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The realizations of the amalgamated free products
of 3-orbifold fundamental groups

Aichi University of Education, Yoshihiro Takeuchi (¥rP9 #&#&)
Faculty of Science, Shizuoka University, Misako Yokoyama (#ih Ek&TF)

Abstract. :

We introduce a kind of generalized orbifolds called “orbifold composi-
tions,” and study on their topology, and extensions and deformations of maps
between them. As the main goal, we show the theorem which yields the geomet-
ric realizations of amalgamated free products 3-orbifold fundamental groups.

For the details or the HNN extension case, see [T-Y 3].

§1. Preliminaries on orbifolds

A covering p : M — M is called a manifold covering if TM = ¢. An
orbifold M is good if the universal covering of M is a manifold covering and
bad otherwise. '

Let M be a 3-orbifold and F a connected 2-suborbifold which is either
properly embedded in M or contained in OM. We say that F' is compressible
in M if one of the following conditions is satisfied.

(i) F is a spherical orbifold which bounds a ballic orbifold in M, or

(ii) F is a discal orbifold and either F C M or there is a discal 2-
suborbifold G C M and a ballic 3-suborbifold B C M st. FNG = 0F = 0G
and 8B = FUG, or '

(iii) there is a discal orbifold D C M with D N F = 8D and 8D does not
bound any discal orbifolds in F'.

Otherwise, F' is incompressible. By [K-S] and [M-Y 1], the ballic orbifold
bounded by F in (i) is the cone on F. Hence, a locally orientable 3-orbifold
does not include compressible RP?’s. A 3-orbifold M is irreducible if there are
no incompressible spherical 2-suborbifolds in M.

Throughout this paper, all orbifolds are connected unless otherwise stated.
At first, we review three theorems in [T-Y 2].

Theorem 1.1. (The Loop Theorem [T-Y 2, 6.4]) Let M be a good
3-orbifold with boundaries. Let F be a connected 2-suborbifold in OM. If
Ker(m, (F) — m,(M)) # 1, then there exists a discal 2-suborbifold D properly
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embedded in M s.i. BD C F and 8D does not bound any discal 2-suborbifold
in F.

Theorem 1.2. (Dehn’s Lemma [T-Y 2, 6.5]) Let M be a good 3-orbifold
with boundaries. Let v be a simple closed curve in OM — XM s.i. the order
of [7] is n in 7, (M). Then there exists a discal suborbifold D*(n) properly
embedded in M with 8D*(n) =

Theorem 1.3. (The Sphere Theorem [T-Y 2, 6.7]) Let M be a good
3-orbifold. Letp: M — M be the universal cover of M. If WZ(M) # 0, then
there ezists a spherical suborbifold S in M s.t. [S] # 0 in =, (M), where S is
any component of p~'(5).

The next corollary is derived directly from 1.3.

Corollary 1.4.  Let M be a good 3-orbifold. If M is irreducible, then for
any manifold covering M of M, m,(M) = 0.

§3. Orbifold compositions
From now on, we assume that all orbifolds are good, connected, and locally
orientable, unless otherwise stated.

Definition 3.1. Let I, J be countable sets, X; (¢ € I) n-orbifolds, Y;
(j € J) (n-1)-orbifolds. Let f;f : ¥, x ¢ — X, ., be orbi-maps s.t. (f).
are monic where j € J, 1(j,¢) € I, ¢ = 0,1. Then we call X = (X,,Y; X
[0,1], f{ Jic1.ie 1.6=0,1 @D n-dimensional orbifold composition. The maps f; are
called the attaching maps of X. Each X, or Y; x[0,1] is called a component of
X. The equivalence relation ~ in LI __, . ;('X |u |Y;] x [0, 1]) is defined to be

generated by

(v,e)~F,(y), e=0,1, yely, jeJ

We call the identified space LI _ (| X.[U|Y;|x[0,1])/ ~ the underlying space
of X, denoted by |X]|, and call the identified space {(U;c;XX;)U(U;¢; E(Y X
[0,1]))}/ ~ the singular set of X, denoted by TX.

