

Title	On a property of fuzzy stopping times(Optimization Theory in Descrete and Continuous Mathematical Sciences)
Author(s)	YOSHIDA, Y.; YASUDA, M.; NAKAGAMI, J.; KURANO, M.
Citation	数理解析研究所講究録 (1997), 1015: 176-182
Issue Date	1997-11
URL	http://hdl.handle.net/2433/61601
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On a property of fuzzy stopping times

Y. YOSHIDA§, M. YASUDA†, J. NAKAGAMI† and M. KURANO‡

§ Faculty of Economics and Business Administration, Kitakyushu University, Kokuraminami, Kitakyushu 802, Japan. † Faculty of Science, Chiba University, † Faculty of Education, Yayoi-cho, Inage-ku, Chiba 263, Japan.

Abstract

This note is concerned with a fuzzy stopping time for a dynamic fuzzy system. A new class of fuzzy stopping times is introduced and constructed by subsets of α -cut for fuzzy states. The results are applied to the optimization of a corresponding problem with an additive weighting function.

Keywords: Fuzzy stopping times; Markov property; α -cuts of fuzzy sets; optimality.

1 Introduction and notations

The stopping time with fuzziness, which is called a fuzzy stopping time, is considered by our previous paper [11] in which optimization of a corresponding fuzzy problem is pursued by the constructive method.

In this note, we introduce a new class of fuzzy stopping times defined by subsets of the α -cuts of fuzzy states and we apply it to a fuzzy stopping problem with additive weighting functions as the scalarization of the fuzzy total rewards. As related works, refer to [1, 5, 6, 7, 15].

In the remainder of this section, a fuzzy stopping time for a fuzzy dynamic system is defined explicitly. A new class of fuzzy stopping time is introduced in Section 2 and its construction is discussed. These results are applied to the 'optimization' of a corresponding fuzzy stopping problem in Section 3. In Section 4, a example is given to illustrate the results.

Let E, E_1 , E_2 be convex compact subsets of some Banach space. Throughout the paper, we will denote a fuzzy set and a fuzzy relation by their membership functions. For the theory of fuzzy sets, refer to Zadeh [16] and Novák [12]. A fuzzy set $\tilde{u}: E \mapsto [0,1]$ is called convex if

$$\tilde{u}(\lambda x + (1 - \lambda)y) \ge \tilde{u}(x) \wedge \tilde{u}(y), \quad x, y \in E, \ \lambda \in [0, 1],$$

where $a \wedge b := \min\{a, b\}$ for real numbers a, b (c.f. Chen-wei Xu [2]). Also, a fuzzy relation $\tilde{h} : E_1 \times E_2 \mapsto [0, 1]$ is called convex if

$$\tilde{h}(\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2) > \tilde{h}(x_1, y_1) \wedge \tilde{h}(x_2, y_2)$$

for $x_1, x_2 \in E_1, y_1, y_2 \in E_2$ and $\lambda \in [0, 1]$.

Let $\mathcal{F}(E)$ be the set of all convex fuzzy sets, \tilde{u} , on E whose membership functions are upper semi-continuous and have compact supports and the normality condition: $\sup_{x \in E} \tilde{u}(x) = 1$. The α -cut $(\alpha \in [0,1])$ of the fuzzy set \tilde{u} is defined by

$$\tilde{u}_{\alpha} := \{x \in E \mid \tilde{u}(x) \geq \alpha\} \ (\alpha > 0) \quad \text{and} \quad \tilde{u}_{0} := \operatorname{cl}\{x \in E \mid \tilde{u}(x) > 0\},$$

where cl denotes the closure of a set. We denote by $\mathcal{C}(E)$ the collection of all compact convex subsets of E. Clearly, $\tilde{u} \in \mathcal{F}(E)$ means $\tilde{u}_{\alpha} \in \mathcal{C}(E)$ for all $\alpha \in [0, 1]$.

