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Chaotic Binary Sequences with
Their Applications to Communications

Tohru KOHDA and Akio TSUNEDA

Department of Computer Science and Communication Engmeerlng,

Kyushu University

Abstract: In spread spectrum systems, a lot of pseudo-random numbers with good prop-
erties are required as spreading sequences, most of which are generated by linear feedback
shift register (LFSR). In this paper, we propose chaotic binary sequences which are based
on chaos generated by one-dimensional nonlinear ergodic maps, and evaluate their perfor-
mances in spread spectrum systems. Furthermore, we propose an image communication

system based on SS techniques which utilize characteristics of chaotic binary sequences.

1 Introduction

Spread spectrum techniques are due primarily to properties of spreading sequences (or
pseudonoise (PN) sequences)!tl. Various classes of PN sequences have been proposed most
of which are generated by LFSR ( linear feedback shift registers) such as the families
of the Gold sequences and of the Kasami sequences with low even-correlation values [,
On the other hand, we proposed simple methods to obtain binary sequences from chaotic
trajectories generated by nonlinear ergodic maps whose even and odd correlation functions
can be theoretically given. The empirical distributions of correlation values of chaotic bit
sequences are shown to tend to the Gaussian distribution.

In this paper, we investigate the performance of chaotic binary sequences as spreading
sequences empirically and theoretically. Furthermore, we propose an image communication
system based on SS techniques which utilize characteristics of chaotic binary sequences.

2 CDMA System Based on Direct Sequence Spread
Spectrum

In direct sequence spread spectrum (DS/SS) systems, data symbols are directly multiplied

by a pseudonoise (PN) code or a spreading code, which is independent of the data. Such

systems are due primarily to properties of spreading sequences(or PN sequences) !!l. For

the most fundamental technique, both data symbols and code symbols are bipolar. Figure

1 shows a model of a CDMA system based on such DS /SS techniques. For simplicity, we

consider baseband communications. In such a system, spread spectruin signals of J users, .
sU(t), j =1,2,---,J, are transmitted through a common channel simultaneously.
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Figure 1: A model of a baseband CDMA system

The data signal d9)(t) of the j-th user and the assigned PN code signal ¢¥)(t) can be

written as

N . 0 - .
(1) = Y dPur(t—pT). df € {1.-1) (1)
p=—20
Aty = Y ug(t—qT), & e {1,-1} (2)
g=-%
where up(t) is defined by :
1 for0<t<T
ur(t) = { 0 otherwise. (3)
We assume that the j-th user’s PN code sequence {c;j)} 2'2—01 has period N = T/T, so that
there is a PN sequence c(()] ’,(.{] ), R c(f,)_l per data symbol. For simplicity, assume that

T. = 1 through this paper. For a DS/SS system, the PN code bit cflj) is referred to as a
chip. Thus the baseband spread spectrum signal s\9)(¢) is given by

s(j)(t) — c(j)(t)d(j)(t), (4)

For asynchronous systems, the received signal r(t) can be represented as
J o ‘
r(t) = Z ANt — t(]))dm(t — 7g(])) + n(t) (5)
i=1

where #7) is the time delay in the j-th channel and n(t) is a common channel noise process.
If the received signal r(t) is the input to the correlation receiver matched to s()(t), the

output during the p-th time-interval is

Zm=f”mmm@mm (6)
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Assume that the system is quasi-synchronous (all of t¥) are constrained to be integral
multiples of T;) and n(t) = 0 and define £; = t) — () Then we can write

Z0 = N+15) (7)
; dy) +d d — d)
]f]; — Z{___Z_PHRE €,J,{c‘”} {c ])} _2_1’_4'130 gm{c()} {C(])} (8)
j=1
J#

where I ', denotes co-channel interference from other J—1 channels and RE(¢; {cM}, {P})
and RO((; {¢'}, {¢9}) denote the even and the odd cross-correlation functions, respectively
(0 < € < N —1). They are defined by 1!

RE(C’; {C(i)}7 {(:(j‘)}) — ( {((e)} {((J)} \ — ¢ {C(J)} {c(’)} (9)
O(g; {c-(i)}, {(:(j)}) — ( {(,(7)} {((J)} \r_[ {C(] } {(m} (10)

where RA((; {¢?}, {¢!)}) is called an aperiodic cross-correlation function or a partial cor-

relation function, defined by [

N-1-¢

RAE {9}, {¢}) = z ERECHS )

In order to reduce co-channel interference, absolute values of such even and odd cross-
correlation functions, which depend on the family of PN sequences, are desired to be small.

