathrm{R}^{n}||x|<a\}$ .
DEFINITION 3.1 (the uniform decay rate). For non-negative in$\mathrm{t}$ eger $m$ and
a positive constant $a>0$ satisfying $\Gamma\subset B_{a}$ , we define the uniform decay
rate $p_{m,a}(t)$ as

$p_{m,a}(t)= \sup\{_{||\nabla_{x}f1}|E(u,\Omega\cap Ba’ t)\}|_{H()}2m\Omega+||f2||2H^{m}(\Omega)|0\neq(f_{1,f}2)\in C_{0}^{\infty}(\overline{\Omega}\cap Ba)$ ,
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where $u(\mathrm{t},x)$ is the solution of (1.1) with the initial data $(f_{1}, f_{2})$ .

For the uniform decay rate $p_{m,a}(t)$ , we can obtain some results which can
be considered as the local energy tends to remain near the boundary.

THEOREM 3.2 (Ikehata and Nakamura [3]). If the material is isotropic and
the boundary $\Gamma$ is the $\mathrm{u}\dot{\mathrm{m}}^{r}f$ sphere in $\mathrm{R}^{3}$ , for any $\gamma>0$ and $m\in \mathrm{N}\cup\{0\}$ , we
$\Lambda \mathrm{a}\mathrm{v}e\lim_{tarrow\infty}epm,a(\gamma tt)=\infty$ , that is, we $c$an not A$a\mathrm{v}e$ the estimate of the form

$p_{m,a}(t)\leq Ce^{-\gamma l}$ for any $t>0$ .

In the author’s knowledge, Theorem 3.2 is the first work showing the
influence of the Rayleigh surface waves in exterior domains. There proof
also suggest the existence of the poles of the resolvent approaching the real
nis.

In the case of the scalar-valued wave equation, Ralston [12] shows the
result explaining why trappness of the singularities prevent the uniform decay
of the local energy. In the elas$t\mathrm{i}\mathrm{c}$ case, although the cause making trappness
is quite different, we also have the same result.

THEOREM 3.3 ([6], [7]). If the material is isotropic and (A.2) holds, then
$p_{0,a}(t)$ never goes to $0$ as $tarrow\infty$ .

For $m\geq 1$ , the same argument as in Walker [22], we can show $\lim_{tarrow\infty}p_{m,a}(t)$

$=0$ , since in Walker’s argument, he only use the Rellich compactness theorem
and the local energy decay property in Theorem 3.1. In the elastic case,
however, the speed of the decay $\mathrm{o}\mathrm{f}- p_{m},a(t)$ can be expected rather slow than
not so fast. Indeed, we have the following results:

THEOREM 3.4. We assume that the material is isotropic and (A.2) holds.
(1) For any $\gamma>0$ and $m\in \mathrm{N}\cup\{0\}$ , we have $\lim_{tarrow\infty}t^{\gamma}p_{m},a(t)=\infty$ , that is,

we can not have the estimate of the form

$p_{m,a}(t)\leq Ct^{-\gamma}$ for any $t>0$ .

(2) Further, if we $a\mathrm{s}s\mathrm{u}\mathrm{m}e$ that the $bo$undary $\Gamma$ is real analytic and $n$ is
odd, then for any $m\in \mathrm{N}$ , we $\Lambda a\mathrm{Y}e\varlimsup_{earrow\infty}(\log t)mp_{m},a(t)>0$ .

The fact (1) in Theorem 3.4 are treated in [8] with an additional assump-
tion which means the other waves than the Rayleigh surface waves behave
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like satisfying the non-trapping condition. This additional assumption is re-
moved by combining the argument in Stefanov and Vodev [18] showing the
existence of the poles. Vodev [21] obtains (2) in Theorem 3.4. In the proof,
he use the fact that approximations of the Neumann operator for $t$he station-
ary problem in the elliptic region can be extended as a pseudo-differential
operator with a large parameter whose symbol is defined in the whole cotan-
gent bundle of $\Gamma$ . This is one of the main parts in $\mathrm{S}\mathrm{j}6\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d}$ and Vodev [15]
which count the number of the poles corresponding to the Rayleigh surface
waves described in the sub-section 3.4.

