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Existence, uniqueness and continuous
dependence of weak solutions of damped

sine-Gordon equations

MERFETEE FHE{E— (Shin-ichi Nakagiri)
WE AR ERRERER M. =40 (Mahmoud Elgamal)
BESIUEN A% A %3 (Junhong Ha)

1 Introduction

In this paper we establish the existence, uniqueness and continuous dependence
of weak global solutions of the damped Sine-Gordon equations.

In physical situation the Sine-Gordon equation represents the dynamics of ai
Josephson junction driven By a current sourse. If we consider the continuous case
of a coupled Josephson junction by taking into account of damping effects the sine-

Gordon equation leads the partial differential equation of second order in time

%y . Oy o
5t-2—+a§—ﬁAy+vsmy—f, (1.1)

where «, 3,7y > 0 are physical constants and f is a forcing function. In their study
of complex system described by (1.1), Bishop, Fesser and Lomdall [1] have observed
chaotic behaviours of solutions of (1.1) by a great deal of numerical experiments.
Their numerical results are very interesting, but their mathematical analysis has
not been given in [1]. In this paper we study the basic problems such as existence,
uniqueness and continuous dependence of solutions of (1.1).

The existence and uniqueness of the strong solutions of the Cauchy problem
for (1.1) with Dirichlet and Neumann boundary conditions has been studied by J.
L. Lions [5] and R;Temam[Q] in the evolution equation setting. In this paper we
give the variational formulﬁtion of the problem due to Dautray and Lions [2] and

prove the existence, uniqueness and continuous dependence of weak solutions of the



problem. We note that the proof by Temam is a sketch for more general equations

and the detailed proof is not given in [9)].

2 Existence of weak solutions

Let Q2 be an open bounded set of R” with a piecewise smooth boundary I' = 99.
Let @ = (0,T) x @ and ¥ = (0,T) x . We consider the damped sine-Gordon
equation described by

%y dy e op s v
. W.-!—aa — BAy +ysiny = f in Q,‘ (2.1)

where «, 3,7 > 0, A is a Laplacian and f is a given function. In physical situation,
a, 3,y > 0 are constants representing the gratitude of damping, diffusion and non-
linearity effects and f is proportional to the current intensity applied to the function.

The boundary condition considered in this paper is the Dirichlet condition
y=0 on X, ‘ (2.2)
and the initial values are given by

y(0,z) = yo(z) in Q and %%(O,a:)zyl(m) in Q. (2.3)

We define two Hilbert spaces H and V byb H=L*Q)and V = kH&(Q), respectively.

We endow these spaces with the usual inner products and norms

(%, ¢) = /ﬂ W(@)p(x)dz, [ = (0, 0)"2, forall ¢,p€I?(Q),  (2.4)

"8 ) |
((#:¢)) =2 / 52V @ 5t @)de, [l = (%, 9)'/2, forall ¢,9 € HY(Q).
=1 /0 0% T;
(2.5)
Then the pair (V, H) is a Gelfand triple space with a notation, V.— H = H' —
V' and V' = H~1(Q), which means that embeddings V ¢ H and H C V' are
continuous, dense and compact. To use a variational formulation let us introduce

the bilinear form

a(6,0) = [ B9 Vda = B((6,9)), Vb, € HY(D). (2.6)

The form (2.6) is symmetric, bounded on HE(Q) x H} () and coercive

a($,) > BlI%, Vo€ HAQ). 2.7)



Then we can define the bounded operator A € £(V, V") and the problem (2:1)-(2:3)
is reduced to the following Cauchy problem in H:

Jzy dy | . .
proaa + Ay +ysiny = f(t) in (0,T),

ody, (2.8)
y(0)=yo €V, E(O) =y, € H.

For general treatments of the damped second order equations of this type including
control theoretical applications, we refer to Ha [4] and Lions [5].
The operator A in (2.8) is an isomorphism from V onto V' and it is also consid-

ered as a self-adjoint operator in H with dense domain D(A)in V and in H,
D(A)={¢peV: Ap€ H}.

In this case A in (2.8) is an unbounded selfadjoint operator in H (cf. Tanabe [7]).
We shall write ¢’ = Qd-‘tl, g’ = j—jg and define a (solution) space by

W(0,T)={g: g L*(0,T;V), ¢’ € L*(0,T; H), ¢" € L*(0,T;V")}.

D'(0,T) denotes the space of distributions on (0, T').
Now we give two definitions of solutions of the problem (2.8) (see Dautray and
Lions [2] and Temam [9]).

