

Tryoto oniversity research into matter repository	
Title	CONSTRUCTING LOW-DISCREPANCY SEQUENCES BY USING \$ beta\$-ADIC TRANSFORMATIONS
Author(s)	NINOMIYA, SYOITI
Citation	数理解析研究所講究録 (1997), 1011: 64-76
Issue Date	1997-08
URL	http://hdl.handle.net/2433/61526
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

CONSTRUCTING LOW-DISCREPANCY SEQUENCES BY USING β -ADIC TRANSFORMATIONS

SYOITI NINOMIYA

IBM Research, Tokyo Research Laboratory

Abstract. A new class of low-discrepancy sequences is constructed by the use of β -adic transformations. Here, β is a real number greater than 1. When β is an integer greater than 2, this sequence becomes the generalized van der Corput sequence in base β . It is also shown that for some special β , the discrepancy of this sequence decreases in the fastest order.

0. Introduction and background

First, we recall the notions of a uniformly distributed sequence and the discrepancy of points ([Niederreiter 1]). A sequence x_1, x_2, \ldots in the s-dimensional unit cube $I^s = \prod_{i=1}^s [0,1)$ is said to be uniformly distributed in I^s when

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} c_J(x_n) = \lambda_s(J)$$

holds for all subintervals $J \in I^s$, where c_J is the characteristic function of J, and λ_s is the s-dimensional Lebesgue measure. If $x_1, x_2, \dots \in I^s$ is a uniformly distributed sequence, the formula

(0.1)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) = \int_{I^s} f(x) \, dx$$

holds for any Riemann integrable function on I^s . The discrepancy of the point set $P = \{x_1, x_2, \dots, x_N\}$ in I^s is defined as follows:

(0.2)
$$D_N(\mathcal{B}; P) = \sup_{B \in \mathcal{B}} \left| \frac{A(B; P)}{N} - \lambda_s(B) \right|$$

where $\mathcal{B} \subset \wp(I^s)$ is a non-empty family of Lebesgue measurable subsets and A(B; P) is the counting function that indicates the number of n, where $1 \leq n \leq N$, for which $x_n \in B$. When $\mathcal{J}^* = \{\prod_{i=1}^s [0, u_i), 0 \leq u_i < 1\}$, the star discrepancy $D_N^*(P)$ is defined by $D_N^*(P) = D_N(J^*; P)$. When $S = \{x_1, x_2, \ldots\}$ is a sequence in I^s , we

Key words and phrases. β -adic transformation, discrepancy, ergodic theory, numerical integration, van der Corput sequence.

define $D_N^*(S)$ as $D_N^*(S_N)$, where S_N is the point set $\{x_1, x_2, \ldots, x_N\}$. Let S be a sequence in I^s . It is known that the following two conditions are equivalent:

- (a) S is uniformly distributed in I^s ;
- (b) $\lim_{N\to\infty} D_N^*(S) = 0$.

The following classical theorem shows the importance of the notion of discrepancy.

Theorem 0.1 (Koksma-Hlawka)[1]. If f has bounded variation V(f) on \bar{I}^s in the sense of Hardy and Krause, then for any $x_1, x_2, \ldots, x_N \in I^s$, we have

$$\left|\frac{1}{N}\sum_{n=1}^{M}f(x_n)-\int_{I^s}f(x)\,dx\right|\leq V(f)D_N^*(x_1,\ldots,x_N).$$

Schmidt [4] showed that, when s = 1, 2, there exists a positive constant C that depends only on s, and the following inequality holds for an arbitrary point set P consisting of N elements:

$$(0.3) D_N^*(P) \ge C \frac{(\log N)^{s-1}}{N}.$$

If (0.3) holds, then there exists a positive constant C that depends only on s, and any sequence $S \subset I^s$ satisfies

$$(0.4) D_N^*(S) \ge C \frac{(\log N)^s}{N}$$

for infinitely many N. Taking account of (0.3) and (0.4), we define a low-discrepancy sequence for the one-dimensional case as follows:

Definition 0.1. Let S be an one-dimensional sequence in [0,1). If S satisfies

$$\overline{\lim}_{N \to \infty} \frac{ND_N^*(S)}{\log N} = C \text{ (const)},$$

then S is called a low-discrepancy sequence.

Hereafter we consider only the case where s=1. We now introduce the classical van der Corput sequence [1].

