Title	Radial symmetry of positive solutions for semilinear elliptic equations in \＄R＾n\＄
Author（s）	Naito，Y uki
Citation	数理解析研究所講究録（1998），1034：65－75
Issue Date	1998－04
URL	http：／hdl．handle．net／2433／61912
Right	Departmental Bulletin Paper
Type	publisher
Textversion	

Radial symmetry of positive solutions for semilinear elliptic equations in $\boldsymbol{R}^{\boldsymbol{n}}$

神戸大学工学部 内藤 雄基（Yūki Naito）

1．Introduction and statement of the results．In this note we consider the sym－ metry properties of positive solutions for the equation of the form

$$
\begin{equation*}
\Delta u+\phi(|x|) f(u)=0 \tag{1.1}
\end{equation*}
$$

in \boldsymbol{R}^{n} ，where $n \geq 3, \Delta$ is the n－dimentional Laplacian，and $|x|$ denotes the Euclidean length of $x \in \boldsymbol{R}^{n}$ ．In equation（1．1），we assume that $\phi \not \equiv 0$ is a locally Hölder continuous function on $[0, \infty)$ which satisfies

$$
\phi(r) \geq 0 \text { for } r \geq 0 \quad \text { and } \quad \phi(r) \text { is nonincreasing in } r>0
$$

and that $f \in C^{1}([0, \infty))$ with $f(u)>0$ for $u>0$ ．
The problem of existence of positive solutions of equation（1．1）has been studied exten－ sively．It has been shown in $[4,5,12]$ that if

$$
\begin{equation*}
\int_{0}^{\infty} r \phi(r) d r<\infty \tag{1.2}
\end{equation*}
$$

then，under some additional conditions on f ，（1．1）has infinitely many bounded positive solutions in \boldsymbol{R}^{n} ．

Our main result is the following，which is a slight extension of［10，Theorem 5．16］．
Theorem．Assume that（1．2）holds．Then all bounded positive solutions of（1．1）in \boldsymbol{R}^{n} are radially symmetric about the origin．

We give some corollaries of the theorem．First assume that（1．1）has a bounded positive solution u in \boldsymbol{R}^{n} satisfying

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty} u(x)>0 \tag{1.3}
\end{equation*}
$$

Then, by Lemma B. 1 in Appendix B, we get (1.2). Thus we obtain the following
Corollary 1. Assume that (1.1) has a bounded positive solution u in \boldsymbol{R}^{n} satisfying (1.3). Then all bounded positive solutions are radially symmetric about the origin.

Next, we consider the case where $f(0)>0$. Assume that (1.1) has a bounded positive solution u in \boldsymbol{R}^{n}. Then, by Lemma B. 2 in Appendix B, we get (1.2). Thus we obtain the following

Corollary 2. Assume that $f(0)>0$. Then all bounded positive solutions of (1.1) in $\boldsymbol{R}^{\boldsymbol{n}}$ are radially symmetric about the origin.

Remark. For the case $f(u)=e^{2 u}$, precise existence and nonexistence criteria for positive solutions of (1.1) are obtained in [8, Theorems 1.4 and 1.5].

Symmetry properties of solutions of semilinear elliptic equations in \boldsymbol{R}^{n} have been studied by several authors $[1-3,6-11,16-18]$. Their arguments are based on the moving plane method first developed by Serrin [16] in PDE theory, and later extended and generalized by Gidas, Ni , and Nirenberg [2, 3]. In this note, we present an approach based on the maximum principle on unbounded domains together with the method of moving plane. This approach helps us to improve the previous results and simplify the proofs.

In Section 2, we investigate the asymptotic behavior of positive solutions of (1.1). In Section 3, we prove the main Theorem by using the method of moving planes. We give the maximum principle on unbounded domains in Appendix A, and show the conditions which are equivalent to (1.2) in Appendix B.
2. Asymptotic behavior of positive solutions. We show the following proposition.

Proposition. Assume that (1.2) holds. Let u be a bounded positive solution of (1.1) in \boldsymbol{R}^{n}. Then $\lim _{|x| \rightarrow \infty} u(x)=c$ and $u(x)>c$ in \boldsymbol{R}^{n} for some constant $c \geq 0$.