Let **R** be the set of all real numbers. We see, from the definition, that $C(\mathbf{R})$ is the set of all bounded closed intervals in **R**. The elements of $\mathcal{F}(\mathbf{R})$ are called fuzzy numbers. The addition and the scalar multiplication on $\mathcal{F}(\mathbf{R})$ are defined as follows (see Puri and Ralescu [13]): For $\tilde{m}, \tilde{n} \in \mathcal{F}(\mathbf{R})$ and $\lambda \geq 0$,

$$(\tilde{m} + \tilde{n})(x) := \sup_{x_1, x_2 \in \mathbf{R}: \ x_1 + x_2 = x} \{ \tilde{m}(x_1) \wedge \tilde{n}(x_2) \} \quad (x \in \mathbf{R})$$
(1.1)

and

$$(\lambda \hat{m})(x) := \begin{cases} \hat{m}(x/\lambda) & \text{if } \lambda > 0\\ 1_{\{0\}}(x) & \text{if } \lambda = 0 \end{cases} \quad (x \in \mathbf{R}). \tag{1.2}$$

And hence

$$(\tilde{m} + \tilde{n})_{\alpha} = \tilde{m}_{\alpha} + \tilde{n}_{\alpha}$$
 and $(\lambda \tilde{m})_{\alpha} = \lambda \tilde{m}_{\alpha} \ (\alpha \in [0, 1]),$

where $A + B := \{x + y \mid x \in A, y \in B\}$, $\lambda A := \{\lambda x \mid x \in A\}$, $A + \emptyset = \emptyset + A := A$ and $\lambda \emptyset := \emptyset$ for any non-empty closed intervals $A, B \in \mathcal{C}(\mathbf{R})$. We use the following lemma.

Lemma 1.1 (Chen-wei Xu [2]).

- (i) For any $\tilde{m}, \tilde{n} \in \mathcal{F}(\mathbf{R})$ and $\lambda \geq 0$, it holds that $\tilde{m} + \tilde{n} \in \mathcal{F}(\mathbf{R})$.
- (ii) Let $\tilde{u} \in \mathcal{F}(E_1)$ and $\tilde{p} \in \mathcal{F}(E_1 \times E_2)$. Then $\sup_{x \in E_1} {\{\tilde{u}(x) \land \tilde{p}(x, \cdot)\}} \in \mathcal{F}(E_2)$.

We consider the dynamic fuzzy system([9]), which is denoted by the elements (S, \tilde{q}) as follows.

Definition 1.

- (i) The state space S is a convex compact subset of some Banach space. In general, the system is fuzzy, so that the state of the system is called a fuzzy state and is denoted by an element of $\mathcal{F}(S)$.
- (ii) The law of motion for the system is denoted by time-invariant fuzzy relations $\tilde{q}: S \times S \mapsto [0,1]$, and assume that $\tilde{q} \in \mathcal{F}(S \times S)$.

If the system is in a fuzzy state $\tilde{s} \in \mathcal{F}(S)$, the state is moved to a new fuzzy state $Q(\tilde{s})$ after unit time, where $Q: \mathcal{F}(S) \mapsto \mathcal{F}(S)$ is defined by

$$Q(\tilde{s})(y) := \sup_{x \in S} \{\tilde{s}(x) \land \tilde{q}(x, y)\} \quad (y \in S).$$
(1.3)

Note that the map Q is well-defined by Lemma 1.1.

For the dynamic fuzzy system (S, \tilde{q}) with a given initial fuzzy state $\tilde{s} \in \mathcal{F}(S)$, we can define a sequence of fuzzy states $\{\tilde{s}_t\}_{t=1}^{\infty}$ by

$$\tilde{s}_1 := \tilde{s} \quad \text{and} \quad \tilde{s}_{t+1} := Q(\tilde{s}_t) \quad (t \ge 1).$$

$$\tag{1.4}$$

A fuzzy stopping time for this sequence $\{\tilde{s}_t\}_{t=1}^{\infty}$ is defined in the next section. In order to define a fuzzy stopping time, we need the following preliminaries.

Associated with the fuzzy relation \tilde{q} , the corresponding maps $Q_{\alpha}: \mathcal{C}(S) \mapsto \mathcal{C}(S)$ ($\alpha \in [0,1]$) are defined as follows: For $D \in \mathcal{C}(S)$,

$$Q_{\alpha}(D) := \begin{cases} \{ y \in S \mid \tilde{q}(x, y) \ge \alpha \text{ for some } x \in D \} & \text{for } \alpha > 0 \\ \operatorname{cl}\{ y \in S \mid \tilde{q}(x, y) > 0 \text{ for some } x \in D \} & \text{for } \alpha = 0, \end{cases}$$
(1.5)

From the assumption on \tilde{q} , the maps Q_{α} is well-defined. The iterates Q_{α}^{t} $(t \geq 0)$ are defined by setting $Q_{\alpha}^{0} := I(\text{identity})$ and iteratively,

$$Q_{\alpha}^{t+1} := Q_{\alpha} Q_{\alpha}^{t} \quad (t \ge 0).$$

In the following lemma, which is easily verified by the idea in the proof of Kurano et al. [9, Lemma 1], the α -cuts of $Q(\tilde{s})$ defined by (1.3) is specified using the maps Q_{α} .