DEFINITION 1 A function y is said to be a weak solution of (2.8)ify e W(0,T)

and y satisfies

<y”(')’ ¢>V’,V + a(yl(')’¢) + ﬂ((y()’ ¢)) + 7(Siny7 ¢) = (f()) ¢)
for all ¢ €V in the sense of D'(0,T), (2.9)

d
y(0) = vo, d_?tJ(O) =y1. (2.10)
Here in Definition 1 the symbol (-, )y denotes a dual pairing between V and V.

DEFINITION 2 A function y is said to be a strong solution of (2.8) if y €
C([0,T); D(A)), ¥ € C([0,T};V) y" € C([0,T); H) and y satisfies the equations
in (2.8).

For the strong solution of the sine-Gordon equation, Lions [5] and Temam [9]
proved the following theorem under more general form of nonlinear terms including

sine function.



THEOREM 1 Let o,3,7 > 0 and f, yo, y1 be given satisfying
f € CY([o, T); H), o € D(A), mev. (2.11)
Then the problem (2.8) has a unique strong solution y.
For the weak solutions of (2.8), we can state the following theorem.
THEOREM 2 Let o, 8> 0,7 € R and f, yo, y1 be given satisfying
| f e L0, T; H) ryo ev, y; € H. _ | (2.12)
Then the prqblem (2.8) has a unique weak solution y in W(0,T).

The existence and uniqueness of weak solutions of (2.8) is also proved in Temam
[9] under the stronger assumption that f € C([0,T7]; H), but the proof is a sketch
and the detailed proof is not given there. In this paper we give a complete proof of
Theorem 2. ’

Since the embedding of V into H is compact, there exists an orthonormal basis

of H, {w;}%2, consisting of eigenfunctions of A such that

{ Awj = Mjwj, V7, (2.13)

0<AM<A<Ls, Aj—o00 as j— o0

We denote by P,, the orthogonal projection in H(or V') onto the space spanned by

{wlv e )wm}'

We divide the proof of Theorem 2 into the existence part and the uniqueness

part and the uniqueness part is proved in next section.

Existence proof of Theorem 2.

Step 1. Approximate solﬁtions
We implement a Faedo-Galerkin method as used.in [2]. As a basis {wp, } -, We use
the set of eigenfunctions w; of the operator A which is orthonormal in H.. For each

m € N we define an approximate solution of the problem (2.8) by

I = gm0y, (214
=1 - v



where y,, (t) satisfies

) ' .
O m(0),03) + 0 (ym(2), ) + (v (2) w3)) +7(Ei0 (1), 1)

= (f(),w;), £ €[0,T), 1<j<m,

T ‘ (2.15)
ym(0) = Pryo, ’
d
{ Eym(o) = Pnyi.
We set yom = Pmyo and ¥1m = Pry1. Then
Yom — Yo 0V, ypm—y1 inH as m— oo. (2.16)

Then the equation (2.15) can be written as m vector differential equation
2 d .

E‘t‘g‘gm + aagm + BAGm = k(t, Gm)

with initial values §,(0) = [(Yom,w1)," -, (Yom, wm)]* and

%gm(o) = [(ylm»wl): Ty, (ylm, wm)]t- Here ;(—jm = [glm, Tt agmm]t7
A=diag (\;:i=1,---,m), and '

m m :
k(ta gm) = [(f(t), wl)_’Y(Sin(Z ngwJ)) wl)a T (f(t)’ ’wm)—’)’(sm(z ngwJ), wm)]t’
, =1 v =1
where [---]¢ denotes the transpose of [---]. The nonlinear forcing function vector k-
is Lipschitz continuous. Indeed, for g, = Y1 GimWy B, = E;’}__l hjmwj, it follows
by , .
/Q | sin () — sin ¢(z)[2dz < /Q (z) — $()|%dz, Vib,é € H (2.17)

and Schwartz inequality that
5 - o m m ‘ m
K (t, Gm) — Kt Bm) 2 =42 D |(in(Y gjmw;) — sin(} hjmw;), wi)l?
i=1 j=1 J=1
m m
< 2m|sin(}_ gimw;) — sin(d_ hjmw;)[?

m L
< 72m2 Z Igjm - hjm|2 - 72m2|§m - hm|2'
Jj=1

Therefore this second order vector differential equation admits a unique solution
Gm on [0,T], by reducing this to a first order system and applying Ca,rathéodc)ry
type existence theorem. Hence we can construct the approximate solutions ym (t) of
(2.15).