Definition 0.2. Let $p \geq 2$ be an integer. Every integer $n \geq 0$ has a unique digit expansion

$$n=\sum_{j=0}^{\infty}a_j(n)p^j, \qquad a_j(n)\in\{0,1,\ldots,p-1\} ext{ for all } j\geq 0,$$

in base p. Then, the radical-inverse function ϕ_p is defined by

$$\phi_p(n) = \sum_{j=0}^{\infty} \tau_j(a_j(n)) p^{-j-1}$$
 for all integers $n \ge 0$,

where τ_j is a permutation of $\{0, 1, \ldots, p-1\}$. The van der Corput sequence in base p is the sequence $V_p = \{\phi_p(n)\}_{n=0}^{\infty} \subset [0, 1)$.

Theorem 0.2 [1]. For an arbitrary integer $p \geq 2$, V_p is a low-discrepancy sequence.

In the following part of this paper, the author defines a class of sequences by the use of β -adic transformation ([Rény 3], [Parry 2]) and shows that any member of this class is a low-discrepancy sequence when $\beta = (L + \sqrt{L^2 + 4K})/2$, where L and K are integers greater than 1 and satisfy $K \leq L$. When β is an integer greater than 2, the sequence becomes V_{β} .

1. β -adic transformation

In this section we define the fibred system and the β -adic transformation, following [Schweiger 5] and [Takahashi 6].

 \mathbf{R} , \mathbf{Z} , and \mathbf{N} are the sets of all real numbers, all integers, and all natural numbers, respectively. For $x \in \mathbf{R}$, [x] denotes the integer part of x.

Definition 1.1. Let B be a set and $T: B \to B$ be a map. The pair (B,T) is called a fibred system if the following conditions are satisfied:

- (a) There is a finite countable set A.
- (b) There is a map $k: B \to A$, and the sets

$$B(i) = k^{-1}(\{i\}) = \{x \in B : k(x) = i\}$$

form a partition of B.

(c) For an arbitrary $i \in A$, $T|_{B(i)}$ is injective.

Definition 1.2. Let $\Omega = A^{\mathbf{N}}$ and $\sigma : \Omega \to \Omega$ be the one-sided shift operator. Let $k_j(x) = k(T^{j-1}x)$. We derive a canonical map $\varphi : B \to \Omega$ from

$$\varphi(x) = (k_j(x))_{n=1}^{\infty}.$$

 φ is called the representation map.

We have the following commutative diagram:

$$\begin{array}{ccc}
B & \xrightarrow{T} & B \\
\varphi \downarrow & & \downarrow \varphi \\
\Omega & \xrightarrow{\sigma} & \Omega
\end{array}$$

Definition 1.3. If a representation map φ is injective, φ is called a valid representation.

Definition 1.4. Let $\omega \in \Omega$. If $\omega \in \text{Im}(\varphi)$, ω is called an admissible sequence.

Definition 1.5. The cylinder of rank n defined by $a_1, a_2, \ldots, a_n \in A$ is the set

$$B(a_1, a_2, \ldots, a_n) = B(a_1) \cap T^{-1}B(a_2) \cap \cdots \cap T^{-n+1}B(a_n).$$

We define B to be a cylinder of rank 0.

Definition 1.6. Let $\beta > 1$ and $\beta \in \mathbf{R}$. Let $f_{\beta} : [0,1) \to [0,1)$ be a function defined by

$$f_{\beta}(x) = \beta x - [\beta x].$$

Let $A = \mathbf{Z} \cap [0, \beta)$. Then, we have the following fibred system $([0, 1), f_{\beta})$:

$$\begin{array}{ccc}
[0,1) & \xrightarrow{f_{\beta}} & [0,1) \\
\varphi \downarrow & & \downarrow \varphi \\
\Omega & \xrightarrow{\sigma} & \Omega
\end{array}$$

The representation map φ of this fibred system is defined by

$$x = \sum_{n=0}^{\infty} \frac{a_n}{\beta^{n+1}} \Longleftrightarrow \varphi(x) = (a_0, a_1, \dots, a_n, \dots) \in \Omega.$$

This fibred system $([0,1), f_{\beta})$ is called a β -adic transformation. In this situation, we define $\zeta_{\beta} \in \Omega$ by

(1.2)
$$\zeta_{\beta} = \lim_{x \nearrow 1} \varphi(x).$$

We also define $X_{\beta} \subset \Omega$ to be the set of all admissible sequences.

For a sequence $a \in \Omega$, we write the *i*-th element of a as a(i), that is, $a = (a(1), a(2), \ldots)$. We remark that φ is not a valid representation at this point, because $(a_1, a_2, \ldots, a_n, 0, 0, \ldots)$ and $(a_1, a_2, \ldots, a_n - 1, \zeta_{\beta}(1), \zeta_{\beta}(2), \ldots)$ are two different representations of the same $x = \sum_{i=1}^{n} a_i \beta^{-i}$. In this paper we adopt the former representation and make φ valid. We derive the following propositions directly from this definition.