In order to prove this, we first prove the following lemma.
Lemma 1. Let g be a continuous function in \boldsymbol{R}^{n}, and let w be the Newtonian potential of g, i.e.,

$$
w(x)=c_{n} \int_{R^{n}} \frac{g(y)}{|x-y|^{n-2}} d y
$$

where $c_{n}=\left[n(n-2) \omega_{n}\right]^{-1}$ and ω_{n} is the volume of the unit ball in \boldsymbol{R}^{n}. Assume that there is a nonnegative nonincreasing function G on $[0, \infty)$ satisfying

$$
\begin{equation*}
g(x) \leq G(|x|), \quad x \in R^{n}, \quad \int_{0}^{\infty} r G(r) d r<\infty . \tag{2.1}
\end{equation*}
$$

Then w is well defined and satisfies

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} w(x)=0 \tag{2.2}
\end{equation*}
$$

Proof. By $(2.1)_{2}$ for any $\varepsilon>0$ there exists $R>0$ satisfying

$$
\begin{equation*}
c_{n} \int_{R}^{\infty} r G(r) d r<\frac{1}{3} \varepsilon \quad \text { and } \quad 3^{n-2} c_{n} \int_{3 R}^{\infty} r G(r) d r<\frac{1}{3} \varepsilon . \tag{2.3}
\end{equation*}
$$

From (2.1) ${ }_{1}$, we have

$$
|w(x)| \leq c_{n} \int_{R^{n}} \frac{G(|y|)}{|x-y|^{n-2}} d y
$$

We decompose the integral as follows:

$$
|w(x)| \leq c_{n}\left(\int_{\Omega_{1}}+\int_{\Omega_{2}}+\int_{\Omega_{3}}\right) \frac{G(|y|)}{|x-y|^{n-2}} d y \equiv I_{1}+I_{2}+I_{3}
$$

where Ω_{1}, Ω_{2}, and Ω_{3} are defined as

$$
\begin{gathered}
\Omega_{1}=\left\{y \in \boldsymbol{R}^{n}:|y| \leq 3 R\right\}, \quad \Omega_{2}=\left\{y \in \boldsymbol{R}^{n}:|y| \geq 3 R,|x-y| \geq \frac{1}{3}|y|\right\} \\
\Omega_{3}=\left\{y \in \boldsymbol{R}^{n}:|y| \geq 3 R,|x-y| \leq \frac{1}{3}|y|\right\}
\end{gathered}
$$

We estimate I_{1}, I_{2}, and I_{3} as follows. Since $\lim _{|x| \rightarrow \infty} I_{1}=0$, there exists $R_{1}>3 R$ so that

$$
\begin{equation*}
I_{1}<\frac{1}{3} \varepsilon \quad \text { for }|x|>R_{1} . \tag{2.4}
\end{equation*}
$$

From (2.3) $)_{2}$ we obtain

$$
\begin{equation*}
I_{2} \leq 3^{n-2} c_{n} \int_{\Omega_{2}} \frac{G(|y|)}{|y|^{n-2}} d y \leq 3^{n-2} c_{n} \int_{3 R}^{\infty} r G(r) d r<\frac{1}{3} \varepsilon . \tag{2.5}
\end{equation*}
$$

For $y \in \Omega_{3}$, since $|y|-|x| \leq|y-x| \leq \frac{1}{3}|y|$, we see that

$$
\begin{equation*}
\frac{2}{3}|y| \leq|x| \tag{2.6}
\end{equation*}
$$

Then, for $y \in \Omega_{3}$ and $r \in\left[0, \frac{1}{3}|y|\right]$, we have

$$
\begin{equation*}
|x|-r \geq \frac{2}{3}|y|-\frac{1}{3}|y|=\frac{1}{3}|y| \geq r \quad \text { and } \quad|x|-\frac{1}{3}|y| \geq \frac{1}{3}|y| \geq R . \tag{2.7}
\end{equation*}
$$

Since G is nonincreasing and $|y| \geq|x|-|x-y|$, it follows that

$$
I_{3} \leq c_{n} \int_{\Omega_{3}} \frac{G(|x|-|x-y|)}{|x-y|^{n-2}} d y=c_{n} \int_{0}^{\frac{1}{3}|y|} r G(|x|-r) d r
$$