3 Chaotic Bit Sequences

3.1 Generation

To give methods for generating chaotic bit sequences, we discuss the solutions of the dif-

ference equation 2Bl
an+1 = 7“(‘-‘)'n,)q Wy € I = [d, 6]7 n = 0 1’27 . (12)

where 7 is a piecewise continuous function which maps some interval I into itself. It is well
known that the solutions of eq.(12) may be chaotic. For example, the Chebyshev map of
degree k with I = [—1,1] defined by

7(w) = cos(kcos " w), k =2,3,4,--- (13)

have chaotic trajectories. In our previous study B!, we proposed two simple methods to
obtain binary sequences from chaotic real-valued sequences {7"(w)}s%,, both of which can
give efficient methods to generate simultaneously different sequences of i.i.d. binary random

variables for some ergodic maps. The first is used by the second method.
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Method-1: Using the threshold function defined by

v_Jo forw<t
et(w)—{l for w > t, .(14)

we can obtain a binary sequence {©(w,)}%,, which is referred to as a chaotic threshold

sequence (called a Chebyshev threshold sequence when 7(-) is a Chebyshev polynomial).

The second method was based on a binary expansion of the absolute value of w when

|wl <1 as follows.

Method-2: We write the value of w (|w] < 1) in a binary representation:
lw| = 0.4;(w)Ag(w) -+ - Ai(w) -+, Ai(w) € {0,1}, |w| <1 (15)

The i-th bit A;(w) can be expressed as

2i—1
Aiw)= Y (-1 {1-0 s (w) + ef{(w)} . (16)
r=1 -
Thus we can obtain a binary sequence {A;(w,)}32, which we call a chaotic bit sequence (or

a'Cheby.shev bit sequence when 7(-) is a Chebyshev polynomial).

3.2 Correlation Properties

For any L; function F(-), consider the sum defined by
1 N-1

=~
N n=0

Fy(w) F(r"(w)). (17)

According to the Birchoff individual ergodic theorem Pl, we have

lim Fy(w)=(F) ae. (18)

N—o0

under the assumption that 7(-) is mixing on I with respect to an absolutely continuous
invariant (or briefly ACI) measure, denoted by f~(w)dw, where (F) is the ensemble-average
of F over I, defined by

(F) = [ F@)f @ds. (19)
It is known that the ensemble average technique is useful in theoretically evaluating statis-
tics of chaotic sequences, such as means and correlation functions. Applying this technique
to several ergodic maps, we can get the fact that the chaotic binary sequences have good

statistical properties Pl
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Now we consider two {0, 1}-valued sequences {g(7"(w))}22, and {h(7"(w))}22,. Define

N-1

(0. = 5 32907 () = DA (@) - 1) (20)

which is the cross-correlation funct1on between these two sequences from a seed w, where ¢
is the time delay.
Let X be a set of seeds and let M be its cardinality. We introduce the average values

of Ry(w,¥; g,‘h) over M seeds given by

Rym(Gg.h) = > Rn(wom. b g, h). (21)

wOmE X

M

Then this function IA?N Mm(€; g, h), called an empim’cal one, approaches to (R(¢; g, h)) when NV

and M are sufficiently large because (R(€; g, h)) is regarded as the average over all possible

seed%
~ Next, let R (w, ("'g h) be an aperiodic correlation function between two binary se-
quences {g(7"(w))}2=¢ and {h(7"(w))} ) defined as [ |
| | 1 V! .
CRY(w.6g.h) =< 3 (20(7"(@) - DERAH W) -1 (22)
o . . n=0

which gives the even and odd correlation function to be considered in evaluating the per-

formance of SS systems. Its empirical correlation function is given by

_ AR - ’
Ry y(69,h) = (1 - T) Ry_epm(6 9, h). (23)

The empirical function ﬁg\/’-_[,‘}v[(f : g, h) also approaches to (R(¢; g,h)) when N and M are
sufficiently large. Thus the ensemble average (Rj((; g,h)) can be written as

14
(Ry(€;9,h)) = (1 - ﬁ) (R(¢; g, h)). (24)
Therefore, the theoretical even correlétion function (R¥(¢; g,h)) and odd correlation func-
tion (RS(¢; g, h)) are respectively given by - :
(RE(6:9,h)) = (RA(69,h) + (REN - 6h,q)), (25)
(R§(L;9,h)) = (Ry(6:9,h)) — (Ry(N — 6 h,9)). (26)