Proposition 1.1.

$$X_{\beta} = \{ \omega \in \Omega \mid \forall n \in \mathbf{Z}_{\geq 0} \quad \sigma^n \omega \prec \zeta_{\beta} \},$$

where $\omega \prec \psi$ means that ω precedes ψ in lexicographical order.

Proposition 1.2. For an arbitrary $i \in A$,

$$B(i) = egin{cases} [rac{i}{eta}, rac{i+1}{eta}), & 0 \leq i < [eta] \ [rac{[eta]}{eta}, 1), & otherwise \end{cases}$$

holds.

Let $\rho_{\beta}(x) = \sum_{n=0}^{\infty} a_n \beta^{-n-1}$; then, we have

$$\rho_{\beta}(X_{\beta}) = [0, 1]$$

and the following commutative diagram:

2. Constructing the sequence

In this section, a sequence $N_{\beta} \subset [0,1)$ is defined by the use of β -adic transformation. Let $\beta \in \mathbb{R}_{>1}$ and let $([0,1), f_{\beta})$ be a fibred system (1.3). Let B = [0,1), and $A, \Omega, (X_{\beta}, \sigma), \rho_{\beta}, \varphi, \zeta_{\beta}, B(a_1, \ldots, a_n)$ be the same as in the previous section.

Definition 2.1. For an arbitrary $n \in \mathbb{Z}_{\geq 0}$, $X_{\beta}(n), Y_{\beta}(n) \subset X_{\beta}$, $F_{\beta}(n) \in \mathbb{Z}$, and $G_{\beta}(n) \in \mathbb{Z}$ are defined as follows:

$$X_{\beta}(n) = \begin{cases} \{(0,0,\dots)\}, & n = 0 \\ \{\omega \in X_{\beta} \mid \sigma^{n-1}\omega \neq (0,0,\dots) \text{ and } \sigma^{n}\omega = (0,0,\dots)\}, & n \neq 0 \end{cases}$$

$$Y_{\beta}(n) = \bigcup_{i=0}^{n} X_{\beta}(i)$$

$$F_{\beta}(n) = \sharp X_{\beta}(n)$$

$$G_{\beta}(n) = \sum_{i=0}^{n} F_{\beta}(i) = \sharp Y_{\beta}(n)$$

It is apparent that

$$F_{\beta}(n) \le ([\beta] + 1)^{n-1}.$$

Definition 2.2. For an arbitrary $n \in \mathbb{N}$, define $l_n \in \mathbb{N}$ to satisfy $G_{\beta}(l_n) < n \le G_{\beta}(l_n+1)$. Define $\tau_n: X_{\beta}(n) \to \bigoplus_{i=1}^n A$ by $\tau_n((k_1,\ldots,k_n)) = (k_n,\ldots,k_1)$. Induce the right-to-left lexicographical or reverse right-to-left lexicographical order to $X_{\beta}(l_n+1) = \{\omega_1,\omega_2,\ldots,\omega_{F_{\beta}(l_n+1)}\}$; that is to say, for all i < j, $\tau_n(\omega_i) \prec \tau_n(\omega_j)$ or $\tau_n(\omega_j) \prec \tau_n(\omega_i)$ holds, respectively. In this situation, the sequence N_{β} is defined as follows:

$$N_{\beta} = \{ \rho_{\beta}(\omega_{n-l_n}) \}_{n=1}^{\infty}$$

In this paper, we assume that the elements of $X_{\beta}(l_n+1)$ are arranged in right-to-left lexicographical order.

From this definition, we immediately have the following proposition:

Proposition 2.1. If $\beta \in \mathbb{Z}_{\geq 2}$ then N_{β} is V_{β} .

From this proposition, we see that, if $\beta \in \mathbf{Z}_{\geq 2}$, N_{β} is a low-discrepancy sequence. We also have the following theorem:

Theorem 2.1. Let $L, K \in \mathbb{N}$ and $K \leq L$. If $\beta = (L + \sqrt{L^2 + 4K})/2$, then N_{β} is a low-discrepancy sequence.

To prove this theorem, we provide several lemmas, propositions, and definitions. We use the following notation for periodic sequences:

$$(a_1, a_2, \dots, \dot{a}_n, \dots \dot{a}_{n+m})$$

= $(a_1, a_2, \dots, a_n, a_{n+1}, \dots, a_{n+m}, a_n, a_{n+1}, \dots, a_{n+m}, \dots)$

Let $\beta \in \mathbb{R}_{>1}$.

