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CONSTRUCTINGY LOW—DISCREPANCY SEQUENCES
BY USING 3-ADIC TRANSFORMATIONS

SYoITI NINOMIYA

IBM Research, Tokyo Research Laboratory

Abstract. A new class of low-discrepancy sequences is constructed by the use of -
adic transformations. Here, 3 is a real number greater than 1. When J is an integer
greater than 2, this sequence becomes the generalized van der Corput sequence in
base 8. Tt is also shown that for some specml 3, the discrepancy of this sequence
decreases in the fastest order.

0. Introduction and background

64

First. we recall the notions of a uniformly distributed sequence and the discrep-
ancy of points ([Niederreiter 1]). A sequence z1,2z,... In the s-dimensional unit

cube IS = [];_,[0,1) is said to be uniformly distributed in I° when

N

1
g 57 2 eaen) = ()

holds for all subintervals J € I, where ¢ is the characteristic function of J,and A
is the s-dimensional Lebesgue measure. If z1,xy,--- € [*isa uniformly distributed

sequence, the formula

(0.1) lim Zf n)— () de

N—oo N

holds for any Riemann 1ntegrable function on I®. The discrepancy of the pomt set

P ={z1,%2,...,ox5} in I* is defined as follows:
A(B; P)
(0.2) Dx(B; P) = sup |——= — As(B)
Bes| N

where B C o(I®) is a non-empty family of Lebesgue measurable subsets and A(B; P)
is the counting function that indicates the number of n, where1 < n < N, for which
z, € B. When J~ = {[[;-,[0,u:),0 < u; < 1}, the star discrepancy DN(P) is
defined by D3 (P) = Dn(J"; P). When S = {z1,22,. ..} is a sequence in I°, we

Key words and phrases. 3-adic transformation, discrepancy. ergodic theory, numerical inte-

gration, van der Corput sequence.
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define D3 (S) as Dy (S~ ). where Sy is the point set {x,zy,...,z5}. Let S be a
sequence in I*. It is known that the following two conditions are equivalent:

(a) S is uniformly distributed in I°?;

(b) limy_oc D3 (S) = 0. -

The following classical theorem shows the importance of the notion of discrep-
ancy. :

Theorem 0.1 (Koksma-Hlawka)[l]. If f has bounded variation V(f) on I* in
the sense of Hardy and Krause, then for any x|, 24,...,anx € I°, we have

IVZf"u - f(z)dz

n=i

<V(f)Dx(z1,... zN).

Schmidt [4] showed that, when s = 1,2, there exists a positive constant C' that
depends only on s, and the following mequahty holds for an albltrary pomt set PP
consisting of /V elements:

(log N)*~
N

If (0.3) holds, then there exists a positive constant C that depends only on s, and
any sequence S C I® satisfies

(0.3) Dy (P)>C

N
(0.4) D3(S) > c(—lo—gN—)

for infinitely many V. Taking account of (0.3) and (0.4), we define a low-discr_epancy
sequence for the one-dimensional case as follows: '

Definition 0.1. Let S be an one-dimensional sequence in [0, l) If S satisfies

— ND3(S
lim ———“(—) = C (const), .
N—oco logN - '
then S is called a low-discrepancy sequence. -

Hereafter we consider only the case where s = 1. We now introduce the classical
van der Corput sequence [1].

Definition 0.2. Let p > 2 be an integer. Every integer n > 0 has a unique digit
expansion

o0
= }: a;(n)p?, aj(n) € {0,1,...,p—1} for all >0, - -
i=0
in base p. Then, the radical-inverse function ¢, is defined by
‘x . V ) .
= Z 7i(a;(n))p~?~! . for all integers n > 0,
j=0 , |
where 7; is a permutation of {0,1,...,p—1}. The van der Corput sequence in base
p is the sequence V, = {¢,(n)}>2, C [0,1). :
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Theorem 0.2 [1]. For an arbitrary integerp > 2, V}, 1s a low-discrepancy sequence.

In the following part of this paper, the author defines a class of sequences by
the use of #-adic transformation ([Rény 3], [Parry 2]) and shows that any member

of this class is a low-discrepancy sequence when 8 = (L + vV L? 4 4K)/2, where L
and K are integers greater than 1 and satisfy A" < L. W hen /3 1s an integer greater
than 2, the sequence becomes Vj.

1. B-adic transformatlon

In this section we define the fibred system and the 3-adic tran';formatlon followmg

[Schweiger 5] and [Takahashi 6].
R, Z, and N are the sets of all real numbers ,all integers, and all natural numbers,
respectively. For 2 € R, [z] denotes the integer part of .