From (2.7) and (2.3) ${ }_{1}$ we obtain

$$
\begin{equation*}
I_{3} \leq c_{n} \int_{0}^{\frac{1}{3}|y|}(|x|-r) G(|x|-r) d r=c_{n} \int_{|x|-\frac{1}{3}|y|}^{|x|} s G(s) d s \leq c_{n} \int_{R}^{\infty} s G(s) d s<\frac{1}{3} \varepsilon \tag{2.8}
\end{equation*}
$$

Then by (2.4), (2.5), and (2.8), we have $|w(x)|<\varepsilon$ for $|x|>R_{1}$. Since $\varepsilon>0$ is arbitrary, we conclude that (2.2) holds.

Proof of Proposition. Let v be the Newtonian potential of $\phi f(u)$, i.e.,

$$
v(x)=c_{n} \int_{R^{n}} \frac{\phi(|y|) f(u(y))}{|x-y|^{n-2}} d y
$$

Define $f_{\infty}=\max \left\{f(s): 0 \leq s \leq\|u\|_{L^{\infty}\left(R^{n}\right)}\right\}$. Then $\phi(|x|) f(u(x)) \leq \phi(|x|) f_{\infty}$ in \boldsymbol{R}^{n}. Since ϕ is nonincreasing and (1.2) holds, we obtain

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} v(x)=0 \tag{2.9}
\end{equation*}
$$

by Lemma 1. It is easily seen that v satisfies $\Delta v+\phi f(u)=0$ in \boldsymbol{R}^{n}. We have $\Delta(u-v)=0$ in \boldsymbol{R}^{n} while $u-v$ is bounded in \boldsymbol{R}^{n} by (2.9). Then by Liouville's theorem we obtain

$$
\begin{equation*}
u(x)-v(x) \equiv c \quad \text { in } \boldsymbol{R}^{n} \tag{2.10}
\end{equation*}
$$

where c is a constant. From (2.9) we conclude that $u(x) \rightarrow c$ as $|x| \rightarrow \infty$. Observe that v satisfies $\Delta v=-\phi f(u) \leq 0$ and $v \geq 0$ in \boldsymbol{R}^{n}. By the maximum principle, we have $v>0$ in \boldsymbol{R}^{n}. From (2.10) we conclude that $u(x)>c$ in \boldsymbol{R}^{n}.
3. Proof of the theorem. First, we introduce some notation. For $\lambda \in \boldsymbol{R}$, we define T_{λ} and Σ_{λ} as

$$
T_{\lambda}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \boldsymbol{R}^{n}: x_{1}=\lambda\right\} \quad \text { and } \quad \Sigma_{\lambda}=\left\{x, \in \boldsymbol{R}^{n}: x_{1}<\lambda\right\}
$$

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \boldsymbol{R}^{n}$ and $\lambda \in \boldsymbol{R}$, let x^{λ} be the reflection of x with respect to the hyperplane T_{λ}, i.e., $x^{\lambda}=\left(2 \lambda-x_{1}, x_{2}, \ldots, x_{n}\right)$. It is easy to see that, if $\lambda>0$,

$$
\begin{equation*}
\left|x^{\lambda}\right|-|x|>0 \quad \text { for } x \in \Sigma_{\lambda} . \tag{3.1}
\end{equation*}
$$

Let u be a bounded positive solution of (1.1) in \boldsymbol{R}^{n}. By the propsition in Section 2, we have

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} u(x)=c \geq 0 \quad \text { and } \quad u(x)>c \quad \text { in } \boldsymbol{R}^{n} \tag{3.2}
\end{equation*}
$$

for some constant c. We define

$$
v_{\lambda}(x)=u(x)-u\left(x^{\lambda}\right) \quad \text { for } x \in \Sigma_{\lambda} .
$$

Lemma 2. Let $\lambda>0$. Then v_{λ} satisfies

$$
\begin{equation*}
\Delta v_{\lambda}+c_{\lambda}(x) v_{\lambda} \leq 0 \quad \text { in } \Sigma_{\lambda} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\lambda}(x)=\phi(|x|) \int_{0}^{1} f^{\prime}\left(u\left(x^{\lambda}\right)+t\left(u(x)-u\left(x^{\lambda}\right)\right)\right) d t \tag{3.4}
\end{equation*}
$$