Step 2. A priori estimates
In this step we shall derive a priori estimates of y,,,(t). We multlply both sides of
the equation (2 15) by g} (t) and sum over j to have

(Um (), Ym (¢ ))+a(ym(t),ym(t))+ﬁ((ym(t),ym(t))) (f &), ym (D) =S Y (), Y (2))-
(2.18)
It is easily verified that

SWal.  (219)

N =

(U8, Yn () = 5 S um(IE, (U (8) U 0) =
Then by substituting (2.19) to (2.18), we have
3 2N O + WD) + el OFF = (£, Y 1) = 7(sinsm(8), 1a(0). (220)

Let € > 0 be an arbitrary real number and ¢; be the imbedding constant such that
|¢] < c1l|¢llv for all ¢ € V. From (2.12) and (2.17) and we obtain

t t :
2| [(1©) o] 2| [ tointum(e). (o))
t t t
< ¢ [ 1P e [ nPdo -+ 201 [ 1sintun(o))] - sn(0)ldo
t t
< Wl +e [ lin@do+ 1l [ (Hum@)P +eln(@)l?) do
1 bl
€

t t
< Mo + (0 + e [ W ®Pdo + 28 [ ym(@)lPdo.  2:21)

Integrating (2.20) on [0,] and using (2.21), we obtain the following inequality

t
Bllym®)2 + )2 + 200 /0 1Wn(0)Pdo
< ﬁHyOmIlz"‘lylmI%{
C
1Bz + 1% [ lum @I + (1 + e [ )P 2:22)

Since [|yom || < llyoll and |yim| < |y1| (see (2.16)), it follows from (2.22) that

Blum I + (O + (2= (1] +9) [ ly(o)dr

1 ,.yc2 t
< Bl + bl + ¢l Brorn + 12 [ lom()Pdo. (229

Let us divide (2.23) by 51 = min{3,1} > 0. We choose ¢ such that 2a = (Iv] +1)e

and set
2

1 _ Ye
C, == 2 P+t ), Co= X
1=7 [Bllyoll* + v1] Ifllz2,ren],  Co Bre



Then (2.23) implies
IO + (O < C1+Co [ (um@)IP + (). (224)
Thus it follows by Bellman-Gronwall’s ineqﬁality that
lum (@) + 40 () < G exp (Cit) < G exp(C5T). (2.25)

Step 3. Passage to the limit
The estimate (2.25) implies that {ym} is bounded in L*®(0,T;V) and {y,} is
bounded in L*°(0,T;H). Therefore, by the extraction theorem of Rellich’s, we
can find a subsequence {ym,} of {ym} and find z € L>(0,T;V) c L%0,T;V),
Z € L>(0,T; H) C L*(0,T; H) such that

Ym — z weakly star in L*°(0,T;V) and weakly in L2(0,T;V), (2.26)

Y, — Z weakly star in L%®(0,T; H) and weakly in L%(0,T; H). (2.27)

By the classical compactness theorem (cf. Temam [8; Thm. 2.3, Chap.III]) the
conditions (2.26) and (2.27) imply

Ym, — z strongly in L2(0,T; H). (2.28)

Hence by (2.17),
‘ sinym, — sinz strongly in L2(0,T; H). (2.29)

We shall show that Z = 2’ and z(0) = yo. For t € [0,T)
¢
U (®) = U (©) + [ v (0)do (230)

in the V( and hence H) sense. Moreover, ypm, (0) = Yom; — o in the V and hence H
sense, whereas for each t, f[f Y, (0)do — JE Z(0)do in H by (2.27). Hence, taking
the limit in the weak H sense in (2.30) we obtain

t
2(t) = o + /0 Z(o)do for t € [0,T). (2.31)

This shows that Z/(t) exists a.e. in the H sense and z = 2/ € L%(0,T; H), z(0) =
yo(cf. [4, p.564)). o ,
Let j be fixed. Multiply both sides of (2.15) by the scalar function ¢(¢) with

¢ € CY([0,T]), ¢(T)=0, (2.32)



and put ¢; = ((t)w;. Integrating these over [0,T] for m; > j and using integration

by parts, we have
[ 69,6500 + o 9, 95060 + B8, 85 + 2(simum (), 850

= /0 0, 650)dt - Wime 65O)e. (2.33)

If we take [ — oo in (2.33) and use (2.26)-(2.29), then we have
[ 00,656+ (0, 56 + BU(a(0), 65)) +1(in 20), 850
= [0 - 01,050 | (234
so that
[ ¢t o,wpi

+ /OT CO{ el (1), wy) + B((=(D), @j)) +7(sin 2(2), w;) — (£(t), w;)}dt
= —;(0)(y1,wj). (235)

It we take ¢ € D(0,T) in (2.35), then
_ %(Z'(-), wj) + a(?'(-),w;) + B((2(), wy)) +(sinz(-), wy) = (f(),wj)  (2.36)

in the sense of distribution D'(0,T). Since {3_7%, {;w;|¢; € R,m € N} is dense in
V, we conclude by (2.36) that 2" = —Az — a2/ — ysinz — f € L%(0,T; V'), so that
z2€ W(0,T),and for all p € V '

(Z"(), d)vrv + (' (), ) + B((2(), 8)) +(sin2(-), ) = (f(), $) (2.37)

in the sense of D’(0,T). Multiplying both sides of (2.36) by ¢ in (2.32) and using
integration by parts, we have from (2.34)

(Z’(O), w])g(o) = (yla wJ)C(O)v

and that (2/(0),w;) = (y1,w;). Since {w;}$2; is dense in H, we obtain 2'(0) = y;.
This proves that z is a weak solution of the problem (2.8). This completes the

. existence proof of Theorem 2.