Definition 1.1. Let B be a set and T : B — B be a m’ap.. The pair (B,T) is
called a fibred system if the following conditions are satisfied:

(a) There is a finite countable set A.
(b) There is a map k: B — A, and the sets

- B(i))=k7'({i}) ={z € B: k(z) =1}

form a partition of B.
(c) For an arbitrary ¢ € A, T|pg(;) is injective.

Definition 1.2. Let 2 = AN and o : 2 — Q be the one-sided shift operator. Let
k;(z) = k(T7~'z). We derive a canonical map ¢ : B — (2 from

o(z) = (k(2))3s-
2 is called the representation map.
We have the following commutative diagram:

B———T—>B

‘| |s

0 —250

Definition 1.3. If a representation map ¢ is injective, ¢ is called a valid repre-
sentation.

Definition 1.4. Let w € Q. If w € Im(y), w is called an admissible sequence.
Definition 1.5. The éylinder of rank n defined by a;,a9,...,a, € A is the set

B(ay,as,...,a,) = B(a;)N T7'B(as)N---NnT7 "' B(ay).

We define B to be a cylinder of rank 0.
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Definition 1.6. Let 3 > 1l and § € R. Let f3 : [0, 1) — [0,1) be a function defined
by

fa(z) = Bz — [B=z].
Let A =ZnN[0,3). Then, we have the following fibred system ([0, 1), f):

0,1) —Z- [0,1)

(1.1) ¢| y
0 —Z- Q

The répresentation map  of this fibred system is defined by

m

a

T= Z -’37’111 <:>"9(’B) = (ao,al,...,a,,,...) € .
n=0"

This fibred system ([0,1), fg) is called a f-adic transformation. In this situation,
we define (3 € Q2 by

(12) Go = lim o(@).

We also define X5 C Q to be the set of all admissible sequences.

For a sequence a € 2, we write the i-th element of a as a(z), that is, a =
(a(1),a(2),...). We remark that ¢ is not a valid representation at this point,
because (a;,as,...,a,,0,0,...) and (a1,a2,...,a, — 1,{g(1),{a(2),...) are two
different representations of the same z = Y .-, a;87". In this paper we adopt
the former representation and make ¢ valid. We derive the following propositions
directly from this definition.

Proposition 1.1.
Xp={weQ|VneZy o"w=<(},
where w < ¥ means that w precedes ¥ in lezicographical order.

Proposition 1.2. For an arbitrary i € A,

5555, 0<i<
Bl=1" g
: [?, 1), otherwise

holds. - ,
Let pg(z) = Yoo gand™ "1 then, we have
| ‘ pﬁ(‘X.ﬁ)vz [Oa l]
and the following commutative diagram:
fa

(1.3) , spl Tpa paT lss
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2. Constructing the sequence

In this section, a sequence Ng C [0, 1) is defined by the use of 3-adic transformation.
Let 3 € Ry and let ([0,1), f3) be a fibred system (1.3). Let B = [0,1), and
4,9,(Xs,0),08,9, (s, Bay,...,a,) be the same as in the previous section.

Definition 2.1. For an arbitrary n € Z>o, X3(n),Ys(n) C X3 ,Fp(n) € Z, and
‘G 5(n) € Z are defined as follows:

X {(0$0~,--')}7 n=0
P = o€ Xy 0" W £ (0,0,...) and 0w = (0,0,...)}, n#0

Ya(n) = Ul Xs(0)
Fs(n) = §X5(n)

It is apparent that
F(n) < ([B]+1)" 7

Definition 2.2. For an arbitrary n € N, define I,, € N to satisfy G3(l,) <
n < Gg(ln + 1). Define 7, : Xg(n) — &, A by m((ki,..., kn)) = (kny-.-, F1).
Induce the right-to-left lexicographical or reverse right-to-left lexicographical order
to Xg(ln+1) = {w1,wa,...,wr,u,.+1)}; that is to say, for all i < j, Ta(wi) < Tn(wj)
or Tp(w;) < Th(w;) holds, respectively. In this situation, the sequence Npg is defined
as follows: ’

Ng = {pp(wn-1,)}nz:

In this paper, we assume that the elements of Xg(I,, + 1) are arranged in right-
to-left lexicographical order.
From this definition, we immediately have the following proposition:

Proposition 2.1. If 8 € Zy, then Ng is V.