Lemma 2.1. If $\zeta_{\beta} = (a_1, a_2, \dots, (a_m - 1))$, then $\{F_{\beta}(n)\}_{n=1}^{\infty}$ and $\{G_{\beta}(n)\}_{n=1}^{\infty}$ satisfy the following linear recurrent equations:

(2.1.F)
$$F_{\beta}(n+m) - \sum_{i=1}^{m} a_{i} F_{\beta}(n+m-i) = 0 \quad \text{for all } n \ge 1-m, \ n \ne 0$$
$$F_{\beta}(m) - \sum_{i=1}^{m} a_{i} F_{\beta}(m-i) + 1 = 0$$

(2.1.G)
$$G_{\beta}(n+m) - \sum_{i=1}^{m} a_i G_{\beta}(n+m-i) = 0 \text{ for all } n > 0.$$

Here we extend the definition of $F_{\beta}(n)$ to $F_{\beta}(-n) = 0 \quad (n > 0)$.

Proof. It is apparent from the definition of β -adic transformation that

(2.2.a)
$$a_1 = \begin{cases} [\beta], & \beta \notin \mathbf{Z} \\ \beta - 1, & \beta \in \mathbf{Z} \end{cases}$$

and

(2.2.b)
$$a_1 \ge \begin{cases} a_j, & j = 1, \dots, m-1 \\ a_m - 1, \end{cases}$$

hold. From Proposition 1.1, we have

$$X_{\beta}(n+m) = \{(x,\omega_{1}) \mid x \in \{0,\dots,a_{1}-1\}, \quad \omega_{1} \in X_{\beta}(n+m-1)\}$$

$$\cup \{(a_{1},x,\omega_{2}) \mid x \in \{0,\dots,a_{2}-1\}, \quad \omega_{2} \in X_{\beta}(n+m-2)\}$$

$$\vdots$$

$$\cup \{(a_{1},\dots,a_{m-1},x,\omega_{m}) \mid x \in \{0,\dots,a_{m}-1\}, \quad \omega_{m} \in X_{\beta}(n)\}$$

for all $n \geq 1$, and

$$X_{\beta}(0) = \{(\dot{0})\}\$$

$$X_{\beta}(1) = \{(x, \dot{0}) \mid x \in \{1, \dots, a_1\}\}\$$

$$X_{\beta}(2) = \{(x, \omega_1) \mid x \in \{0, \dots, a_1 - 1\}, \quad \omega_1 \in X_{\beta}(1)\}\$$

$$\cup \{(a_1, x, \dot{0}) \mid x \in \{1, \dots, a_2\}\}\$$

:

$$X_{\beta}(m-1) = \{(x, \omega_{m-2}) \mid x \in \{0, \dots, a_1 - 1\}, \quad \omega_{m-2} \in X_{\beta}(m-2)\}$$

$$\cup \{(a_1, x, \omega_{m-3}) \mid x \in \{0, \dots, a_2 - 1\}, \quad \omega_{m-3} \in X_{\beta}(m-3)\}$$

$$\bigcup \{(a_1, \dots, a_{m-2}, x, 0) \mid x \in \{1, \dots, a_{m-1}\}\}
X_{\beta}(m) = \{(x, \omega_{m-1}) \mid x \in \{0, \dots, a_1 - 1\}, \quad \omega_{m-1} \in X_{\beta}(m-1)\}
\cup \{(a_1, x, \omega_{m-2}) \mid x \in \{0, \dots, a_2 - 1\}, \quad \omega_{m-2} \in X_{\beta}(m-2)\}
.$$

 $\cup \{(a_1, \ldots, a_{m-1}, x, 0) \mid x \in \{1, \ldots, a_m - 1\}\}.$

In the above expressions, we set $\{0, \ldots, a_i - 1\} = \emptyset$ when $a_i = 0$. Remark $a_1, a_m \ge 1$. Then (2.1.F) holds. From Definition 2.1, (2.1.F), and

$$F_{\beta}(m) + F_{\beta}(0) = \sum_{i=1}^{m} a_i F_{\beta}(m-i),$$

we have

$$G_{\beta}(n+m) = F_{\beta}(n+m) + F_{\beta}(n+m-1) + \dots + F_{\beta}(0)$$

$$= a_{1}F_{\beta}(n+m-1) + a_{2}F_{\beta}(n+m-2) + \dots + a_{m}F_{\beta}(n)$$

$$+ a_{1}F_{\beta}(n+m-2) + a_{2}F_{\beta}(n+m-3) + \dots + a_{m}F_{\beta}(n-1)$$