We note that $c_{\lambda}(x)$ is well defined in \boldsymbol{R}^{n}.
Proof. Since ϕ in nonincreasing and (3.1) holds, it follows that

$$
\begin{aligned}
0 & =\Delta u(x)+\phi(|x|) f(u(x))-\Delta u\left(x^{\lambda}\right)-\phi\left(\left|x^{\lambda}\right|\right) f\left(u\left(x^{\lambda}\right)\right) \\
& \geq \Delta\left(u(x)-u\left(x^{\lambda}\right)\right)+\phi(|x|)\left(f(u(x))-f\left(u\left(x^{\lambda}\right)\right)\right) \\
& =\Delta v(x)+c_{\lambda}(x) v(x), \quad x \in \Sigma_{\lambda}
\end{aligned}
$$

where $c_{\lambda}(x)$ is the function in (3.4).
Lemma 3. Assume that (1.2) holds. Then there exsits a positive function $w(x)$ on $\{x \in$ $\left.\boldsymbol{R}^{n}:|x| \geq r_{0}\right\}$ satisfying for some $r_{0}>0$ and for any $\lambda>0$

$$
\begin{equation*}
\Delta w+c_{\lambda}(x) w \leq 0 \quad \text { in }|x|>r_{0} \quad \text { and } \quad \liminf _{|x| \rightarrow \infty} w(x)>0 \tag{3.5}
\end{equation*}
$$

Proof. Define $g_{\infty}=\max \left\{\left|f^{\prime}(s)\right|: 0 \leq s \leq\|u\|_{L^{\infty}\left(R^{n}\right)}\right\}$. Then from (3.4) we have

$$
\begin{equation*}
\left|c_{\lambda}(x)\right| \leq g_{\infty} \phi(|x|) \quad \text { in } \boldsymbol{R}^{n} \quad \text { for any } \lambda>0 \tag{3.6}
\end{equation*}
$$

Now consider the equation

$$
\begin{equation*}
\Delta w+g_{\infty} \phi(|x|) w=0 . \tag{3.7}
\end{equation*}
$$

By applying Lemma B. 1 in Appendix B to (3.7), we find that (3.7) has a positive solution w on $\left\{|x| \geq r_{0}\right\}$ for some $r_{0}>0$, satisfying $\liminf _{|x| \rightarrow \infty} w(x)>0$. By (3.6), w satisfies (3.5).

Define $B_{0}=\left\{x \in \boldsymbol{R}^{n}:|x|<r_{0}\right\}$, where r_{0} is the constant appearing in Lemma 3.
Lemma 4. Let $\lambda>0$. Assume that $v_{\lambda}(x)>0$ on $\partial B_{0} \cap \Sigma_{\lambda}$. Then $v_{\lambda}(x)>0$ in $\Sigma_{\lambda} \backslash \overline{B_{0}}$.
Proof. By Lemma 2 we obtain

$$
\Delta v_{\lambda}+c_{\lambda}(x) v_{\lambda} \leq 0 \quad \text { in } \Sigma_{\lambda} \backslash \overline{B_{0}}, \quad v_{\lambda}>0 \quad \text { on } \partial B_{0} \cap \Sigma_{\lambda} .
$$

By Lemma 3, there is a positive function w satisfying

$$
\Delta w+c_{\lambda}(x) w \leq 0 \text { in } \Sigma_{\lambda} \backslash \overline{B_{0}} .
$$

From (3.2) and (3.5) we see that

$$
\frac{v_{\lambda}(x)}{w(x)} \leq \frac{u(x)-c}{w(x)} \rightarrow 0 \quad \text { as }|x| \rightarrow \infty
$$

By applying Lemma A in Appendix A with $\Omega=\Sigma_{\lambda} \backslash \overline{B_{0}}$, we get $v_{\lambda}>0$ in $\Sigma_{\lambda} \backslash \overline{B_{0}}$.
Define

$$
\Lambda=\left\{\lambda \in(0, \infty): v_{\lambda}(x)>0 \text { in } \Sigma_{\lambda}\right\}
$$

Lemma 5. If $\lambda \notin \Lambda$, then there exists $x_{0} \in \Sigma_{\lambda} \cap \overline{B_{0}}$ such that $v_{\lambda}\left(x_{0}\right) \leq 0$.
Proof. Assume to the contrary that $v_{\lambda}(x)>0$ on $\Sigma_{\lambda} \cap \overline{B_{0}}$. Then by Lemma 4 we have $v_{\lambda}(x)>0$ in $\Sigma_{\lambda} \backslash \overline{B_{0}}$. Therefore, $v_{\lambda}(x)>0$ in Σ_{λ}, which contradicts the assumption $\lambda \notin \Lambda$.