From this proposition, we see that, if 3 € Z>,, N3 is a low-discrepancy sequence.
We also have the following theorem:

Theorem 2.1. Let LLK € Nand K < L. If 3 = (L + VL?+4K)/2, then Ng is
a low-discrepancy sequence. '

To prove this theorem, we provide several lemmas, propositions, and definitions.
We use the following notation for periodic sequences: :

(al,az,...,dn,...dn_,_m)

= (a17a27'°'aanaan+1""aan+m7anaan+17"-7an+ma"')

Let ﬂ € R)].
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Lemma 2.1. If (5 = (a1,as,..., (@, — 1)), then {Fp(n)}s, and {Gg(n)},
satisfy the following linear recurrent equations:
Fg(n+m)— Z aiFg(n+m—1)=0 foralln>1-m, n#0
=]

(2.L.F)

Fg(m) - Z a;Fas(m—-1)+1=0
=1
2.1.G - Ggn+m) - a;Ggn+m —1)=0 foralln>0.
B B
1=1
Here we extend the definition of Fys(n) to Fg(—n) =0 (n > 0).

Proof. It is apparent from the definition of -adic transformation that

B, B¢z
2 =
(2.2.a) a {ﬁ~l, sez
and ,
' a;, j=1,....m—1
(2.2.b) | a]z{a;_l’

hold. From Proposition 1.1, we have
Xp(n+m)={(z,w;) |2 €{0,...,a1 =1}, w; € Xg(n+m 1)}
U{(a1,z,ws) |z €{0,...,a2 -1}, wos € Xp(n+m—2)}

- U{(ary---yam-1,2,wm) |2 €{0,...,am =1}, wpy € .X'ﬁ(n)}
for all n > 1, and '
X5(0) = {(0)}
Xp(1) ={(z,0) |z € {1,...,a1}} N
Xp(2)={(z,w1) | z€{0,...,a1 — 1}, wy € Xp(1)}
u{(al,:v,()) |z € {1,...,a2}}

Xg(m—1)={(r;wm-2) | T €{0,...,a1 = 1}, wm_2 € Xg(m —2)}
U{(a1,2z,wm—3) | 2 € {0,...,a2 = 1}, wm_3 € Xg(m - 3)}

U{(a,...,8m_2,2,0) | z € {1,...,am-1}}
Xp(m) ={(z,wm-1) | T € {0,..‘.,a1.,— 1}, wm-1 € Xg(m—1)}
U{(a1,z,wm-2) |z € {0,...,a2 =1}, wm—2 € Xg(m —2)}

U{(al,...,am_l,i,()) |z €{1,...,am — 1}}.
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In the above expressions, we set {0,...,a;—1} = §) when a; = 0. Remark a,, a,, >
1. Then (2.1.F) holds. From Definition 2.1, (2.1.F), and

m

Fy(m) + Fg(0) = Y a;Fy(m — i),

=1
we have

Gp(n+m) =Fg(n+m)+ Fg(n+m —1)+---+ Fg(0)
= a1 Fg(n+m—1)+ayFg(n+m—2)+ -+ a,, Fg(n)
+a Fgn+m—-2)+aFg(n+m—-3)+---+a,,Fg(n—1)

+

+ a1 Fg(m) + axFg(m — 1) + -+ + a,, F3(1)
+a)Fg(m — 1)+ as Fg(m —2) +--- + a;n-1F3(0)
+a; Fg(m —2) + a2 Fg(m —3) + -+ + am—2F3(0)

+
+ a1 Fp(0)
=a1Gg(n+m—1)+a,Ga(n+m —2) + -+ + a,,Gs(n).

Thus (2.1.G) holds. _ ’
Definition 2.3. For (k,k2,...,k,) € Xs(n), define

d(k1, k2, ... ka) = min{max{0,n ~m} < d < n | 1 € B(o¥(ky,. .-, kn))}-

Lemma 2.2. Let (ky,...,kn) € Yg(n). When (ki,...,kn) € Xp(l) and | < n, we
set k[+1 == kn =0. Ifgﬁ = (&],ag,...,(am - 1)), then

1 & a
, 5 Z ,%'t’ when d>n-—m
AMB(ky,... k) = i=n—d+1
—, when d=n-m
'Bn

where d = d(ky,...,kn) and X is a one-dimensional Lebesque measure.