Lemma 1.2 ([9, 10]). For any $\alpha \in [0, 1]$ and $\tilde{s} \in \mathcal{F}(S)$, we have:

(i)
$$Q(\tilde{s})_{\alpha} = Q_{\alpha}(\tilde{s}_{\alpha});$$

(ii)
$$\tilde{s}_{t,\alpha} = Q_{\alpha}^{t-1}(\tilde{s}_{\alpha})$$
 $(t \geq 1)$,

where $\tilde{s}_{t,\alpha} := (\tilde{s}_t)_{\alpha}$ and $\{\tilde{s}_t\}_{t=1}^{\infty}$ is defined by (1.4) with $\tilde{s}_1 = \tilde{s}$.

2 Fuzzy stopping times

In this section, we define a fuzzy stopping time to be discussed here. And a new class of fuzzy stopping times is introduced, which is constructed thorough subsets of α -cuts of fuzzy states.

For the sake of simplicity, denote $\mathcal{F} := \mathcal{F}(S)$. Let $\mathbf{N} = \{1, 2, \dots\}$ and \mathcal{F}' a subset of \mathcal{F} .

Definition 2 (cf.[11]). A fuzzy stopping time(FST) on \mathcal{F}' is a fuzzy relation $\tilde{\sigma} \colon \mathcal{F}' \times \mathbf{N} \mapsto [0,1]$ such that, for each fuzzy state $\tilde{s} \in \mathcal{F}'$, $\tilde{\sigma}(\tilde{s},t)$ is non-increasing in t and there exists a natural number $t(\tilde{s}) \in \mathbf{N}$ with $\tilde{\sigma}(\tilde{s},t) = 0$ for all $t \geq t(\tilde{s})$.

We note here that 0 represents 'stop' and 1 represents 'continue' in the grade of membership (cf.[11]). An FST $\tilde{\sigma}(\tilde{s},\cdot)$ means the degree of 'continue' at time t starting at a fuzzy state $\tilde{s} \in \mathcal{F}'$. The set of all FSTs on \mathcal{F}' is denoted by $\Sigma(\mathcal{F}')$. Assuming $Q(\mathcal{F}') \subset \mathcal{F}'$, an FST $\tilde{\sigma} \in \Sigma(\mathcal{F}')$ is called *Markov* if there exist a mapping $\delta : \mathcal{F}' \mapsto [0,1]$ satisfying

(i) $\delta(Q(\tilde{s})) \leq \delta(\tilde{s})$, and

(ii) $\tilde{\sigma}(\tilde{s},t) = \delta(\tilde{s}_t)$ for all $\tilde{s} \in \mathcal{F}'$ and $t \geq 1$,

where $\{\tilde{s}_t\}_{t=1}^{\infty}$ is defined by (1.4) with $\tilde{s}_1 = \tilde{s}$.

The above δ is called a *support* of $\tilde{\sigma}$. We consider ourselves with the construction of Markov FSTs. For this purpose, we assume the following condition holds.

Condition A1. For each $\alpha \in [0,1]$, there exists a non-empty subset \mathcal{K}_{α} of $\mathcal{C}(S)$ satisfying

$$Q_{\alpha}(\mathcal{K}_{\alpha}) \subset \mathcal{K}_{\alpha}. \tag{2.1}$$

Using this subset \mathcal{K}_{α} , we define a sequence of subsets $\{\mathcal{K}_{\alpha}^t\}_{t=1}^{\infty}$ inductively by

$$\mathcal{K}^1_{\alpha} := \mathcal{K}_{\alpha} \tag{2.2}$$

and for each $t \geq 2$,

$$\mathcal{K}_{\alpha}^{t} := \{ c \in \mathcal{C}(S) \mid Q_{\alpha}(c) \in \mathcal{K}_{\alpha}^{t-1} \}. \tag{2.3}$$

Clearly, $\mathcal{K}_{\alpha}^{t} = Q_{\alpha}^{-1}(\mathcal{K}_{\alpha}^{t-1}) = Q_{\alpha}^{-(t-1)}(\mathcal{K}_{\alpha})$. Also, it holds from (2.1) that $\mathcal{K}_{\alpha}^{t} \subset \mathcal{K}_{\alpha}^{t+1}$ $(t \geq 1)$. To simplify our discussion, we assume the following condition holds henceforth.