3.2 The poles of the resolvent

For the spectral parameter $z\in \mathrm{C}$ , consider the following stationary prob-
lem:

(3.1)

In the case of ${\rm Im} z<0$ , for any $f\in L^{2}(\Omega)$ , there exists the unique solution
$v(x : z)\in H^{2}(\Omega)$ of the problem (3.1). We define the operator valued
function $R(z)$ as $R(z)f(x)=v(x : z)$ . We can continue the operator $R(z)$

as $B(L_{a}^{2}(\Omega), H2(\Omega\cap B_{a}))$ -valued meromorphic function in $\tilde{\mathrm{C}}_{+}$ (cf. [5], [4],
[9] $)$ . $\ln$ the above, $L_{a}^{2}(\Omega)=\{f\in L^{2}(\Omega)|f(x)=0\mathrm{i}\mathrm{n}|x|>0\},\tilde{\mathrm{C}}_{+}=\mathrm{C}$ (if
$n$ is odd) and $\tilde{\mathrm{C}}_{+}=\{z\in \mathrm{C}\backslash \{0\}|-\frac{3}{2}\pi<\arg z<\frac{1}{2}\pi\}$, (if $n$ is even). We
call the operator valued function $R(z)$ the outgoing resolvent.

From Theorems 3.2 and 3.3, we can expect that the poles of the reslovent
appear near the real axis. This is justified by Stefanov and Vodev [16] first.
They consider the isotropic materials with the unit sphere boundary in $\mathrm{R}^{3}$ .
By developing the argument in Ikehata and Nakamura [3], they show the
folwing fact:

THEOREM 3.5([16]). Under the same $ass$umption as in Theorem 3.2, there
exist constants $C_{0},$ $C_{1}>0$ such that we have only one sequence $\{z_{m}\}_{m}=1,2,\cdots$

of the poles of the resolvent in the region $0<{\rm Im} z\leq C_{0}|z|^{1/3}-C_{1},$ ${\rm Re} Z>$

$0$ . Moreover, there exists constants $d_{0},$ $d_{1},$
$\gamma,$ $C>0$ such that

hold.

Theorem 3.5 says in general the trappness arizing the existence of the
Rayleigh surface waves is very strong. For general curved boundary, we can
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expect that there are infinite many poles in the below of some exponential
curve like as in Theorem 3.5. In this direction, Stefanov and Vodev [17] and
[18] gives an essential development. In what follows, we use the following
notation.

DEFINITION 3.2. We $c$all that the property $(\mathrm{P}\mathrm{C})$ holds if an$d$ only if there
$e\mathrm{x}\mathrm{i}_{S}ts$ a sequence $\{z_{j}\}_{j=1,2},\cdots$ of the poles of the outgoing resolvent $R(z)$

satifsfying $\lim_{jarrow\infty}{\rm Re} Z_{j}=\infty$ and for any $N>0$ there exists a constant $C_{N}>0$

such that the poles $\{z_{j}\}_{j1,2}=,\cdots$ can be estimated as

$0<1\mathrm{m}z_{j}\leq C_{N}|{\rm Re} Z_{j}|-N$ $(j=1,2,3, \cdots )$ .

Now, we state the result obtained by Stefanov and Vodev [18].

THEOREM $3.6([18])$ . If the isotropic material in $\mathrm{R}^{3}$ satifies (A.2), the prop-
erty $(\mathrm{P}\mathrm{C})$ holds.

Thus, for general $C^{\infty}$ boundary, we also have the poles approaching the
real nis rapidly, although we do not know whether $t$hat speed is exponen-
tially fast. Theorem 3.6 is first given by [17] in the case of strictly convex
boundary. Note that the property $(\mathrm{P}\mathrm{C})$ also holds in the odd dimensional
case.

In general, by the Laplace transform, a decay estimate of the uniform decay
rate $p_{m,a}(t)$ implies holomorphicity of the resolvent in some region concluding
the real axis which is determined by the speed of the decay estimate (cf. [8]
and [21] $)$ . Further, we also have $\mathrm{a}_{\wedge}\mathrm{n}$ estimate of the resolvent in this region.
This estimate eventually contradicts the existence of the Rayleigh surface
waves. By this procedure, Theorem 3.4 is shown. It means that it is one of
the essential part to get an a priori estimate of the resolvent.

By [17] and [18], it is established how to obtain an a priori estimate of the
resolvent $R(z)$ from the assumption that it is holomorphic in some region
concluding the real axis (cf. Proposition 5.2 in [17] and Proposition 1 in
[18] $)$ . For example, suppose that Theorem 3.6 is not ture. It means that
the resolvent is holomorphic in $|{\rm Im} z|\leq C|{\rm Re} z|^{-N}$ for some constants $C$

and $N>0$ . From this, we have an estimate of the resolvent $R(z)$ , which
eventually contradicts the existence of the Rayleigh surface waves. Thus, it
is essential to show the a priori estimate of $R(z)$ . To obtain this estiamte,
the assumption that $n$ is odd is necessary since we have to use the fact that
the outgoing resolvent for the free space problem (that is the one in the case
that \Omega =Rれ), is entire function as an operator valued function.
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In $t$he case that the boundary is analytic, we can improve Theorem 3.6,
which gives affirmative answer for the existence of the poles closely to the
real axis exponentially fast.