3.3 Numerical Examples

Some numerical e).(ainpl_esl of even and odd correlation functions of Chebyshev bit sequences
are shown. Figures 2 and 3 show the theoretical even (respectively odd) correlation func-
tions (RE(¢; A;, A;)) (respectively (RQ(¢; A, A;))), indicated by solid lines, and the em-
pirical ones ﬁﬁ m(6; A, Aj) (respectively ﬁjov’ u(6; Ai, A;)), indicated by dotted lines, where
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N = 127 and M = 100. In each figure, the degree of Chebyshev maps and the bit num-
bers are indicated. The theoretical values are in good agreement with the empirical ones.
Besides, we can find that their cross-correlation values become low when the degree k and
the bit numbers are large. Note that their auto-correlation values except £ = 0 are similar

to their cross-correlation values.

40 — 40 -
thoeretical — ' thoeretical —
- empirical ---- ~ empirical ----
g 20 S 20
FE f—t
g g
k 8
5 ° g0
[+}] (]
g =
S 3
20 | 20
_40 1 L 1 . | | | 1 _40 | 1 | 1 1 1 1
0 20 - 40 60 80 100 120 0 20 40 60 80 100 120
" time delay time delay
(a) even (b) odd

Figure 2: (a) (R%(¢; A, A3)) and R¥ 1 (€; As, A3), (b) (R§(£; A2, As)) and RS\ (6 Az, As),
where N = 127 M =100, and k = 2. :

40 40
thoeretical — _ thoeretical —
B empirical ---- - empirical ----
g 20 + g 20
< K
> i > _
: ]
S 0 S o
o o
— p—
[+)] Qo
E o E o
8 8
20 20+
_40 1 1 1 1 H i 1 _40 I 1 1 ] 1 H 1
0O 20 40 60 8 100 120 0 20 40 60 80 100 120
time delay time delay
(a) even (b) odd

Figure 3: (a) (RE((; Ag, Ao)) and RE (£ As, Ag), (b) (R(£; As, Ag)) and RS, 4, (€; Ag, Ao)
, where N =127, M = 100, and k = 16.
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4 Distributions of Statistics of Chaotic Sequences

It should be noted that R%(w,¢; A;, A;) and RQ(w, €; A;, A;) have large scattered values
because they are random variables. Thus we must investigate distributions of such random
variables for a certain set of seeds {wOm}m 1 because bit error probabilities in asynchronous
CDMA systems depend on distributions of correlation values, called empmcal distributions.
Figure 4 shows such empmcal distributions of {R%(wom,¢; Ai; A;)}M_, and the ones of
{R,\ Wom, & A,,A }M . where M = 8001. We can observe that these distributions tend
to Gaussian distributions ! defined by

(w—v)?
202

=
= exp |-

], (—oc < w < 20) (27)
2no*

O(w) =

where v is mean and o2 is variance. Of course, the theoretical estimates of mean, denoted

respectively by vF and 19, are respecti.vely given by

v

= (R

(¢; Ai, Aj)), (28)
= (RQ(t;

N
?’(61 Aiv‘4j)) . (29)

4O iy

1%

and those of variance, respectively denoted by (¢£)? and (¢2)?, are also given by

(0F) = (RE(w,6 A, A))) — (RE(w, G AL A (30)
(00R = (R, 64 AP — (R, G A A (81)

E)?.

£ (respectively v9) and variance (o

We refer to the Gaussian distribution with mean vy
(respectively (0¥)?) as the estimated distribution of {RE (wom, € As, A;j)}e

{RS (wom, GA;, A;)}M_). Figure 4 leads us to find that the theoretical estimates of mean

M_| (respectively

and variance are given by

vE ~ 0 (32)
O o~ 0 (33)
COM (34)
T - ]\T
C (3)

each of which is independent of the bit numbers i, j and the delay ¢ when the degree of
the Chebyshev map and the bit numbers are large. It is easily checked that the estimated
distribution are in good agreement with the empirical ones.

For comparison, the distributions of correlation values of Gold sequences are shown in
Figure 5. |
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Figure 4: Distributions of correlation values of Chebyshev bit sequences, where N = 127,
M = 8001, (7,7) =(8,9), and k& = 16.
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Figure 5: Distributions of correlation values of 8001 pairs of Gold sequences, where N = 127.

5 Evaluation of Bit Error Probabilities

As is well known, bit error probabilities in asynchronous CDMA systems depend on distri-
butions of even and odd correlation values between each pair of spreading sequences.