Proof. From (g = (a1,a2,...,(am - 1)) we have

m a;
(2.3.a) 1- ; =0
Im .
(2.3.b) 1- Z Ci@ = Eln-ﬁ
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where [ is an arbitrary positive integer. If § € Ns,, this lemma is trivial. We
assume that § # N. We prove the lemma by induction on n. Consider the case in
which n = 1. From the definition of fs, (2.2), and (2.3.a), we have

and
m

B =3 5

This means that the lemma’s statement holds when n = 1. We show that this
statement holds for (ki,...,Kkn, kny1) € ULd! X4(2) under the induction hypothesis.
For any n > 1 and J C [0, 1), :

(2.4) falf3"(0)) = f57F1(J)

holds from fa’s surjectivity. Consider the case in which k) = 0,1,...,a; — 1, that
is to say, the case in which d = d(k1,...,kny1) > 1 and d(k2,...,kny1) =d—1. In
this case, fg(B(k1)) = [0,1) holds; therefore, considering (2.4), we have

(2.5) fa(B(k1,. .. kny1)) = B(ka,. .oy knga)
and
(2.6) ) = A

for an arbitrary J C B(k;). From the induction hypothesis,

m

1
ﬂT—_ B—Z' when d—1>n-m
M B(kgy... kpy1)) = i=n-— d1

—, when d—1=n-m

g’

holds. Therefore, from (2.5) and (2.6), this lemma’s statement holds. VVhen d =0,
the statement follows from (2.3.a) and (2.3.b). ‘

For a sequence S, S[/V] denotes the point set consisting of the first NV elements

of S, and S[N; M] = S[N + M]\ S[N].
Lemma 2.3. For an arbitrary (ki,...,kn) € Ya(n), we have

A(B(ky, ..., kn); Ng[Gp(m + d +1)])
m-—n+$d
Z An— d+,Gﬂ(m+d+l—n—-z) when d>n-—-m

i=1
Gp(l) when d=n-m
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where d = d(ky,...,k,) and l € Z>,.

‘Proof. When d = n — m holds, it is trivial. Assume that d>n—-—m. Let K =
(kiy...,kn). From Proposition 1.1, : :

{w € Um+d+1Xﬁ( ) lpﬁ ) €B '1"1, kn)}
={(K,z,w) |z €{0,...,an-441 — 1}, wy € ¥Yg(m+d+1—-n-1)}
u {(K,a,_gs1,z,w9) | T € {0,...,Aa,,_d+2 -1}, wp € Yg(m+d+1-n—2)}

U {(I\", Aredtlser -y Am—1,T, W n+d)
| z€{0,...,a;n — 1}, Wn—nya G Ys()},

holds. In the above expresslons we set {0,...,a; -1} = @ when a; = 0. Therefore,
we have
A(B(k] yoeeey kn); Nﬂ[Gp(n -+ l)])
m—n+d—1 i i
= Y @n-ariGa(m+d+1-i)+anGp(n+1)
=1 ' .
m-n+d
> an—ariGa(m+d+1-1i).

=1

Proof of Theorem 2.1. From the conditions of the theorem,
(2.7) (s = (L (K - 1))
holds. Let o = (L — v L? + 4K)/2. Then we have

28F) — Bpln)= et A AR BT L NP

(2.8.G) Gp(n) = { /3 - (ﬁn(,g +1)—a"(a +1)), n2>1

from (2.7) and Lemma 2.1. Define Zﬁ(n) and Hg(n) as follows:

Z(n) = {w € Yp(n) | w(n) # L}
Hg(n) = ﬁZﬂ(ﬂ.)

The following partitionings of Ys(n) and Zg(n) hold.

s(n+1) ={(w,z) |z € {0,1,...,K -1}, weY, B(n)}

(2.9.Y) U{(w,z) | z € {K,K +1,...,L}, we Zs(n)}



(29.2) Zg(n+1) ={(w,z) |z € {0,1,..., K = 1}, w € Yp(n)}

Then we have
Hg(n+1) = KGg(n)+ (L - K)Hpg(n)
Gp(n+1)=KGg(n)+ (L — K — 1)Hg(n).
From (2.10) and Lemma 2.1, we have
Hz(n+2)— LHg(n+1) - KHy(n)=0, n>1
From the same discussion as in the proof of Lemma 2.3,
Hg(l), d=n-2
A(B(kr,. .. kn)ipp(Zs(2+d+1))) = KHp(l), d=n-1
- : o Hy(l+2), d=n

(2.10)