Condition A2. For all $\alpha \in [0, 1]$, it holds that

$$\mathcal{C}(S) = \bigcup_{t=1}^{\infty} \mathcal{K}_{\alpha}^{t}.$$

For $c \in \mathcal{C}(S)$ and $\alpha \in [0, 1]$, define $\hat{\sigma}_{\alpha}(c)$ by

$$\hat{\sigma}_{\alpha}(c) := \min\{t \ge 1 \mid c \in \mathcal{K}_{\alpha}^t\}. \tag{2.4}$$

That is, it is the first entry time of $c \in \mathcal{C}(S)$ with the grade α . We define a restricted class $\hat{\mathcal{F}} \subset \mathcal{F}$ by

$$\hat{\mathcal{F}} := \{ \tilde{s} \in \mathcal{F} \mid \hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}) \text{ is non-increasing in } \alpha \in [0, 1] \}.$$
 (2.5)

Using the class $\{\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}) \mid \alpha \in [0,1]\}$, for the restricted element $\tilde{s} \in \hat{\mathcal{F}}$, let us construct

$$\hat{\sigma}(\tilde{s},t) := \sup_{\alpha \in [0,1]} \{\alpha \wedge 1_{D_{\alpha}}(t)\} \quad (t \ge 1), \tag{2.6}$$

where $1_{D_{\alpha}}$ is the indicator of a set $D_{\alpha} = \{t \in \mathbb{N} \mid \hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}) > t\}$. This is the usual technique of constructing a corresponding fuzzy number from the class of level sets. Now let

$$\hat{\sigma}(\tilde{s},\cdot)_{\alpha} := \min\{t \in \mathbf{N} \mid \hat{\sigma}(\tilde{s},t) < \alpha\}. \tag{2.7}$$

Then we obtain the following theorem.

Theorem 2.1.

- (i) $\hat{\sigma}(\tilde{s}, \cdot)_{\alpha} = \hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}), \quad \tilde{s} \in \hat{\mathcal{F}}, \quad \alpha \in [0, 1];$
- (ii) $\hat{\sigma}$ is an FST on $\hat{\mathcal{F}}$.

Proof. By (2.6) and (2.7), we have that $\hat{\sigma}(\tilde{s}, \cdot)_{\alpha} \leq t$ is equivalent to $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}) \leq t$ for all $t \geq 1$. This fact shows (i). From Condition A2, there exists $t^* \in \mathbb{N}$ with $\tilde{s}_0 \in \mathcal{K}_0^{t^*}$. So, $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}) \leq \tilde{s}_0(\tilde{s}_0) \leq t^*$ for all $\alpha \in [0, 1]$, which shows by (2.5) that $\hat{\sigma}(\tilde{s}, t) = 0$ for all $t \geq t^*$. Since $\hat{\sigma}(\tilde{s}, t + 1) \leq \hat{\sigma}(\tilde{s}, t)$ holds clearly for $t \geq 1$ from the definition (2.6), we also obtain (ii). q.e.d.

In order to show the Markov property of $\hat{\sigma}$, we need the following lemma.

Lemma 2.1. Let $\tilde{s} \in \hat{\mathcal{F}}$. Then

(i) $\hat{\sigma}(\tilde{s},t) = \alpha$ if and only if, for any $\epsilon > 0$,

$$\tilde{s}_{\alpha+\epsilon} \in \mathcal{K}_{\alpha+\epsilon}^t$$
 and $\tilde{s}_{\alpha-\epsilon} \notin \mathcal{K}_{\alpha-\epsilon}^t$;

(ii)
$$\tilde{s}_t \in \hat{\mathcal{F}}$$
 $(t \ge 1)$.

Proof. By (2.6), $\hat{\sigma}(\tilde{s},t) = \sup\{\alpha \mid \hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}) > t\}$. So, (i) follows from (2.4). From Lemma 1.2(ii), for $l \geq 1$, $\hat{\sigma}_{\alpha}((\tilde{s}_{l})_{\alpha}) = \hat{\sigma}_{\alpha}(\tilde{s}_{l,\alpha}) = \hat{\sigma}_{\alpha}(Q_{\alpha}^{l-1}(\tilde{s}_{\alpha}))$. So, by (2.3) and (2.4),

$$\hat{\sigma}_{\alpha}((\tilde{s}_{l})_{\alpha}) = \min\{t \geq 1 \mid Q_{\alpha}^{l-1}(\tilde{s}_{\alpha}) \in \mathcal{K}_{\alpha}^{t}\}
= \min\{t \geq 1 \mid \tilde{s}_{\alpha} \in \mathcal{K}_{\alpha}^{t+l-1}\}
= \max\{\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}) - (l-1), 1\},$$

and it is non-increasing in $\alpha \in [0, 1]$ since $\tilde{s} \in \hat{\mathcal{F}}$. Therefore we obtain (ii). q.e.d.