Now assume that J users communicate through a CDMA system independently and
quasi-synchronously. Thus the distribution of the co-channel interference to the i-th user
from other J — 1 channels are estimated by the Gaussian distribution with mean 0 and
variance (J — 1)N because of the additive property of the Gaussian distribution. Fig-
ure 6(a) shows numerical examples of such distributions of the co-channel interference in
asynchronous CDMA systems using Chebyshev bit sequences. For reference, Figure 6(b)

shows the ones of the systems using Gold sequences. We can find that the distributions for
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Chebyshev bit sequences tend to the Gaussian distribution irrespective of the number of
channels. On the other hand, the ones for Gold sequences are not the Gaussian distribution

when the number of channels, J, is small. However, it is shown that the distributions for
Gold sequences tend to the Gaussian distribution as the number of channels increases.

0.1 - 0.16 -
) o?o vl o
ok N2 : J=3 © 64487 N=31 : J=3 ° 58000
' °. e J=4 * 95880 Toaa b . J=4 * 92579
oo | e =50 12778 : J=5 8 121438
‘ ot 1 *o 012 b .
0.07 n¢u .
8 Y g :
S o o qq) 01 °
g 0.06 - : M &
o o
= 3 '
8 0.05 o o 8 0.08 w
(=] ° 3 = ° [ °
4‘° t 1 d °“
0.04 - ? ? 0.06 “'? ¥“+
; o ., @
Qo ° =
oo : : 2 o3
, a o 004 d B
0.02 o*® **5 o o
o, S d:,o .:a .
00t b s +8 0.02 - e #
a, © ° oo o0 .
o + + a a * + a .
s o+ o o + D, ‘10 o o+ -P
o4 HEI#Ao oAni3a od iq, ° ° ﬁi- L
-40 20 [} 20 40 : -40 20 [} 20 - 40
interference interference

(a) Chebyshev bit sequences

(b) Gold sequences

Figure 6: Distributions of co-channel interference from J — 1 channels in an asynchronous

CDMA system, where N = 32.

The bit errors occur when the co-channel interference is greater than N if the i-th
information bit during the p-th time-interval is dl(j) = —1 (or is smaller than —N if the i-th

information bit is d) = 1). Hence, if Pr{d{) = 1} = Pr{d)’ = -1} =

L for all j and

n(t) = 0, the bit error probability can be estimated by

P = Pr{I,(ZI))>N|d§f) = -1} (36)
= [ e [‘Zy‘] du (37)
- o3)
where
o> = (J-1)N (39)
0w = [*mew || (40)
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The above quantity P. indicates that N and ¢* correspond respectively. to VEy and N;/2
in the well-known bit error probability of a coherent BPSK system 011, where Ej and
Nj/2 denote the bit energy and the noise power spectral density, respectively.

Finally, we show the bit error probabilities in asynchronous CDMA systems by computer
simulation in Figure 7. We can find that theoretical estimates are in good agreement with
the results by simulation for Chebyshev bit sequences. It is interesting that the results for
Gold sequences are also in good agreement with the theoretical estimates for Chebyshev

bit sequences when the number of channels is large.

te-01 . T T T T |
)
s °
P te02f 9 ]
o L 8 E
= g
-Q ’ n]
< °
e .
g s
Q
s 1e-03 3 ¢ 7
& .
) °
-~
o=
'_Q a
?
1e-04 theoretical estimate (C.B. Seq.) °
simulation (C.B. Seq.) +
simulation (Gold Seq.) o
® a ’
1e-05 ' ' ' ! L
4 6 8 10 12 14 16

number of channels J

Figure 7: Bit error probabilities in an asynchronous CDMA system, where N = 63.
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6 Applications to Image Communications

In image transmission systems using spread spectrum (SS) techniques!%-1] the main prob-
lem is how to transmit the image with enormous data efficientlyll~®l, In an image coding,
the discrete cosine transform (DCT) is extensively used. Note that images have different
significant DCT coefficients.(The most significant coefficient is known to be the D.C. term.)

In general, a wide bandwidth is required for the transmission of images. In a CDMA
system, spreading sequences of the same period are usually assigned to the channels!!l—(11]
and hence each of the erroneously transmitted bits occurs nearly equiprobably. Obviously, a
much wider bandwidth is required for the transmission of images using such CDMA systems.
To reduce such a bandwidth, we conéid_er a CDMA system in which spreading sequences
of longer period are assigned to more significant bits than to less ones!'3l. Such a system,
which is asynchronous, permits us to reduce the error probabilities of more significant bits.
This technique is analogous to the Shannon-Fano encoding. The quality of reconstructed
images is shown to be drastically improved within such a limited bandwidth even if the

system is asynchronous.