From now on, we assume that the underlying space |X| is connected. Note
that | X;| and |Y; x (0,1)| are embedded in |X].
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Definition 3.2. Let X = (X,,Y; X [0,1},f )ics.je s,e=0,, be an orbifold
composition. Define the identified space C(X) by |X|/ &~ where

» el | st. z,y € |X;|/ ~, or
sy | el Ie[0,1] st oz, yelY, x|/~

We call C(X), each X, each Y; X [0,1], and each Y; x ;, the associated I-
complex, a vertex orbifold, an edge orbifold of X, and the core of ¥; x [0,1],
respectively.

An isomorphism of orbifold compositions is a map which is componentwise
isomorphism and commutes with attaching maps.

Definition 3.4. Let X = (X:,Y, X [0,1], ff ick.cs,e=0,, and X' =
(X!, Y x [0,1), f'; )ic r.ic 1.e=0,2 be orbifold compositions. We say that X' is a
covering of X if there exist a set of maps {¢,,%, }ic1,jes 8.t. after changing
the orientations of [0,1]’s if necessary, the following (1) ~ (3) hold.

(1) Each g, is a covering map (of orbifolds) from X! to X, , where k; € K.
And each ¢, is a covering map (of orbifolds) from ¥ x [0,1] to ¥, x [0,1],
where ¢, € L. |

(2)For Vj and € = 0,1, ¢, ., o f'; = f; o (| Y] X £).

(3) The continuous map p : |X'| — |X | which is naturally induced by
{p:, ¥; },e, ,e ; is onto and induces the usual covering map from | X'|—p~*(2X)
to | X| -

We ca.ll the above map p a covering map from X' to X.

Remark 3.5. In the above definition, if each component X is the universal
cover of a component X, , then for some base point &, € |[X|— XX, any path
¢ with the base point z, s.t. Int{NEX = ¢, and any point & € p~'(z, ), there
exists a unique lift of £ with the base point Z,. This holds because (f; ), are
monic.

Definition 3.6. Let X be an orbifold composition, z, € | X| — £X a base
point, £ a path with the base point z, s.t. Int{/NEXX = ¢, and p: X - X any
covering. Fix any point &, € p~ '(z,). Suppose there is a covering p : X=X
s.t. each component of X is the universal cover of a component of X Fix any
point & € p~'(&,). By Remark 3.5 there exists a unique lift £ to X of £ with
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the base point #,. Then we can determine a lift ¢ of £ uniquely by putting
i=p o( which is called the canonical lift of £ with the base point Z, .

Definition 3.7. Let X', X be orbifold compositions, and p : X' — X a
covering. We define the deck transformation group Aut(X’,p) of p by

Aut(X',p) = {h: X’ — X' | h is an isomorphism s.t. po h = p}.

Definition 3.8. Let X, X be orbifold compositions, and p : X — X a
covering. We say that p is a unzversal covering if for any covering p X' = X,
there exists a covering ¢ : X — X' s.t. p=pogq.

Lemma 3.9.  For any orbifold composition X, there exists a unique universal
coveringp : X — X.

Proof.  See [T-Y 3].

We sometimes denote an orbifold composition or a good orbifold X by
(X,p,|X|) where p : X — X is the universal covering, and | X | is the underlying
space of X. A good orbifold is considered as a special case of an orbifold
composition.

Proposition 3. 10. Let X, X be orbifold compositions and p : X>Xa
covering. If the restriction ofp to each component of X is universal and C(X)
is a tree, then the covering p : X X is unsversal.

Proof.  See [T-Y 3].

Definition 3.11. Let X = (X,p,|X|) be an orbifold composition with the
base point z, € |X| - £X. Put

Q(X,z,) = {a| a continuous map & : [0,1] = X with p(&(0)) = p(a(1)) = o, }.