Theorem 2.2. Let $\tilde{s} \in \hat{\mathcal{F}}$. Then, $\hat{\sigma}$ is a Markov FST with \tilde{s} .

Proof. Let $\{\tilde{s}_t\}_{t=1}^{\infty}$ be defined by (1.4) with $\tilde{s}_1 = \tilde{s}$. First, we prove

$$\hat{\sigma}(\tilde{s}, t+r) = \hat{\sigma}(\tilde{s}, t) \wedge \hat{\sigma}(\tilde{s}_{t+1}, r) \quad \text{for } t, r \in \mathbf{N}.$$
 (2.8)

Note that $\hat{\sigma}(\tilde{s}_{t+1}, r)$ is well-defined from Lemma 2.1(ii). Let $\alpha = \hat{\sigma}(\tilde{s}, t+r)$. From Lemma 2.1(i), we have

$$\tilde{s}_{\alpha+\epsilon} \in \mathcal{K}_{\alpha+\epsilon}^{t+r}$$
 and $\tilde{s}_{\alpha-\epsilon} \notin \mathcal{K}_{\alpha-\epsilon}^{t+r}$ for any $\epsilon > 0$.

Noting $Q_{\alpha}^{t}(\mathcal{K}_{\alpha}^{l}) = \mathcal{K}_{\alpha}^{l-t}$ $(1 \leq t < l)$ and Lemma 1.2(ii), we obtain

$$\tilde{s}_{t+1,\alpha+\epsilon} = Q_{\alpha+\epsilon}^t(\tilde{s}_{\alpha+\epsilon}) \in Q_{\alpha+\epsilon}^t(\mathcal{K}_{\alpha+\epsilon}^{t+r}) = \mathcal{K}_{\alpha+\epsilon}^r \tag{2.9}$$

and

$$\tilde{s}_{t+1,\alpha-\epsilon} = Q_{\alpha-\epsilon}^t(\tilde{s}_{\alpha-\epsilon}) \notin Q_{\alpha-\epsilon}^t(\mathcal{K}_{\alpha-\epsilon}^{t+r}) = \mathcal{K}_{\alpha-\epsilon}^r. \tag{2.10}$$

Therefore, we get $\hat{\sigma}(\tilde{s}_{t+1}, r) = \alpha$ from Lemma 2.1(i). Namely, $\hat{\sigma}(\tilde{s}, t+r) = \hat{\sigma}(\tilde{s}_{t+1}, r)$. Since $\hat{\sigma}(\tilde{s}, t+r) \leq \hat{\sigma}(\tilde{s}, t)$ from Theorem 2.1(ii), we obtain $\hat{\sigma}(\tilde{s}, t) \wedge \hat{\sigma}(\tilde{s}_{t+1}, r) = \alpha$, and so (2.8) holds.

Next, we put $\delta(\tilde{s}) = \hat{\sigma}(\tilde{s}, 1)$ for $\tilde{s} \in \hat{\mathcal{F}}$. From (2.8), we get

$$\begin{array}{ll} \hat{\sigma}(\tilde{s},t) & = & \hat{\sigma}(\tilde{s},1) \wedge \hat{\sigma}(\tilde{s}_{2},t-1) \\ & = & \hat{\sigma}(\tilde{s},1) \wedge \hat{\sigma}(\tilde{s}_{2},1) \wedge \hat{\sigma}(\tilde{s}_{3},t-2) \\ & = & \cdots \\ & = & \bigwedge_{l=1}^{t} \hat{\sigma}(\tilde{s}_{l},1) \\ & = & \bigwedge_{l=1}^{t} \delta(\tilde{s}_{l}) \\ & = & \delta(\tilde{s}_{t}) \quad \text{for } t \in \mathbb{N}. \end{array}$$

Since we also have $\delta(Q(\tilde{s})) \leq \delta(\tilde{s})$ from Theorem 2.1(ii), $\hat{\sigma}$ is a Markov FST with \tilde{s} . q.e.d.

3 Applications to fuzzy stopping problem

In this section, applying the results in the previous section, we obtain the optimal FST for a fuzzy dynamic system with fussy rewards([10]) when the weighting function is additive.