3 TUniqueness and continuous dependence

In this section we study the uniqueness and continuous dependence of weak

solutions of (2.8). For this we need the following result on energy equality.

THEOREM 3 Assume that the assumption in Theorem 2 holds. Let y be a weak
solution of (2.8). Then, for each ¢ € [0,7] we have the following equality

t t
Bl + Iy )12 + 20 /0 ¥/ (0)[2dor + 2 /0 (siny(0),y'(0))do
= Blwll + bl +2 [ (7(0),¥/(0))do: (3.1)

Proof. Since siny(t) € L?(0,T; H), by considering this nonlinear term as a forcing
function term, the equality (3.1) can be proved by the regularization method for

linear equations as proved in Lions and Magenus [6, page 276-279].

The uniqueness proof of Theorem 2 follows immediately from the following con-

tinuous dependence result.

THEOREM 4 Assume that the assumption in Theorem 2 holds. Let y;, (i = 1,2)
be the weak solution of (2.8) with initial values (y§,yt) € V xH and f* € L?(0,T; H).
Then there exists a constant C' > 0 depending only on o, 8,y and T such that

2 () = v2(B)I? + w1 (2) — y;<t>|: o
< o (Iub- B+t -2+ [[1£0) - Plo)ds )  te [0,7)

Proof. Let z = y1 — Y. Sihce z is a weak solution of (2.8) with v = 0 and
f(t) = f1(t) — f2(t) — y(siny; (t) — sinyz(t)), and with initial values yo = v — 18,

y1 =y} — y?, by Theorem 3 we have
BN +120)P +2a [ 1(0)Pdo
+ 2 /0  sinyi (o) — sinya(e), #(0))do
= BEOF +HZOP +2 [ (110) - o) # @D (32
We can easily verify that from (2.17)

2 [[I(sins(o)—sinua(o), 2 ()ldo <2 | ()7 0)ldo < [ B+ ()}



Since ,
%[KMﬂ—h@%ﬂMw'SQARM@—&@WV%M“

< [080) - @) + (@),
it follows by (3.2)

t
Bl=@)IF + 12 4)]% + 20 /0 1#(0)[2do
< mumm%+vmm%+MﬂAQ£mwm?+M@M%w

+ [[180) - AP+ ))do
0 .

If we put /i = min{1,3} and
_ 2+t

C
YT T8

ax{cf, 1},
we have by (3.3)
‘ ¢
2@ + |2/ (2)]? SH%W@+V@W+ALM@—b@W®
t 2 10 N2 |
+C [ [l +12(0)P] do. (3.3)
Applying Bellman-Gronwall’s lemma to (3.3), we obtain .

=0l + Ol |
HdW@+M®W+ALM®—h@W®

+ [ e P + 0P + [ 1) - fae)Po) ds

< @CET AN (O +ZOF + [ 1h(0) - flo)do)
for all ¢ €(0,T]. (3.4)

IA -

This proves Theorem 4.

Let f € L*(Q) and yo € H}(Q),y1 € L2(Q). Then by standard manupulations
(cf. Lions and Magenes [6]) we can verify that the weak solution y = y(t, z) satisfies

oy By - ;
Fnd +aa —BAy+vsiny = f in Q,

y=0 on X, (3.5)
y(0,z) = yo(z) in Q and %(O,m):yl(m) in Q

in the sense of distribution D’(Q), and

0y Oy 2
y’ ati 6:8 e L (Q)‘
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4 Correction of numerical simulations

In this section we give corrections of numerical simulations given in Section 5 of
Elgamal and Nakagiri [3]. The program contains an error in constructing approxi-
mate solutions, and then many of the figures are incorrect. Here we give corrected

numerical simulation results only for the damped sine-Gordon equations.

In all simulation results given below we set

f =0, yO(x) = sin7z, yl(m) =0

and these are normalized datum of those in [3].

ﬁ‘ ~ =

1

0=0,3=0.1,y=10
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1

a=10,8=0.1,y=10 o=100,8=0.1,y=100
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