For any two elements &, 8 € Q(X,:z'o ), @ is equivalent to ﬁ~, denoted by & ~ 8, if
there exists an element 7 € Aut(X,p) s.t. &0) = 7(6(0)) and &(1) = 7(B(1)).
The relation ~ is an equivalence relation and (X, z,)/ ~ is a group with the

product defined by . .
(6] - 141 = [& - p(4)]
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where p € Aut(X,p)is the element s.t. p(8(0)) = @(1). The group QX,z,)/ ~
is called the fundamental group of X and denoted by =, (X, z,). Note that the
fundamental group 7, (X, z,) is isomorphic to the deck transformation group
Aut(X ,p). By the symbol o,, we mean the element of Aut(X,p) which is
corresponding to ¢ € 7, (X, z,).

Definition 3.12. Let X = (X,p,|X|) and Y = (¥,q,|Y]) be orbifold
compositions (or orbifolds). By an orbi-map f : X — Y, we mean the pair
(f, f) of continuous maps f:]X|—1Y]|and f: X - Y satisfying
(i) fop=go/, . . _ .
(ii) for each ¢ € Aut(X,p), there exists 7 € Aut(Y,q) s.t. foo =70 f,
(iii) there exists ¢ € |X| -~ £X s.t. f(z) € [Y]| - EY.

Definition 3.13. Let X = (X,p,|X]) and Y = (Y,q,|Y]) be orbifold
compositions, and f = (f, f) : X — Y an orbi-map. By the definition of an
orbi-map, there exists a point ¢ € |X| — £X s.t. f(z) € |Y| — £Y. Then the
induced homomorphism f, : 7,(X,z) — 7, (Y, f(z)) of f is naturally defined

by £.([a]) = [f o &].

For an orbi-map and a covering between orbifold compositions we can
define the notions of C-equivalence, orbi-homotopy, and lifting as well as those
for an orbi-map and a covering between orbifolds. We derive the relations
among fundamental groups, coverings, and liftings similar to those for orbifolds.
See [Ta 2] for the orbifold case.

The next proposition can be shown in a way similar to one in [Prop. 2.2
of Ta 2].

Proposition 3.14. Let X = (X,p,1X|), Y = (Y,q,|Y]) be orbifold compo-
sitions, and f = (f,f) : X = Y an orbi-map. Then for V[@] € (X, z), we

have that 3 3
folala =(f([&])aof

§4. The tree constructions of the universal coverings

Let X be an orbifold composition and ¥ x [0, 1] one of edge orbifold compo-
nents of X. Suppose that X - Y x(0,1) are two disjoint orbifold compositions
X° and X!, and attaching orbi-maps from Y x & are mapped into X~ and
described as f* : Y xe — X, ¢ = 0,1. We construct the universal covering
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of an orbifold composition X by the “tree construction”, and show that the
fundamental group =, (X) of X is the free product of 7, (X°) and =, (X*) with
the amalgamated subgroups f:m, (Y x ¢), ¢ =0,1.

Let p* : X* — X*,e=0,1,and ¢ : ¥ x [0, 1] — Y x[0,1] be the universal
coverings. Put H* = f‘ 7, (Y X &) and A* = (a left coset representative system
of m,(X*) by H*, which includes the identity e), ¢ = 0,1. A group G is defined
as the free product of m,(X°) and =, (X*') with the amalgamated subgroups
H® and H*, under the map f! o (f°)~*, denoted by

= (m(X°)*xn (X)) | H° =H, flo (7))
And three subsets K, K°, K' of G are defined by

K = {e,a,a, ---a, |a, #e,a, € A°UA",

a;, a;, , are not both in A° or both in A'.}
K° ={e,a,a;, - -a, €K|a, € A'}
K' = {e,a,a, --a, €K|a, € A°}.