Firstly, we will formulate the stopping problem to be considered here. Let $\tilde{r}: S \times \mathbf{R} \mapsto [0,1]$ be a fuzzy relation satisfying $\tilde{r} \in \mathcal{F}(S \times \mathbf{R})$. If the system is in a fuzzy state $\tilde{s} \in \mathcal{F}$, the following fuzzy reward is earned:

$$R(\tilde{s})(z) := \sup_{x \in S} \{ \tilde{s}(x) \lor \tilde{r}(x,z) \}, \quad z \in \mathbf{R}.$$

Then we can define a sequence of fuzzy rewards $\{R(\tilde{s}_t)\}_{t=1}^{\infty}$, where $\{\tilde{s}_t\}_{t=1}^{\infty}$ is defined in (1.4) with the initial fuzzy state $\tilde{s}_1 = \tilde{s}$. Let

$$\varphi(\tilde{s},t) := \sum_{l=1}^{t-1} R(\tilde{s}_l) \quad \text{for } t \in \mathbf{N}.$$
(3.1)

We need the following lemma, which is proved in [9].

Lemma 3.1 ([9, 10]). For $t \in \mathbb{N}$ and $\alpha \geq 0$,

$$\varphi(\tilde{s},t)_{\alpha} = \sum_{l=1}^{t-1} R_{\alpha}(\tilde{s}_{l,\alpha})$$

holds, where

$$R_{\alpha}(\tilde{s}_{l,\alpha}) := \begin{cases} \{z \in \mathbf{R} \mid \tilde{r}(x,z) \ge \alpha \text{ for some } z \in \tilde{s}_{l,\alpha}\} & \text{for } \alpha > 0 \\ cl\{z \in \mathbf{R} \mid \tilde{r}(x,z) > 0 \text{ for some } z \in \tilde{s}_{l,\alpha}\} & \text{for } \alpha = 0. \end{cases}$$
(3.2)

Let $g: C(\mathbf{R}) \mapsto \mathbf{R}$ be any additive map with $g(\phi) = 0$, that is,

$$q(c' + c'') = q(c') + q(c'')$$
 for $c', c'' \in C(S)$.

Adapting this g for a weighting function (see [4]), when an FST $\hat{\sigma} \in \Sigma(\hat{\mathcal{F}})$ and an initial fuzzy state $\tilde{s} \in \hat{\mathcal{F}}$ are used, the scalarization of the total fuzzy reward is given by

$$G(\tilde{s}, \hat{\sigma}) = \int_{0}^{1} g\left(\varphi(\tilde{s}, \hat{\sigma}_{\alpha})_{\alpha}\right) d\alpha$$

$$= \int_{0}^{1} g\left(\sum_{t=1}^{\hat{\sigma}_{\alpha}-1} R_{\alpha}(\tilde{s}_{t,\alpha})\right) d\alpha,$$
(3.3)

where $\sum_{t=1}^{0} R_{\alpha}(\tilde{s}_{t,\alpha}) = \phi$ and $\hat{\sigma}_{\alpha}$ means $\hat{\sigma}(\tilde{s},\cdot)_{\alpha} = \min\{t \in \mathbb{N} \mid \hat{\sigma}(\tilde{s},t) < \alpha\}$ for simplicity. Since $\varphi(\tilde{s},\hat{\sigma}_{\alpha}) \in C(\mathbb{R})$ and the map $\alpha \mapsto g(\varphi(\tilde{s},\hat{\sigma}_{\alpha})_{\alpha})$ is left-continuous in $\alpha \in (0,1]$, therefore the right-hand integral of (3.3) is well-defined. For a given $\mathcal{F}' \subset \mathcal{F}$, our objective is to maximize (3.3) over all FSTs $\hat{\sigma} \in \Sigma(\mathcal{F}')$ for each initial fuzzy state $\tilde{s} \in \mathcal{F}'$.

Definition 3. An FST $\hat{\sigma}^*$ with $\tilde{s} \in \mathcal{F}'$ is called an \tilde{s} -optimal if

$$G(\tilde{s}, \hat{\sigma}) \leq G(\tilde{s}, \hat{\sigma}^*)$$
 for all $\hat{\sigma} \in \Sigma(\mathcal{F}')$.

If $\hat{\sigma}^*$ is \tilde{s} -optimal for all $\tilde{s} \in \mathcal{F}'$, $\hat{\sigma}^*$ is called *optimal* in \mathcal{F}' .

Now we will seek a \tilde{s} -optimal or an optimal FST by using the results in the previous sections. For each $\alpha \in [0, 1]$, let

$$\mathcal{K}_{\alpha}(g) := \{ c \in C(S) \mid g(R_{\alpha}(c)) \le 0 \}. \tag{3.4}$$

Here we need the following Assumptions B1 and B2, which are assumed to hold henceforth.