$$+ \vdots$$

$$+ a_{1}F_{\beta}(m) + a_{2}F_{\beta}(m-1) + \dots + a_{m}F_{\beta}(1)$$

$$+ a_{1}F_{\beta}(m-1) + a_{2}F_{\beta}(m-2) + \dots + a_{m-1}F_{\beta}(0)$$

$$+ a_{1}F_{\beta}(m-2) + a_{2}F_{\beta}(m-3) + \dots + a_{m-2}F_{\beta}(0)$$

$$+ \vdots$$

$$+ a_{1}F_{\beta}(0)$$

$$= a_{1}G_{\beta}(n+m-1) + a_{2}G_{\beta}(n+m-2) + \dots + a_{m}G_{\beta}(n).$$

Thus (2.1.G) holds.

Definition 2.3. For $(k_1, k_2, \ldots, k_n) \in X_{\beta}(n)$, define

$$d(k_1, k_2, \dots, k_n) = \min\{\max\{0, n - m\} \le d \le n \mid 1 \in \overline{B(\sigma^d(k_1, \dots, k_n))}\}.$$

Lemma 2.2. Let $(k_1, ..., k_n) \in Y_{\beta}(n)$. When $(k_1, ..., k_n) \in X_{\beta}(l)$ and l < n, we set $k_{l+1} = \cdots = k_n = 0$. If $\zeta_{\beta} = (\dot{a}_1, a_2, ..., (a_m - 1))$, then

$$\lambda(B(k_1,\ldots,k_n)) = \left\{ egin{array}{ll} rac{1}{eta^d} \sum_{i=n-d+1}^m rac{a_i}{eta^i}, & when & d>n-m \ & rac{1}{eta^n}, & when & d=n-m \end{array}
ight.$$

where $d = d(k_1, \ldots, k_n)$ and λ is a one-dimensional Lebesgue measure.

Proof. From $\zeta_{\beta} = (\dot{a}_1, a_2, \dots, (a_m - 1))$ we have

(2.3.a)
$$1 - \sum_{i=1}^{m} \frac{a_i}{\beta^i} = 0$$

(2.3.b)
$$1 - \sum_{i=1}^{lm} \frac{\zeta_{\beta}(i)}{\beta^i} = \frac{1}{\beta^{ml}},$$

where l is an arbitrary positive integer. If $\beta \in \mathbb{N}_{\geq 2}$, this lemma is trivial. We assume that $\beta \neq \mathbb{N}$. We prove the lemma by induction on n. Consider the case in which n = 1. From the definition of f_{β} , (2.2), and (2.3.a), we have

$$\lambda(B(0)) = \lambda(B(1)) = \cdots = \lambda(B(a_1 - 1)) = \frac{1}{\beta}$$

and

$$\lambda(B(a_1)) = \sum_{i=2}^{m} \frac{a_i}{\beta^i}.$$

This means that the lemma's statement holds when n=1. We show that this statement holds for $(k_1,\ldots,k_n,k_{n+1})\in \bigcup_{i=1}^{n+1}X_{\beta}(i)$ under the induction hypothesis. For any $n\geq 1$ and $J\subset [0,1)$,

(2.4)
$$f_{\beta}(f_{\beta}^{-n}(J)) = f_{\beta}^{-n+1}(J)$$

holds from f_{β} 's surjectivity. Consider the case in which $k_1 = 0, 1, \ldots, a_1 - 1$, that is to say, the case in which $d = d(k_1, \ldots, k_{n+1}) \ge 1$ and $d(k_2, \ldots, k_{n+1}) = d - 1$. In this case, $f_{\beta}(B(k_1)) = [0, 1)$ holds; therefore, considering (2.4), we have

(2.5)
$$f_{\beta}(B(k_1,\ldots,k_{n+1})) = B(k_2,\ldots,k_{n+1})$$

and

(2.6)
$$\lambda(f_{\beta}(J)) = \beta\lambda(J)$$

for an arbitrary $J \subset B(k_1)$. From the induction hypothesis,

$$\lambda(B(k_2,\ldots,k_{n+1})) = \begin{cases} \frac{1}{\beta^{d-1}} \sum_{i=n-d}^{m} \frac{a_i}{\beta^i}, & \text{when } d-1 > n-m \\ \frac{1}{\beta^n}, & \text{when } d-1 = n-m \end{cases}$$

holds. Therefore, from (2.5) and (2.6), this lemma's statement holds. When d=0, the statement follows from (2.3.a) and (2.3.b).