6.1 Image Communications Based on Asynchronous DS/CDMA
Systems 13014

A basic image communication system using spread spectrum technique is illustrated in
Figure 8. First, images are partitioned into small blocks (8 x 8 pixels), and the discrete
cosine transform (DCT) of two-dimensional (2-D) signal p(i, j) in each block is computed.
Next the 2-D DCT coefficients ¢(u,v) are quantized and appropriate numbers of bits are
assigned to them. Note that encoding and decoding are implemented block by block.
The DCT coefficients are numbered as shown in Figure 9. We assign more bits to low
frequency coefficients than to high ones. The bit allocation map we use is shown in Figure
10. We transmit only the first 15 DCT coeflicients, hamely 54bits/block, 0.84bit/pixel.
Furthermore, the n-th significant bit of the m-th coefficient ¢, is denoted by ¢-,, for
example, ¢o-1 is the most significant bit (MSB) of the DCT coefficient gy and g¢o-g is the
least significant bit (LSB). In this paper, a gray-scale image (8bits per pixel, 720X 576 pixels,
6480blocks) called “Barbara” is used, as shown in Figure 11.
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Figure 8: Image communication system using SS techniques.
T =
q0 | ql | g5 | g6 | q14 | qI5 | 27 | 428 " 8643120101} 0
U
g2 | g4 | g7 | qi3 | q16 | q26 | q29 | q42 6{4]3]2]0|l0]0]O
g3 | g8 | q12| q17 ] 25| q30 | g41 | 43 4 13|1210]0]0j01}0O0
99 | q11| q18 | q24 | 31| 40 | q44 | 453 3121]010{0fj010]0O0
q10 | q19 | q23 | q32 | g39 | q45 | g52 | ¢54 2101]010]0|0]0O0]O
q20 | q22 | q33 | 38 | q46 | 51 | q55 | q60 0]0J0JO0]J]0O0fO0O1O0]0O0
q21 | ¢34 37 | q47 | q50 | g56 | 459 | ¢61 0j]ojojojJojojolo
@35 | g36 | q48 | q49 | 457 | g58 | q62 | q63 ofojJojojoOofjoOjoO]oO
Figure 9: Coefficient numbers. Figure 10: Bit allocation map.

Figure 11: The original image “Barbara”.
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For an image, we assign each bit ¢,,-, to CDMA channels (6 channels in this paper)
appropriately. Now we define

t;n_-n = the period of the spreading sequence to be assigned to gp,-,. (41)
Assume that the total number of chips in each channel defined by

T, = Z tm-n, ©1=12,---,6.
‘ ¢ the 7-th channel

qm'n

is equal to others, that is,
' T, =T, foralli:.

We call T' the “block-period”.
Various kinds of models can be considered according to assignments of each bit gy,:,, to
6 channels. First, we proposed the simplest model as shown in Figure 12, called “Model-1",

where spreading sequences of fixed-period are used.

block-period T
period of spreading seq.
Lto-3,)
channel J@ |q0-1 iq0.2 i q03q0¢}q05}q06}q07}qo8 Iql-l
P kil il Reitinll el Rt Bl

channel @ |q12}q13 iq14 iq15 |q16 qu.1 ig2.2 ig2.3 | g24

channel J¥ |q25iq26 I 931 :q3-2 14331 q34 | qt1 ige2 i gas
p H i H i i H

channel @ | 444 lqs-z ig52 {53 | g5 |q6‘-1 i g6.2 i g6:3 Iq7-1
4 i i i $90°

channel @ [q7.2 iq7.3 Iqs-z ig8.2 §q8-3]q9-1 1492 i g93 |q10-1
s H 1982 1992 ;

channel J® |qz0.2 |q11-1 iqir2 Iq12-1 iqi2.2 |q13-1 Eq13-2Jq14-1 iqie2
46 s H H H H

Figure 12: Mod'el-‘lrﬂwith spreading sequences of fixed-period.

Now define the mean absolute error (MAE) by

’ 1 6480 7 7 ‘ -
MAR = Sis0x 8 %8 ) = Pelin 42
MAE = R x e xs gg;}lpk(f J) = Beli, )] (42)

where pi(7,7) and pr(z,7) denote intensity values of the (7, 7) element of the k-th block
in the original image and in the reconstructed image, respectively. In order to inves-
tigate the significance of each bit ¢,,-,, we compute the values of MAE when each bit
Gm-n 1S transmitted erroneously[m], as shown in Figure 13. Furthermore, the insignifi-
cance of ¢,,-, is calculated from (MAE—lower bound of MAE)~! which means the number
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cause a constant MAE; as shown in Figure 14.