For each k¥ € K*, prepare a copy X = of X*, and the identity map id; :
X‘ — X*. Note that there are #A° equivalent classes of Aut(X* v Vfe (Y x e)
mod (H*),,e =0,1. And for each (k,a) € K° X A®, prepare a copy Yii.oy%[0,1]
~of ¥ x [0,1], and the identity map 4d; ., : ¥s,e) X [0,1] — ¥ x [0,1]. Let
f‘ Y x ¢ — X* be structure maps of f*, ¢ = 0,1. Then we can define
structure maps f(,c 0 :Y(,, ;) XE— Xs naturally Put X = (X° X, Y, . X
[0,1], e oy (‘k,a))kexo,,e,{,,a“o. Define the projections p; : X; — X*and
Qn,a) Y(,,,,,) X [0,1] = Y x [0,1] by p; = p* o4d; and ¢, ,, = g oid, .,
k€ K, e=0,1,(h,a) € K° x A°, respectively. Note that p: and ¢, ,, are the
universal coverings. Furthermore, it is easy to see that C(X ) is a tree. Hence

by 3.10, p = Ukcxceco,,tna)exoxa* (P Ugan,e,) : X — X is the universal
covering.

Lemma 4.1. 7, (X,z,)>G. Proof. See [T—Y 3].

§5. Extensions and constructions of orbi-maps
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Definition 5.1. Let X be an orbifold composition. Define

0.(X)={f :8D — X | D is a discal 2-orbifold, f is an orbi-map},
0,(X)={f:S8 — X | S is a spherical 2-orbifold, f is an orbi-map},
0,(X) = {f : DB — X | DB is the double of a ballic 3-orbifold B,

f is an orbi-map}.

We call f: 0D — X € O,(X) trivial if there exists an orbi-map g : D — X
s.t. g|dD = f, and call O,(X) trivial if any element of O,(X) is trivial. We
call f: 8 — X € 0,(X) trivial if there exists an orbi-map g : ¢* S — X s.t.
g|S = £, where c * S is the cone on §, and call 0,(X) trivial if any element of
0,(X) is trivial. We define the tr1v1a.ht1es of O,(X) similarly.

Note that if O;(X) is trivial, then any covering X of X inherits the rivi-
ality.

Proposition 5.2. Let F be a compact 2-orbifold and X be an orbifold
composition. If O,(X) is trivial, then for any homomorphism ¢ : 7, (F,y) —
7,(X, ), there exists an orbi-map f : (F,y) = (X,z) s.t. f,. = ¢.

Proof. Let F, = F—Int U(XF), where U(LF) is the small regular neighbor-
hood of TF. We construct an (orbi-) map from F, to X associated with ¢.
Since O,(X) is trivial, it is extendable to the desired orbi-map. (Q.E.D.)

The following propositions 5.3 and 5.4 are proved similarly.

Proposition 5.3. Let M be a compact 3-orbifold and X an orbifold com-
position s.t. O,(X) and O0,(X) are trivial. Then for any homomorphism
o m(M,z) = 7 (X, y) there exists an orbi-map f : (M,z) — (X,y) s.t.

f. = 9.

Proposition 5.4. Let M be a 3-orbifold and X be an orbifold composition
s.t. O,(X) is trivial. If f, g : M — X are C-equivalent orbi-maps, then f and
g are orbi-homotopic. |

The following lemmas 5.5, 5.6, and 5.7 give sufficient conditions which
enable us to extend certain orbi-maps.

Lemma 5.5. Let X be an orbifold composition, D a discal 2-orbifold, and
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f 0D — X an orbi-map. If Fix([f].) # ¢, then f is extendable to an
orbi-map from D to X. ’

Proof.  Let ¢ : D* — D be the universal covering. Take a point z € Fix([f], ).
We can construct the structure map of the desired orbi-map by mapping the
cone point of D? to z and performing the skeletonwise and equlva.rla.nt exten-

sion. (Q.E.D.)

Let S be a spherical 2-orbifold and ¢ : § — S the universal covering. Let
7 be an element of 7,(S) and z, the point of £§ s.t. [(]* = 7, where £ is the
normal loop around z, and k is an integer. By the symbol u(£), we mean the
local normal loop around z, s.t. £ =m~* - u(£)-m, where m is a path. Let &,
be the point of ¢~*(XS) s.t. the Ift of u(¢) following after the lift of m~* is a
path around %, .