Assumption B1 (Closedness).

$$Q_{\alpha}(\mathcal{K}_{\alpha}(g)) \subset \mathcal{K}_{\alpha}(g)$$
 for all $\alpha \in [0, 1]$

Now we define the sequence $\{\mathcal{K}_{\alpha}^{t}(g)\}_{t=1}^{\infty}$ by (2.2)-(2.3), that is,

$$\mathcal{K}_{\alpha}^{t}(g) = Q_{\alpha}^{-(t-1)}(\mathcal{K}_{\alpha}(g)) \quad \text{for } t \ge 1.$$
(3.5)

Assumption B2. For all $\alpha \in [0, 1]$, it holds that

$$C(S) = \bigcup_{t=1}^{\infty} \mathcal{K}_{\alpha}^{t}(g).$$

Using the sequence $\{\mathcal{K}_{\alpha}^{t}(g)\}_{t=1}^{\infty}$ given in (3.5), we define $\hat{\sigma}_{\alpha}$, $\hat{\mathcal{F}}$, $\hat{\sigma}$ and $\hat{\sigma}(\tilde{s}, \cdot)_{\alpha}$, respectively, by (2.4), (2.5), (2.6) and (2.7). Then, from Theorems 2.1 and 2.2, $\hat{\sigma}$ is a Markov FST on $\hat{\mathcal{F}}$.

The following theorem will be proved by applying the idea of the one-step look ahead(OLA) policy([3, 8, 14]) for stochastic stopping problems.

Theorem 3.1. Under Assumptions B1 and B2, $\hat{\sigma}$ is optimal in $\hat{\mathcal{F}}$.

Proof. Firstly, condsider the deterministic stopping problem which maximizes $g(\varphi(\tilde{s},t)_{\alpha})$ over $t \geq 1$. As g is additive, $g(\varphi(\tilde{s},t)_{\alpha}) = \sum_{l=1}^{t-1} g\left(R_{\alpha}(\tilde{s}_{l,\alpha})\right)$. Therefore $g(\varphi(\tilde{s},t)_{\alpha}) \geq g(\varphi(\tilde{s},t+1)_{\alpha})$ if and only if $\tilde{s}_{t,\alpha} \in K_{\alpha}(g)$. By the assumption B1, $\tilde{s}_{t,\alpha} \in K_{\alpha}(g)$ implies $g(\varphi(\tilde{s},t)_{\alpha}) \geq g(\varphi(\tilde{s},l)_{\alpha})$ for all $l \geq t$. Thus, since $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}) = \hat{\sigma}(\tilde{s}, \cdot)_{\alpha}$ by Theorem 2.1, we can show

$$g\left(\varphi(\tilde{s},\hat{\sigma}(\tilde{s},\cdot)_{\alpha})\right)\geq g\left(\varphi(\tilde{s},\tilde{\sigma}(\tilde{s},\cdot)_{\alpha})\right)$$

for all $\tilde{\sigma} \in \Sigma(\mathcal{F}')$ and $\alpha \in [0,1]$. This implies that $G(\tilde{s}, \hat{\sigma}) \geq G(\tilde{s}, \tilde{\sigma})$ for all $\tilde{\sigma} \in \Sigma(\mathcal{F}')$ by using (3.3). This complete the proof. q.e.d.

4 A numerical example

An example is given to illustrate the previous results of fuzzy stopping problem in this section. Let S := [0,1]. The fuzzy relations \tilde{q} and \tilde{r} are given by

$$\tilde{q}(x,y) = \begin{cases} 1 & \text{if } y = \beta x \\ 0 & \text{otherwise} \end{cases}$$

and

$$\tilde{r}(x,z) = \left\{ egin{array}{ll} 1 & & ext{if } z = x - \lambda \ 0 & & ext{otherwise,} \end{array}
ight.$$

where $\lambda > 0$ is an observation cost and $0 < \beta < 1$ for $x, y, z \in [0, 1]$ and $z \in \mathbf{R}$. Then, Q_{α} and R_{α} defined by (1.5) and (3.2) are independent of α and are calculated as follows:

$$Q_{\alpha}([a,b]) = \beta[a,b]$$
 and $R_{\alpha}([a,b]) = [a-\lambda,b-\lambda]$

for $0 \le a \le b \le 1$.