(2.11)

holds for an a.rbltrary (kl, .., kn) € Yg(n). Define
A(B; P) = A(B; P) — MA(B),

U{(w,z) |z e {K,K+1,...,L -1}, we Zg(n)}

73

where B is an interval in [0,1) and P = {z,22,...,zx} C [0,1). For any set of

points P, S in [0,1), and any interval B C [0, 1),
A(B;PUS) = A(B; P) + A(B; S)
holds. Considering the order of N5 that we gave in Definition 2.2, we have
(2.12) Ng[Hg(n)] = ps(Zp(n)). . R
From Lemma 2.2, Lemma 2.3, (2.8.G), (2.11) and (2.12), we have -
A(B(ky,. .. ka); Na[Ga(2 +d +1)))

r n
a+1 ((—) ,—1),041, d=n-2

. le
(2.13) _ ) Ix(a+1 ( ) o, d-=n—-1. |

: a+1 () ) 4 gon
and
A(B(k1yooos kn); No[Hp(2+d 1))
( 1 a\" _ o,
() ) e
(2.14) ) K )" , _
= ﬁ—_a((z) ‘1>a“’ e
! o\ _ ) e _
| 7= ((5) e a=n
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where (ky,...,k,) € Yg(n), ! € Z and d = d(ky,...,k,). Define the truncating
operator 7 : X5 — Yj3(k) as follows:

~[w, when weXp(j), <k
ri(w) = (w(1),...,w(k)) otherwise -

For any 7,7 € Z and any cylinder B of rank less than &,
(2.15) A(B; Npli; 5]) = A(B; 71(Nglé; 5]))

holds. Let (ki,...,k,) € Yg(n), let d = d(k1,...,k), and let M be an a,rbitrafy
integer greater than G3(2 4+ d). Let ! be an integer satisfying

Ga(2+d+1) <M< Gg(2+d+1+1).

Applyihé partitioning (2.9.Y) and (2.9.Z) recursively for Y,g(?+ d+1+ 1), we obtain
the following partitioning of Ng[Ga(2+d 41+ 1)):

Ng[Gs(2+d+1+ 1)]

=.N,9[Gﬁ(2 +d+ l)]
UN[Ga(2+d+1);Ga(2 +d +1))

UN[(K - 1)Ga(2+d+1);Gg(2+d +1)]
UN[KGg(2+d+1); Hs(2+d +1)]

2.16 ' ‘ ' ;
(2.16) UNs[KGa(2+d+1)+ (L - K —1)Hp(2+d+1); Hs(2 +d +1)]

UNS[KGs(2+d+1)+ (L - K)Hs(2+d +1); Gp(2+ d +1—1)]

UNp[KGs(2+d+1)+ (L - K)Hp(2+d+1) + KGs(2 +d+1-1)
cHg(2+d+1-1)] ‘
U

Partition Ng[M] in the same way as (2.16); then, from (2.15), the additivity of A,
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(2.9.Y), (2.9.Z), and the order we induced to Ng, we have

A(B; No[M]) I —

< K |A(B; Ns[Gp(2+d + )| + (L — K)|A(B; N[Hg(2+ d +1)))]

+ K |A(B; Ng[G(L+d + D)) + (L — K — 1) |A(B; Np[Hp(L +d +1)])]
+ K |A(B; Ng[Gp(d + D) + (L — K = 1)|A(B; Ng[Hp(d +1)])]

(217) +K |A(B; Ns[Ga(2 Fd+ 1)+ (L-K _ 1) |A(B; No[Hs(2 + d + '1)])1
+ K |A(B; Ny[Gp(2 + )] + (L = K [A(B; Ny[Hp (2 + d)])

| .
<K |A(B; NolGa(2 + d +3)])]
i=0

l
+(L-K)> |A(B; Ng[Hp(2 +d +1)))|

=0

where B = B(ki,... k). From (2.13), (2.14), (2.17) and the fact that |o| < 1 <
|3l, there exists a constant C; that satisfies the following inequality (2.18) for any
cylinder B(ky,...,kn) of any rank n and any integer M > G3(2 + d).

(218) lA(B(kl, ,k")i\"ﬁ[JW])I < Cl
Choose an arbitrary u € [0,1). Let M € N and [ be an integer that satisfies
Gﬁ(l) <M< G,g(l +1).

Let B(ui,...,u;) be a cylinder of rank [ that satisfies u € B(uy,...,u;). Then we
have
[O,U) = Bi] UB12 ULJBtk UuR

2.19
( ) 0<ti <ta <~ <t =1

where By, is a cylinder of rank t; and A(R) < S~'. From (2.8.G), there exist
constants Cy and Cj that satisfy | < Cy log M and M3~! < C;. Then, from (2.18)
and (2.19), we have

[A([0, u); Ng[M])| < C1Cylog M + Cs.

The theorem follows from this.
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