- Lemma 5.6. Let X be an orbifold composition, S a spherical 2-orbifold,
and f : S — X an orbi-map. Suppose that there is a point de Fix(f, 7, (5)).
and for any T € m,(S), there is an interval €, including d and f(:r: ) which is
fized by 0, , where 0 = f,(7). If m, of the universal cover X of X is 0, then f
is extendable to an orbi-map from the cone on S to X.

Proof.  See [T-Y 3].

Lemma 5.7. Let X be an orbifold composition, B a ballic 3-orbifold, and
f : DB — X an orbi-map. Suppose that there is a point . de Fix(f, wl(BB))A
and for Vv € n,(0B), there is an interval £, including d and f(x ) which is
fized by 0, , where 0 = f,(7). If 7, and 7, of the universal cover X of X is 0,
then f is extendable to an orbi-map from the cone on DB to X.

Proof.  Similar to 5.6. (Q.E.D.)

Lemma 5.8. Let M be an irreducible 3-orbifold. Let p : M — M be the
universal covering and o € Aut(M p) be an orientation preserving element of
finite order. Suppose that M is non-compact, then the following (i), (ii) hold:
(i) Fix(o) # ¢ and is homeomorphic to an interval (i.e. homeomorphic to
esther [0,1], [0,1), or (0,1)).
(ii) If M is orientable, then O,(M) is trivial.
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Proof. (i) It is obtained by (i) and 5.5. (i) See [T-Y 3].

Lemma 5.9. Let M be an irreducible 3-orbifold, and p : M — M the
universal covering. Let G be any subgroup of Aut(M ,p), which is isomorphic
to the orbifold fundamental group of a spherical 2-orbifold S and all elements
of G preserve the orientation of M. Suppose that M is non-compact, then the
following (i), (ii) hold:

(i) Fix(G) # ¢. .

(ii) If M is orientable, then O,(M)’s are trivial, 1 = 1,2,3.

Proof.  (ii) It is obtained by (i), 5.5, 5.6, 5.7, and 5.8. (i) See [T-Y 3].

Proposition 5.10. Let X = (X*,Y % [0,1], f*)._0.. be an orbifold compo-
sition, where each X° is an orientable, irreducible 3-orbifold, and Y is an ori-
entable 2-orbifold. If the universal coverings of X* and Y are all non-compact,
then O.(X) are trivial, 1 =1,2,3.

Proof.  See [T-Y 3].

Let X be an orbifold composition, and E a core of an edge orbifold Y x[0, 1]
of X. When we consider each piece (or its closure) of |X| — |F|, it naturally
admits the orbifold composition structure by restricting the structure of X. We
denote it by X — F, etc. In this situation, a component of type ¥ X [e, ] (resp.
Y x [e,1)), e = 0,1, appears, and is called a closed (resp. open) half-edge
orbifold of the orbifold composition. Iterating this process, we can consider
an orbifold composition with several half-edge orbifolds. About new types of
orbifold compositions described above, the same arguments and statements
hold as those in Sect. 3~5.

§6. More on orbifold compositions

Let X be an orbifold composition. An orbifold Y belongs to the set § X if
Y satisfies the following (i) or (ii):

(i) Y is a boundary component of a vertex orbifold of X s.t. Y is disjoint
from any images of attaching maps of X.

(ii) Y is the core of a closed half-edge of X s.t. Y = ¢.

Theorem 6.1. (Transversality theorem) Let M be a compact and ori-
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entable 3-orbifold, and X a 3-orbifold composition with trivial O,(X)’s, i = 2,3.
 Suppose that there is an edge orbifold whose core is an orientable and non-
spherical 2-orbifold F st. O(X — F) are trivial, i = 2,3. Then, for any
orbi-map f : M — X, there is an orbi-map g : M — X s.1.