Lemma 6. Let $\lambda \in \Lambda$. Then $\partial u / \partial x_{1}<0$ on T_{λ}.
Proof. By Lemma 1, we have (3.3) and $v_{\lambda}>0$ in Σ_{λ}. Since $v_{\lambda}=0$ on T_{λ}, we obtain $\partial v_{\lambda} / \partial x_{1}<0$ on T_{λ} by the Hopf boundary lemma ([2, Lemma H]). Therefore

$$
\frac{\partial u}{\partial x_{1}}=\frac{1}{2} \frac{\partial v_{\lambda}}{\partial x_{1}}<0 \quad \text { on } T_{\lambda}
$$

Proof of the theorem. Since (3.2) holds, there exists $r_{1}>r_{0}$ such that

$$
\begin{equation*}
\max \left\{u(x):|x| \geq r_{1}\right\}<\min \left\{u(x):|x| \leq r_{0}\right\} \tag{3.8}
\end{equation*}
$$

where r_{0} is the constant appearing in Lemma 3. We now divide the proof into several steps.

Step 1. $\left[r_{1}, \infty\right) \subset \Lambda$.
Let $\lambda \geq r_{1}$. We note that $\overline{B_{0}} \subset \Sigma_{\lambda}$. From (3.8), we have $v>0$ in $\overline{B_{0}}$. Then by Lemma 4 we have $v_{\lambda}>0$ in $\Sigma_{\lambda} \backslash \overline{B_{0}}$. Therefore $v>0$ in Σ_{λ}, i.e., $\lambda \in \Lambda$. This implies that $\left[r_{1}, \infty\right) \subset \Lambda$.

Step 2. Let $\lambda_{0} \in \Lambda$. Then there exists $\varepsilon>0$ such that $\left(\lambda_{0}-\varepsilon, \lambda_{0}\right] \subset \Lambda$.

Assume to the contrary that there exists an increasing sequence $\left\{\lambda_{i}\right\}, i=1,2, \ldots$, such that $\lambda_{i} \notin \Lambda$ and $\lambda_{i} \rightarrow \lambda_{0}$ as $i \rightarrow \infty$. By Lemma 5 there exists a sequence $\left\{x_{i}\right\}, i=1,2, \ldots$, such that $x_{i} \in \Sigma_{\lambda_{i}} \cap \overline{B_{0}}$ and $v_{\lambda_{i}}\left(x_{i}\right) \leq 0$. Then there is a subsequence, which we again call $\left\{x_{i}\right\}$ which converges to some point $x_{0} \in \overline{\Sigma_{\lambda_{0}}} \cap \overline{B_{0}}$. We have $v_{\lambda_{0}}\left(x_{0}\right) \leq 0$. Since $v_{\lambda_{0}}>0$ in $\Sigma_{\lambda_{0}}$, we must have $x_{0} \in T_{\lambda_{0}}$.
By the mean value theorem, there exists a point y_{i} satisfying $\left(\partial u / \partial x_{1}\right)\left(y_{i}\right) \geq 0$ on the straight segment joining x_{i} to $x_{i}^{\lambda_{i}}$, for each $i=1,2, \ldots$ Since $y_{i} \rightarrow x_{0}$ as $i \rightarrow \infty$, we have $\left(\partial u / \partial x_{1}\right)\left(x_{0}\right) \geq 0$. On the other hand, since $x_{0} \in T_{\lambda_{0}}$ we have $\left(\partial u / \partial x_{1}\right) u\left(x_{0}\right)<0$ by Lemma 6. This is a contradiction, and Step 2 is established.