300 T T T T
250 }

200

insignificance

1

100 F lower bound of MAE .
caused by quantization error ete.
50
VPV VOU TPV TSV VUt
0 1 i 1 Il 1
q0-1 ql-1 q21 q3-1q4-1qg5-1 ~

bit number gm-n

Figure 13: MAE when each bit g,,-, is trans-

mitted erroneously.

ql-1

q2-1 q3-1 q41 ¢5-1 ...

bit number gm-n

Figure 14: Insignificance of the bit gp-n,

namely, the number of erroneously transmit-
ted bits ¢,,-, to cause a constant MAE.
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@ \ &\ K,
-
=]
L
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15 channels

12 channels

9 channels

6 channels

3 channels

period of spreading sequences

Figure 15: Bit error rates in asynchronous CDMA systems using Chebyshev bit sequences.

Model-1 is not efficient because each bit ¢p,-, is equiprobably transmitted in error. As

is well known, for a constant number of channels, spreading sequences of longer periods can
reduce bit error rates than ones of shorter periods. This motivates us to assign spreading

sequences of an appropriate period to the bit ¢,,-, according to its significance. To do this,

we should investigate the bit error rates for various periods of spreading sequences and for

various numbers of channels. In this paper, as spreading sequences of variable-period, we use
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“Chebyshev bit sequences®” which are generated by the Chebyshev map. Such sequences
are quite different from LFSR sequences such as M sequences, Kasami sequences, and Gold

sequencesl!]. We have already calculated the bit error rates for the Chebyshev bit sequences

as shown in Figure 15.

Using the results of Figures 14 and 15, we can construct “Model-2" where spreading
sequences of variable-period are used as shown in Figure 16. Figure 17 shows the desired
periods tp,-, for each bit ¢,-n, indicated by the solid line, when the minimum t,,-, is equal to
15. If the periods t,,-, given by the solid line in Figure 17 are used, then T; (1 = 1,2,-- -, 6)
are not equal to each other. Thus the periods t,-, in Model-2, indicated by the dotted line

in Figure 17, are used to satisfy T; = 240 for all 7.

block-period T'
period of spreading seq.
to.g
channel q02 q02 q0-3 l q2-1
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Figure 16: Model-2 with spreading sequences of variable-period.
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6.2 Computer Simulation

As a criterion to evaluate the quality of reconstructed images, we use the mean square error
(MSE) defined by

MSE =
N T 7
m;;; pr(t, ) Pk(l]))- (43)

In Model-2, we use the periods obtained by multiplying t,,-, indicated by the dotted line
in Figure 17 by a constant value according to given block-periods. Figures 18 and 19 show
bit error rates versus block-periods and MSEs versus block-periods, respectively. We can
find that the bit error rates in the two models are similar to each other. On the other
hand, the MSE performance of Model-2 has shown to be much better than that of Model-1.
This implies that the quality of reconstructed images in Model-2 is drastically improved as

shown in Figures 20 and 21.
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Figure 18: Bit error rates versus block- Figure 19: MSEs versus block-periods.
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Figure 20: The reconstructed image in ~ Figure 21: The reconstructed image in
Model-1 for block-period 99. Model-2 for block-period 96.

7 Concluding Remarks

Bit error probabilities in asynchronous CDMA systems using chaotic binary sequences have
been discussed. It is observed that the central limit theorem holds for correlation values of
chaotic bit sequences. This enable us to theoretically estimate such bit error probabilities.
Since the central limit theorem doesn’t hold for LFSR sequences such as Gold sequences,
as shown in Fig.5, it is difficult to theoretically estimate the bit error probabilities in the
system using LFSR sequences. However, it is noteworthy that the bit error probabilities
for chaotic bit sequences are capable of estimating the ones for Gold sequences when the
number of channels is large.

Furtheremore, image communication systems using CDMA channels with spreading se-
quences of variable-period are proposed. We have given an efficient method for assigning
periods of spreading sequences based on the insignificance of each bit of DCT coefficients.
The CDMA systems using spreading sequences of variable-period have the following ad-
vantages: 1) The quality of reconstructed images are drastically improved within a limited
bandwidth; and hence 2) The bandwidth is not so much for the transmission of images.

Note that such techniques can be also applied to color image communications.
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