(i) g is orbi-homotopic to f,

(ii) each component of g~*(F) is a compact, properly embedded, 2-sided,
incompressible 2-suborbifold in M, and .

(iii) for properly chosen product neighborhoods F X [-1,1]] of F= F x 0
i X and g (F)x[-1,1] of g (F) = g *(F)x 0 in M, § maps each fiber
zx|[-1,1]] homeomorphzcally to the fiber §(z) x [[-1,1]| for each z € |g~ ' (F)|
where g : |M| — | X| is the underlying map of g.

Proof.  See [T-Y 3].

Theorem 6.2. (I-bundle theorem) Let M be a compact, orientable and
srreducible 3-orbifold with boundaries, and X be a 3-orbifold composition. Let
f:(M,0M) — (X,6X) be an orbi-map s.t. f, is monic. Suppose there is a
path o : (I1,0I) — (|M| — XM,|0M|), incompressible components B,, B, of
M, and a component C of §X which satisfy the following (i)~(iv);

(i) o(0) # a(1).

(i) F(a(0)) = F(a(1)) € 6X] -

(iii) [f o @] =1 in 7, (X),
where & is a lift of a to the universal cover M of M and f=(, f)

(iv) B; (resp. C) includes a(i) (resp. f(2(0))), Ker(r,(C) — m (X)) =1,
and (f|B;): B, — C is a covering, i = 0,1 (possibly B, = B,).

Then M is an I-bundle over a closed 2-orbifold.

Proof.  See [T-Y 3].

Theorem 6.3. (Retraction theorem) Let M be an orientable 3-orbifold
which is orbi-isomorphic to an I-bundle over a closed 2-orbifold F. Let X be
a 3-orbifold composition with trivial O,(X)’s, i = 2,3. Let f : (M,0M) —
(X,6X) be an orbi-map s.t. flOM is not an orbi- embeddmg and s.t. there is a
- component C of 6X, for each component B of OM, f(B) C C and (f|B): B —
C is an orbi-covering.

If there is a point xz € |F|-XF s.t. fl(¢~*(z)) is orbz-homotopzc to a path
in C rel. {} x 8I...(6.3.1), where ¢ : M — F is the fibration, then there is
an orbi-homotopy f, : M — X s.t. f, = f, f,(M) CéX, and f,|0M = f|OM.
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Proof.  See [T-Y 3].

Remark 6.4. In 6.3, iff, : 7, (M) — m,(X) is an isomorphism and C s ori-
entable, then the condition (6.3.1) stands. Furthermore, M is orbi-isomorphic
to the product I-bundle over B,, and B, is orbi-isomorphic to C.

§7. Main Theorem
In this section, we assume that all free products with amalgamations are
non-trivial.

Definition 7.1.  Let M be a 3-orbifold with trivial O,(M). Let S be a closed,
orientable, non-spherical 2-orbifold. Suppose 7, (M) = {4, * A, | H, = H,, ©)
and there is an isomorphism ¢ : 7,(S) — H,. Let p, : X; — M be the orbi-
covering associated with A,, ¢ = 1,2. Note that O, (X,) are trivial, ¢+ = 1,2.
Put H, = p_'(H,),i=1,2. Note tha.t (p..|H, )~* ot (resp. (p,. | H, ) ogoogb)
is an 1somorphlsm from ,(S) to H, (resp. H,). By 5.2, we can construct
orbl-maps h, : 8 = X, and h, : § — X, st. h, = (pl,IH) ' o and

= (p,. |H )‘1 opo. We ca.ll the orbifold composition X = (X,, X;,
SX[O 1], by, ;) the orbifold composition associated with (A, %A, | H, = H,,¢}.
We also define the orbifold composition associated with (A,t| ¢ 'H,t = H, , @)
similarly.

From 4.1 (resp 4.2), it holds that 7, (X) = (7, (X,)* 7 (X;) | h.. 7(1(5)

By 7 (S), sy 0 hT!) (resp. {m (X'),t | ¢ by, m (S)t = hoymi(S), hay 0 AL}
Furthermore, we have the following proposition.