THEOREM 3.7 (Vodev [21]). Assume that the material is isotropic and sat-
isfies (A.2). $H$ the $bo$undary is analytic and $n$ is odd, then there exists $a$

positive constant 7 $su\mathrm{c}h$ that in the region $0<|{\rm Im} z|\leq\exp(-\gamma|{\rm Re} z|)$ ,
there are infinite many poles of the resolvent $R(z)$ .

3.3 Anisotropic elasticity

In the amisotropic case, we also have the resolvent $R(z)$ . Since we consider
the case that each coefficient of the operator $A(\partial_{x})$ is constant, from (A.1)
and (A.2), the resolvent is holomorphic on the real axis in the odd dimen-
sional case and on the real $\mathrm{a}_{\text{・}}\dot{\mathrm{n}}\mathrm{s}$ except the origine in the even dimensional
case. In this case, we also have the same result as in Theorems 3.3, 3.6 and
(1) of Theorem 3.4.

THEOREM 3.8 (Kawashita and Nakamura [9]). If we assume that the con-
dition (ERW) is satisfied, then the following statements hold:

(1) We never A$ave \lim_{tarrow\infty}p0,a(t)=0$ . .

(2) For any $\gamma>0$ and $m\in \mathrm{N}\cup\{0\}$ , we have $\lim_{tarrow\infty}\mathrm{t}^{\gamma}p_{m},a(t)=\infty$ .
(3) In the case of the odd dimension, the property $(\mathrm{P}\mathrm{C})$ holds.

As is in the isotropic case, we can say one of the main point in $t$he proof
of Theorem 3.8 is based on obtaining an a priori estimate of the resolvent.
In the anisotropic case,

$-$

however, we have to modify the argument in the
isotropic case, since this argument in the isotropic case requires smoothness
of the eigen-values of the characteristic matrix $A( \xi)=\sum_{i,j=1}^{n}a_{ij}\xi i\xi_{j}$ . Note
that this property of the eigen-values does not generally follow from the
assumptions (A.1) and (A.2).

In the isotropic case, as is in Remark 2.2, we can get the information
of singularities corresponding to the Rayleigh surface waves in the whole
boundary. Since this fact says the existence of trapping singularities, it
seems to be quite natural to obtain Theorems 3.2\sim 3.6.

In the anisotropic case, however, we can only know the local existence of
the Rayleigh surface waves. From only such restricted infomations, we can
show the almost all properties as in the isotropic case which are regarded as
the reflection on the global properties like as trapping phenomenon. Thus,
from Theorem 3.8, we can say, to $\mathrm{o}\mathrm{b}t$ ain the assertions in Theorem 3.8 stat-
ing some global properties of the solutions of the problem (1.1), global in-
formations for singularities by the Rayleigh surface waves do not essentially
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required.

3.4 Other topics

In Theorem 3.5, all other poles than those by the Rayleigh surface waves
near the real mis do not appear in the below of the cubic curve. Thus, we
have a region free from the poles. We can explain why such phenomenon
occurs generally.

Consider the case that all other waves than the Rayleigh surface waves
behave like satisfying the non-trapping condition. In this case, there is a
logarithmic curve such that in the below of this curve, the resolvent is holo-
morphic in the outside of the region $0<|1\mathrm{m}z|\leq C_{N}|{\rm Re} z|^{-N}$ for any
$N\geq 0$ (in the anisotropic case, cf. [8], in the isotropic case, Stefanov and
Vodev [17] also obtain the same result). Note that the isotropic material case
with a strictly convex boundary is a typical example of the non-trapping case
in this sense.

$\ln$ the isotropic case, under some non-trapping condition which is stated
by the solutions of stationary problems, Sj\"ostrand and Vodev [15] obtain the
asymptotic behaviour of the number $N(\lambda)$ of the poles whose absolute value
is less than $\lambda$ corresponding to the Rayleigh surface waves. This behaviour
as $\lambdaarrow\infty$ is of the form

$N(\lambda)=\mathcal{T}_{n}C^{-n+1}\mathrm{v}\mathrm{o}\mathrm{l}(R\Gamma)\lambda^{n}-1\mathit{0}+(\lambda^{n-}2)$ ,

where $\tau_{n}=(2\pi)^{-n}+1\mathrm{v}_{0}1(\{x\in \mathrm{R}^{n-1}||x|\leq 1\})$ . This is the same as the
number of the negative eigen-value of the Weyl pseudo-differential operator
with the principal symbol of the form $C_{R}||\zeta||_{\Gamma}-\lambda$ . Note that the set of all
zero points of this function consists of the characteistic set of the principal
symbol of the Neumann operator, from which the Rayleigh surface waves
appear.
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