Step 3. We have

$$
\begin{equation*}
u(x) \geq u\left(x^{0}\right) \quad \text { in } \Sigma_{0} \tag{3.9}
\end{equation*}
$$

Let $\lambda_{1}=\inf \{\lambda>0:(\lambda, \infty) \subset \Lambda\}$. We show that $\lambda_{1}=0$. Assume to the contrary that $\lambda_{1}>0$. From the continuity of u, we have $v_{\lambda_{1}}(x)=u(x)-u\left(x^{\lambda_{1}}\right) \geq 0$ in $\Sigma_{\lambda_{1}}$. By Lemma 2 , we obtain (3.3) with $\lambda=\lambda_{1}$. Hence, by the maximum principle ([2]), we have either

$$
\begin{gather*}
v_{\lambda_{1}} \equiv 0 \text { in } \Sigma_{\lambda_{1}} \text {, i.e., } \quad u(x) \equiv u\left(x^{\lambda_{1}}\right) \text { in } \Sigma_{\lambda_{1}}, \quad \text { or } \tag{3.10}\\
v_{\lambda_{1}}>0 \text { in } \Sigma_{\lambda_{1}} \text {, i.e., } u(x)>u\left(x^{\lambda_{1}}\right) \text { in } \Sigma_{\lambda_{1}} . \tag{3.11}
\end{gather*}
$$

If (3.10) occurs, by (1.1) we have $\phi(|x|) f(u(x)) \equiv \phi\left(\left|x^{\lambda_{1}}\right|\right) f(u(x))$ for $x \in \Sigma_{\lambda_{1}}$. Because $f(u(x))>0$, we have $\phi(|x|) \equiv \phi\left(\left|x^{\lambda_{1}}\right|\right)$ in $\Sigma_{\lambda_{1}}$. Since ϕ is nonincreasing, we see that $\phi(r) \equiv \phi(0)$ for $r \geq 0$. By (1.2), $\phi(r) \equiv 0$ for $r \geq 0$. This contradicts the assumption $\phi \not \equiv 0$. Therefore (3.10) cannot happen.

On the other hand, if (3.11) occurs. Then, $\lambda_{1} \in \Lambda$. From Step 2 , there exists $\varepsilon>0$ such that $\left(\lambda_{1}-\varepsilon, \lambda_{1}\right] \subset \Lambda$. This contradicts the definition of λ_{1}.

Therefore, we conclude that $\lambda_{1}=0$. Thus, $u(x)>u\left(x^{\lambda}\right)$ in Σ_{λ} for $\lambda>0$. By the continuity of u, we obtain (3.9).

We can repeat the previous Steps 1-3 for the negative x_{1}-direction to conclude that $u(x) \leq u\left(x^{0}\right)$ for $x \in \Sigma_{0}$. Hence, from (3.9), u must be symmetric about the plane $x_{1}=0$. Since the equation in (1.1) is invariant under rotation, we may take any direction as the x_{1}-direction and conclude that u is symmetric in every direction. Therefore, u must be radially symmetric about the origin.

Appendix A. Let Ω be an unbounded domain in \boldsymbol{R}^{n}, and let $L u \equiv \Delta u+c(x) u$, where $c \in \mathrm{~L}^{\infty}(\Omega)$.

Lemma A. Suppose that u satisfies $L u \leq 0$ in Ω and $u \geq 0$ on $\partial \Omega$. Suppose, furthermore,
that there exists a function w such that $w>0$ on $\Omega \cup \partial \Omega$ and $L w \leq 0$ in Ω. If

$$
\begin{equation*}
\frac{u(x)}{w(x)} \rightarrow 0 \quad \text { as }|x| \rightarrow \infty, x \in \Omega \tag{A.1}
\end{equation*}
$$

then $u>0$ in Ω.

Remark. If Ω is bounded, we do not require the condition (A.1). See [15, Chap. 2, Theorem 10].