Proposition 7.2. Let M be a $-orbifold with trivial O,(M). Let S be
a closed, orientable, and non-spherical 2-orbifold. Suppose m (M) = (A, *
A, | H = H,,p) (resp. {A,t| t"'H,t = H,,p)) and there is an isomor-
phism ¢ : m,(S) — H,. Let X be the orbifold composition associated with
(A, * A, | H, = H,,¢) (resp. (At | t"*Ht = H,,p)). Then there is an
isomorphism ¥ : 7, (X) — 7, (M) s.t.

(1) U(m(X.)) = A, i=1, 2(resp. ¥(m (X)) = A).

(i) W(H)=H,, i=1, 2 (note that h;,m:(5) = H)

(iil) Yo (h,, oh] 1)—<po\I’

Definition 7.3. Let M be a 3-orbifold, and S be a closed, orientable, and
non-spherical 2-orbifold. We say that S algebraically splits m,(M) as an amal-
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gamated free product if m, (M) is expressed as a free product with an amalga-
mation, (A, x A, | H, = H,, ¢}, and there is an isomorphism ¥ : H, — =, (5).

We say that the splitting above respects the peripheral structure of M if
for each component G of 9M, some conjugate of 5, 7, (G) is contained in either
A, or A,, where 7 is the inclusion orbi-map G — M.

Proposition 7.4. Let M be a compact, orientable, and irreducible 3-orbifold.
Let S be a closed, orientable, and non-spherical 2-orbifold. Suppose S alge-
braically splits m, (M) as an amalgamated free product (A, x A, | H, = H,, )
-and this splitting respects the peripheral structure of M. Let X be the orbifold
composition associated with (A, * A, | H, = H,,¢). Then there is an orbi-map
f:M — X st f, is an isomorphism and f(OM)N (S x(0,1)) = ¢.

Proof.  See [T-Y 3].

Definition 7.5. Let F be a closed, properly embedded, 2-sided, incom-
pressible, and separating 2-suborbifold in M. Let M,, M, be the orbifolds
derived from M by cutting open along F and 5, : F — M,, 1 =1, 2 be the
inclusion orbi-maps. Note that m, (M) is expressed as the amalgamated free
product {m, (M) * 7,(M,) | 5., 7, (F) = n,, 7, (F),n,, on_'). We say that F
geomelrically realizes the algebraic splitting (A, x A, | H, = H,,¢) of n, (M) if
there is an isomorphism ¥ : 7,(M) — =, (M) s.t. | |

(i) ¥(m (M) =A4,,1i=1,2.

(i) ¥(n,m(F xi))=H, i=1,2.

(i) ¥o(n, on ' )=po¥

Theorem 7.6. Let M be a compact, orientable, and irreducible 3-orbifold.
Let S be a closed, orientable, and non-spherical 2-orbifold. Suppose S alge-
braically splits 7,(M) as an amalgamated free product (A, x A, | H, = H,, )
and this splitting respects the peripheral structure of M. Then there exists a
geometric splitting realizing the algebraic splitting above.

Let us take an overview of the proof of the main theorem, to see how
effectively our preparations are used:

(i) Recall that the fundamental group 7, (M) of a 3-orbifold M is decom-
posed as (4, x A, | H, = H,,¢). First we take S x I and the orbi-covering
M; associated with A; and construct an orbifold composition X by attaching
them together where Section 4 and 5.2 essentially contribute to. This newly
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constructed space X plays a role like as an Eilenberg-MacLane space.

(ii) Make an orbi-map f : M — X which induces an isomorphism from
7, (M) to 7,(X). At this time, we need theorems prepared in Sections 4 and

~ (iii) Each component of the inverse image of S by f is an incompressible

2-suborbifold by 6.1. We decrease the numbers of these components using 6.2
and 6.3 repeatedly. At last the inverse image turns to be only one component
F which actually realizes the decomposition of 7, (M).

For the details or the HNN extension case, see [T-Y 3].
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