For a sequence S, S[N] denotes the point set consisting of the first N elements of S, and $S[N; M] = S[N + M] \setminus S[N]$.

Lemma 2.3. For an arbitrary $(k_1, \ldots, k_n) \in Y_{\beta}(n)$, we have

$$A(B(k_1, \dots, k_n); N_{\beta}[G_{\beta}(m+d+l)])$$

$$= \begin{cases} \sum_{i=1}^{m-n+d} a_{n-d+i}G_{\beta}(m+d+l-n-i) & \text{when } d > n-m \\ G_{\beta}(l) & \text{when } d = n-m \end{cases}$$

where $d = d(k_1, \ldots, k_n)$ and $l \in \mathbb{Z}_{>0}$.

Proof. When d = n - m holds, it is trivial. Assume that d > n - m. Let $K = (k_1, \ldots, k_n)$. From Proposition 1.1,

$$\{\omega \in \bigcup_{i=0}^{m+d+l} X_{\beta}(i) \mid \rho_{\beta}(\omega) \in B(k_{1}, \dots, k_{n})\}\$$

$$= \{(K, x, \omega_{1}) \mid x \in \{0, \dots, a_{n-d+1} - 1\}, \ \omega_{1} \in Y_{\beta}(m+d+l-n-1)\}\$$

$$\cup \{(K, a_{n-d+1}, x, \omega_{2}) \mid x \in \{0, \dots, a_{n-d+2} - 1\}, \ \omega_{2} \in Y_{\beta}(m+d+l-n-2)\}\$$

$$\vdots$$

$$\cup \{(K, a_{n-d+1}, \dots, a_{m-1}, x, \omega_{m-n+d})\$$

$$\mid x \in \{0, \dots, a_{m} - 1\}, \ \omega_{m-n+d} \in Y_{\beta}(l)\},$$

holds. In the above expressions, we set $\{0,\ldots,a_i-1\}=\emptyset$ when $a_i=0$. Therefore, we have

$$A(B(k_1, ..., k_n); N_{\beta}[G_{\beta}(n+l)])$$

$$= \sum_{i=1}^{m-n+d-1} a_{n-d+i}G_{\beta}(m+d+l-i) + a_mG_{\beta}(n+l)$$

$$= \sum_{i=1}^{m-n+d} a_{n-d+i}G_{\beta}(m+d+l-i).$$

Proof of Theorem 2.1. From the conditions of the theorem,

$$\zeta_{\beta} = (\dot{L}, (K-1))$$

holds. Let $\alpha = (L - \sqrt{L^2 + 4K})/2$. Then we have

(2.8.F)
$$F_{\beta}(n) = \begin{cases} 1, & n = 0\\ \frac{1}{\beta - \alpha} (\beta^{n-1}(\beta^2 - 1) - \alpha^{n-1}(\alpha^2 - 1)), & n \ge 1 \end{cases}$$

(2.8.G)
$$G_{\beta}(n) = \begin{cases} 1, & n = 0\\ \frac{1}{\beta - \alpha} (\beta^n(\beta + 1) - \alpha^n(\alpha + 1)), & n \ge 1 \end{cases}$$

from (2.7) and Lemma 2.1. Define $Z_{\beta}(n)$ and $H_{\beta}(n)$ as follows:

$$Z_{\beta}(n) = \{ \omega \in Y_{\beta}(n) \mid \omega(n) \neq L \}$$

$$H_{\beta}(n) = \sharp Z_{\beta}(n)$$

The following partitionings of $Y_{\beta}(n)$ and $Z_{\beta}(n)$ hold.

(2.9.Y)
$$Y_{\beta}(n+1) = \{(\omega, x) \mid x \in \{0, 1, \dots, K-1\}, \ \omega \in Y_{\beta}(n)\} \cup \{(\omega, x) \mid x \in \{K, K+1, \dots, L\}, \ \omega \in Z_{\beta}(n)\}$$

(2.9.Z)
$$Z_{\beta}(n+1) = \{(\omega, x) \mid x \in \{0, 1, \dots, K-1\}, \ \omega \in Y_{\beta}(n)\}$$
$$\cup \{(\omega, x) \mid x \in \{K, K+1, \dots, L-1\}, \ \omega \in Z_{\beta}(n)\}$$