Proof. Fịst we show that $u \geq 0$ in Ω. Assume to the contrary that $u\left(x_{0}\right)<0$ for some $x_{0} \in \Omega$. Choose $\delta>0$ so that

$$
\begin{equation*}
u\left(x_{0}\right)+\delta w\left(x_{0}\right)=0 \tag{A.2}
\end{equation*}
$$

From (A.1), there exists $R>\left|x_{0}\right|$ satisfying $u(x)+\delta w(x) \geq 0$ on $\{|x|=R\} \cap \Omega$. Define $B_{R}=\left\{x \in \boldsymbol{R}^{n}:|x|<R\right\}$. Then $u+\delta w$ satisfies $L(u+\delta w) \leq 0$ on $\Omega \cap B_{R}$ and $u+\delta w \geq 0$ on $\partial\left(\Omega \cap B_{R}\right)$. By [15, Chap.2, Theorem 10], $(u+\delta w) / w$ cannot attain a nonpositive minimum at an interior point of $\Omega \cap B_{R}$ unless it is a constant. This contradicts (A.2). Therefore, $u \geq 0$ in Ω. By the maximum principle ([2]), we conclude that $u>0$ in Ω.

Appendix B. Conditions which are equivalent to (1.2).
Lemma B.1. Equation (1.1) has a bounded positive solution u on $\left\{x \in \boldsymbol{R}^{n}:|x| \geq r_{0}\right\}$ for some $r_{0}>0$ satisfying

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty} u(x)>0 \tag{B.1}
\end{equation*}
$$

if and only if (1.2) holds.
Proof. Assume that u is a bounded solution of (1.1) on $\left\{|x| \geq r_{0}\right\}$ satisfying (B.1). Let \bar{u} be the spherical mean of u, i.e.,

$$
\bar{u}(r)=\frac{1}{n \omega_{n} r^{n-1}} \int_{|x|=r} u(x) d S \quad \text { for } r \geq r_{0}
$$

where ω_{n} is the volume of the unit ball in \boldsymbol{R}^{n}. Then, \bar{u} satisfies

$$
\begin{equation*}
\left(r^{n-1} \bar{u}^{\prime}\right)^{\prime}+r^{n-1} \phi(r) h(r)=0, \quad r>r_{0} \tag{B.2}
\end{equation*}
$$

where

$$
h(r)=\frac{1}{n \omega_{n} r^{n-1}} \int_{|x|=r} f(u(x)) d S \text { for } r \geq r_{0}
$$

(See, e.g., $[13,14]$.) Since u is bounded, by integrating (B.2) we obtain

$$
\begin{equation*}
\int_{r_{0}}^{\infty} r^{1-n} \int_{r_{0}}^{r} s^{n-1} \phi(s) h(s) d s d r=\frac{1}{n-2} \int_{r_{0}}^{\infty} s \phi(s) h(s) d s<\infty . \tag{B.3}
\end{equation*}
$$

From (B.1), there exists a constant $u_{0}>0$ satisfying $u(x) \geq u_{0}$ for $|x| \geq r_{0}$. Define u_{∞} and f_{0} as $u_{\infty}=\max \left\{u(x):|x| \geq r_{0}\right\}$ and $f_{0}=\min \left\{f(s): 0<u_{0} \leq s \leq u_{\infty}\right\}$. We see that $f_{0}>0$ and $h(r) \geq f_{0}$ for $r \geq r_{0}$. By (B.3) we have (1.2).

Conversely, assume that (1.2) holds. Let $c>0$. Define $f_{c}=\max \{f(s): c \leq s \leq 2 c\}$. Choose $r_{0}>0$ so large that

$$
\int_{r_{0}}^{\infty} s \phi(s) d s<\frac{(n-2) c}{f_{c}}
$$

Let $C\left(\left[r_{0}, \infty\right)\right)$ denote the Fréchet space of continuous functions on $\left[r_{0}, \infty\right)$ with the topology of uniform convergence on any compact subinterval of $\left[r_{0}, \infty\right)$. Consider the set

$$
U=\left\{u \in C\left(\left[r_{0}, \infty\right)\right): c \leq u(r) \leq 2 c, \quad r \geq r_{0}\right\}
$$

which is a closed convex subset of $C\left(\left[r_{0}, \infty\right)\right)$. We define the operator F on U by

$$
F u(r)=c+\int_{r}^{\infty} s^{1-n} \int_{r_{0}}^{s} t^{n-1} \phi(t) f(u(t)) d t d s, \quad r \geq r_{0}
$$