Let g([a,b]) := (a+2b)/3 for $0 \le a \le b \le 1$, which is additive. Then, $\mathcal{K}_{\alpha}(g)$ is given as

$$\mathcal{K}_{\alpha}(g) = \{ [a, b] \in C(S) \mid a + 2b \le 0 \},\$$

So $\mathcal{K}_{\alpha}^{t}(g) = Q_{\alpha}^{-(t-1)}(\mathcal{K}_{\alpha}(g)) = \{[a,b] \in C(S) \mid a+2b \leq 3\lambda\beta^{1-t}\}$. Since $\mathcal{K}_{\alpha}^{t}(g)$ is independent of α , we see that $Q_{\alpha}(\mathcal{K}_{\alpha}(g)) = \{\beta[a,b] \mid [a,b] \in \mathcal{K}_{\alpha}(g)\} \subset \mathcal{K}_{\alpha}(g)$ and $\bigcup_{t=1}^{\infty} \mathcal{K}^{t}(g) = C(S)$. Thus Assumptions B1 and B2 in Section 3 are satisfied in this example.

Let the initial fuzzy state be

$$\tilde{s}(x) := (1 - |8x - 4|) \lor 0 \text{ for } x \in [0, 1].$$

For the stopping time $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha})$ given in (2.4), we easily obtain that $\tilde{s}_{\alpha} = [(3+\alpha)/8, (5-\alpha)/8]$ and $\hat{\sigma}_{\alpha}(\tilde{s}_{\alpha}) = \min\{t \geq 1 \mid 13 - \alpha \leq 24\lambda\beta^{1-t}\}$. Thus, as $\hat{\sigma}_{\alpha}(\hat{s}_{\alpha})$ is non-increasing in $\alpha \in [0, 1]$, we have $\tilde{s} \in \hat{\mathcal{F}}$.

Since
$$\hat{\sigma}_{\alpha}(\hat{\tilde{s}}_{\alpha}) \in \mathcal{K}^{t}(g)$$
 means $13 - \alpha \leq 24\lambda\beta^{1-t}$, then
$$\hat{\sigma}(\tilde{s},t) = 1 \wedge ((13 - 24\lambda)\beta^{1-t} \vee 0).$$

The numerical value of $\hat{\sigma}$ is given in Table 1.

Table 1. An \tilde{s} -optimal FST ($\lambda = 0.48, \beta = 0.98$).											
\overline{t}	1	2	3	4	5	6	7	8			
$\hat{\sigma}(ilde{s},t)$	1	1	1	.7603	.5108	.2552	.00	.00	• • •		

References

- [1] R.E.Bellman and L.A.Zadeh, Decision-making in a fuzzy environment, *Management Sci. Ser B.* 17 (1970) 141-164.
- [2] Chen-wei Xu, On convexity of fuzzy sets and fuzzy relations, Information Science 59 (1992) 92-102.
- [3] Y.S.Chow, H.Robbins and D.Siegmund, The theory of optimal stopping: Great expectations, Houghton Mifflin Company, New York, 1971.
- [4] P.Fortemps and M.Roubens, Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems 82 (1996) 319-330.
- [5] J.Kacprzyk, Control of a non-fuzzy system in a fuzzy environment with fuzzy termination time, System Sciences 3 (1977) 325-341.
- [6] J.Kacprzyk, Decision making in a fuzzy environment with fuzzy termination time, Fuzzy Sets and Systems 1 (1978) 169-179.
- [7] J.Kacprzyk and A.O.Esogbue, Fuzzy dynamic programming: Main developments and applications, Fuzzy Sets and Systems 81 (1996) 31-48.
- [8] Y.Kadota, M.Kurano and M.Yasuda, Utility-Optimal Stopping in a Denumerable Markov Chain, Bull. Infor. Cyber. Res. Ass. Stat. Sci., Kyushu University 28 (1996) 15-21.
- [9] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, A limit theorem in some dynamic fuzzy systems, Fuzzy Sets and Systems 51 (1992) 83-88.
- [10] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, Markov-type fuzzy decision processes with a discounted reward on a closed interval, European Journal of Operational Research 92 (1996) 649-662.
- [11] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, An approach to stopping problems of a dynamic fuzzy system, preprint.
- [12] V.Novák, Fuzzy Sets and Their Applications (Adam Hilder, Bristol-Boston, 1989).
- [13] M.L.Puri and D.A.Ralescu, The concept of normality for fuzzy random variables, Ann. Prob. 13 (1985) 1373-1379.
- [14] S.M.Ross, Applied Probability Models with Optimization Applications, Holden-Day, 1970.
- [15] Y.Yoshida, Markov chains with a transition possibility measure and fuzzy dynamic programming, Fuzzy Sets and Systems 66 (1994) 39-57.
- [16] L.A.Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338-353.