Then we have

(2.10)
$$H_{\beta}(n+1) = KG_{\beta}(n) + (L-K)H_{\beta}(n) G_{\beta}(n+1) = KG_{\beta}(n) + (L-K-1)H_{\beta}(n).$$

From (2.10) and Lemma 2.1, we have

$$H_{\beta}(n+2) - LH_{\beta}(n+1) - KH_{\beta}(n) = 0, \quad n \ge 1.$$

From the same discussion as in the proof of Lemma 2.3,

(2.11)
$$A(B(k_1, \dots, k_n); \rho_{\beta}(Z_{\beta}(2+d+l))) = \begin{cases} H_{\beta}(l), & d = n-2 \\ KH_{\beta}(l), & d = n-1 \\ H_{\beta}(l+2), & d = n \end{cases}$$
$$d = d(k_1, \dots, k_n)$$

holds for an arbitrary $(k_1, \ldots, k_n) \in Y_{\beta}(n)$. Define

$$\Delta(B; P) = A(B; P) - M\lambda(B),$$

where B is an interval in [0,1) and $P = \{x_1, x_2, \ldots, x_M\} \subset [0,1)$. For any set of points P, S in [0,1), and any interval $B \subset [0,1)$,

$$\Delta(B; P \cup S) = \Delta(B; P) + \Delta(B; S)$$

holds. Considering the order of N_{β} that we gave in Definition 2.2, we have

$$(2.12) N_{\beta}[H_{\beta}(n)] = \rho_{\beta}(Z_{\beta}(n)).$$

From Lemma 2.2, Lemma 2.3, (2.8.G), (2.11) and (2.12), we have

$$\Delta(B(k_1,\ldots,k_n);N_{\beta}[G_{\beta}(2+d+l)])$$

(2.13)
$$= \begin{cases} \frac{\alpha+1}{\beta-\alpha} \left(\left(\frac{\alpha}{\beta} \right)^n - 1 \right) \alpha^l, & d=n-2 \\ \frac{K(\alpha+1)}{\beta-\alpha} \left(\left(\frac{\alpha}{\beta} \right)^{n+1} - 1 \right) \alpha^l, & d=n-1 \end{cases}$$

$$\frac{\alpha+1}{\beta-\alpha} \left(\left(\frac{\alpha}{\beta} \right)^n - 1 \right) \alpha^{l+2}, & d=n \end{cases}$$

and

(2.14)
$$\Delta(B(k_1, \dots, k_n); N_{\beta}[H_{\beta}(2+d+l)])$$

$$= \begin{cases} \frac{1}{\beta - \alpha} \left(\left(\frac{\alpha}{\beta} \right)^n - 1 \right) \alpha^{l+1}, & d = n-2 \end{cases}$$

$$= \begin{cases} \frac{K}{\beta - \alpha} \left(\left(\frac{\alpha}{\beta} \right)^{n+1} - 1 \right) \alpha^{l+1}, & d = n-1 \end{cases}$$

$$\frac{1}{\beta - \alpha} \left(\left(\frac{\alpha}{\beta} \right)^n - 1 \right) \alpha^{l+3}, & d = n \end{cases}$$

where $(k_1, \ldots, k_n) \in Y_{\beta}(n)$, $l \in \mathbb{Z}$ and $d = d(k_1, \ldots, k_n)$. Define the truncating operator $r_k : X_{\beta} \to Y_{\beta}(k)$ as follows:

$$r_k(\omega) = \left\{ egin{array}{ll} \omega, & ext{when} & \omega \in X_eta(j), \ j \leq k \ (\omega(1), \ldots, \omega(k)) & ext{otherwise} \end{array}
ight.$$

For any $i, j \in \mathbb{Z}$ and any cylinder B of rank less than k,

(2.15)
$$A(B; N_{\beta}[i; j]) = A(B; r_{k}(N_{\beta}[i; j]))$$

holds. Let $(k_1, \ldots, k_n) \in Y_{\beta}(n)$, let $d = d(k_1, \ldots, k_n)$, and let M be an arbitrary integer greater than $G_{\beta}(2+d)$. Let l be an integer satisfying

$$G_{\beta}(2+d+l) \leq M < G_{\beta}(2+d+l+1).$$

Applying partitioning (2.9.Y) and (2.9.Z) recursively for $Y_{\beta}(2+d+l+1)$, we obtain the following partitioning of $N_{\beta}[G_{\beta}(2+d+l+1)]$:

$$N_{\beta}[G_{\beta}(2+d+l+1)] = N_{\beta}[G_{\beta}(2+d+l)] \\ \cup N_{\beta}[G_{\beta}(2+d+l); G_{\beta}(2+d+l)] \\ \vdots \\ \cup N_{\beta}[(K-1)G_{\beta}(2+d+l); G_{\beta}(2+d+l)] \\ \cup N_{\beta}[KG_{\beta}(2+d+l); H_{\beta}(2+d+l)] \\ \vdots \\ \cup N_{\beta}[KG_{\beta}(2+d+l) + (L-K-1)H_{\beta}(2+d+l); H_{\beta}(2+d+l)] \\ \cup N_{\beta}[KG_{\beta}(2+d+l) + (L-K)H_{\beta}(2+d+l); G_{\beta}(2+d+l-1)] \\ \vdots \\ \cup N_{\beta}[KG_{\beta}(2+d+l) + (L-K)H_{\beta}(2+d+l) + KG_{\beta}(2+d+l-1)] \\ \vdots \\ \cup N_{\beta}[KG_{\beta}(2+d+l) + (L-K)H_{\beta}(2+d+l) + KG_{\beta}(2+d+l-1)] \\ \cup \vdots$$

Partition $N_{\beta}[M]$ in the same way as (2.16); then, from (2.15), the additivity of Δ ,

(2.9.Y), (2.9.Z), and the order we induced to N_{β} , we have

$$\Delta(B; N_{\beta}[M])
\leq K |\Delta(B; N_{\beta}[G_{\beta}(2+d+l)])| + (L-K) |\Delta(B; N_{\beta}[H_{\beta}(2+d+l)])|
+ K |\Delta(B; N_{\beta}[G_{\beta}(1+d+l)])| + (L-K-1) |\Delta(B; N_{\beta}[H_{\beta}(1+d+l)])|
+ K |\Delta(B; N_{\beta}[G_{\beta}(d+l)])| + (L-K-1) |\Delta(B; N_{\beta}[H_{\beta}(d+l)])|
\vdots$$

$$(2.17) + K |\Delta(B; N_{\beta}[G_{\beta}(2+d+1)])| + (L-K-1) |\Delta(B; N_{\beta}[H_{\beta}(2+d+1)])| + K |\Delta(B; N_{\beta}[G_{\beta}(2+d)])| + (L-K) |\Delta(B; N_{\beta}[H_{\beta}(2+d)])| \leq K \sum_{i=0}^{l} |\Delta(B; N_{\beta}[G_{\beta}(2+d+i)])| + (L-K) \sum_{i=0}^{l} |\Delta(B; N_{\beta}[H_{\beta}(2+d+i)])|$$

where $B = B(k_1, \ldots, k_n)$. From (2.13), (2.14), (2.17) and the fact that $|\alpha| < 1 < |\beta|$, there exists a constant C_1 that satisfies the following inequality (2.18) for any cylinder $B(k_1, \ldots, k_n)$ of any rank n and any integer $M > G_{\beta}(2+d)$.

$$(2.18) |\Delta(B(k_1,\ldots,k_n);N_{\beta}[M])| < C_1$$

Choose an arbitrary $u \in [0,1)$. Let $M \in \mathbb{N}$ and l be an integer that satisfies

$$G_{\beta}(l) \leq M < G_{\beta}(l+1).$$

Let $B(u_1, \ldots, u_l)$ be a cylinder of rank l that satisfies $u \in B(u_1, \ldots, u_l)$. Then we have

(2.19)
$$[0, u) = B_{t_1} \sqcup B_{t_2} \sqcup \cdots \sqcup B_{t_k} \sqcup R$$
$$0 \le t_1 < t_2 < \cdots < t_k = l$$

where B_{t_i} is a cylinder of rank t_i and $\lambda(R) < \beta^{-l}$. From (2.8.G), there exist constants C_2 and C_3 that satisfy $l < C_2 \log M$ and $M\beta^{-l} < C_3$. Then, from (2.18) and (2.19), we have

$$|\Delta([0,u); N_{\beta}[M])| < C_1 C_2 \log M + C_3.$$

The theorem follows from this.

References

- 1. Harald Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1992.
- 2. W. Parry, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hungar 11 (1960), 401-416.
- 3. A. Rény, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477-493.
- 4. W. M. Schmidt, Irregularities of distribution VII, Acta Arith. 21 (1972), 45-50.
- 5. Fritz Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford science publications, 1995.
- 6. Y. Takahashi, Kukanrikigakukei no Kaosu to Shuhkiten, (in Japanese), Tokyo Metropolitan University Seminar Report.

IBM Research, Tokyo Research Laboratory 1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242, Japan

E-mail address: ninomiya@trl.ibm.co.jp