If $u \in U$, then $F u(r) \geq c$ and

$$
F u(r) \leq c+\frac{f_{c}}{n-2} \int_{r_{0}}^{\infty} s \phi(s) d s \leq 2 c, \quad r \geq r_{0}
$$

Thus the operator F maps U into itself. It is easy to see that F is continuous on U and $F U$ is relatively compact in the topology of $C\left(\left[r_{0}, \infty\right)\right)$. By the Schauder-Tychonoff fixed point theorem, F has an element $u \in U$ such that $u=F u$, i.e., $u(r)=F u(r)$ for $r \geq r_{0}$. Then $u=u(|x|)$ is a positive solution of (1.1) on $\left\{|x| \geq r_{0}\right\}$ and satisfies $\lim _{|x| \rightarrow \infty} u(x)=c$. This completes the proof of Lemma B.1.

Lemma B.2. Assume that $f(0)>0$. Then, (1.1) has a bounded positive solution u on $\left\{x \in \boldsymbol{R}^{n}:|x| \geq r_{0}\right\}$ for some $r_{0}>0$ if and only if (1.2) holds.

Proof. Assume that u is a bounded positive solution of (1.1) on $\left\{|x| \geq r_{0}\right\}$. Let \bar{u} be the spherical mean of u. Then by the argument in the proof of Lemma B. 1 we have (B.3). Define u_{∞} and f_{0} as $u_{\infty}=\max \left\{u(x):|x| \geq r_{0}\right\}$ and $f_{0}=\min \left\{f(s): 0 \leq s \leq u_{\infty}\right\}$. We see that $f_{0}>0$ since $f(s)>0$ for $s \geq 0$, and that $h(r) \geq f_{0}$ for $r \geq r_{0}$. By (B.3) we have (1.2).

Conversely, assume that (1.2) holds. Then, by the argument in the proof of Lemma B.1, we obtain a bounded positive solution of (1.1) on $\left\{|x| \geq r_{0}\right\}$.

REFERENCES

[1] L. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.
[2] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
[3] B. Gidas, W.-M. Ni, and L. Nirenberg, "Symmetry of positive solutions of nonlinear elliptic equations in $\boldsymbol{R}^{n "}$ in Mathematical Analysis and Applications, Part A, ed. by L. Nachbin, Adv. Math. Suppl. Stud. 7, Academic Press, New York, 1981, 369-402.
[4] N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14 (1984), 125-158.
[5] T. Kusano and S. Oharu, Bounded entire solutions of second order semilinear elliptic equations with application to a parabolic initial value problem, Indiana Univ. Math. J. 34 (1985), 85-95.
[6] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations 16 (1991), 585-615.
[7] Y. Li, On the positive solutions of the Matukuma equation, Duke Math. J. 70 (1993), 575-589.
[8] Y. Li and W.-M. Ni, On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalizations, Arch. Rational Mech. Anal. 108 (1989), 175-194.
[9] Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in \boldsymbol{R}^{n}, Part I. Asymptotic behavior, Arch. Rational Mech. Anal. 118 (1992), 195-222.
[10] Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in \boldsymbol{R}^{n}, Part II. Radial symmetry, Arch. Rational Mech. Anal. 118 (1992), 223-244.
[11] Y. Li and W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in \boldsymbol{R}^{n}, Comm. Partial Differential Equations 18 (1993), 1043-1054.
[12] M. Naito, A note on bounded positive entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14 (1984), 211-214.
[13] W. -M. Ni, On the elliptic equation $\Delta u+K(x) u^{(n+2) /(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), 493-529.
[14] E. S. Noussair and C. A. Swanson, Oscillation theory for semilinear Schrödinger equations and inequalities, Proc. Roy. Soc. Edinburgh, Sect. A 75 (1975/76), 67-81.
[15] M. Protter and H. Weinberger, "Maximal Principles in Differential Equations", Prentice-Hall, Englewood Cliffs, N.J. 1967.
[16] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318.
[17] H. Zou, Symmetry of positive solutions of $\Delta u+u^{p}=0$ in \boldsymbol{R}^{n}, J. Differential Equations, 120 (1995), 46-88.
[18] H. Zou, Symmetry of ground states of semilinear elliptic equations with mixed Sobolev growth, Indiana Univ. Math. J. 45 (1996), 221-240.

