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RELATIONS'AMONG SHAFAREVICH-TATE GROUPS

HwasIN PARK

1. GrRour COHOMOLOGY

Let G be a (finite) group, and let A be an abelian group on which G acts,i.e., A is an

G-module. For any subgroup H of G, we denote
A" ={zcA:oz=zforall o € H}.

We define H(G, A) = A°.
Let

CY(G,A) = Hom(G, A),
ZY(G,A) = {f € Hom(G, A) : f(o7) = f(7) + f(o) for all o, 7 € G},
BY(G,A) ={f € Hom(G,A) : Ja € A such that f(c) =ca—aforall o € G}.

Then, we easily see that B'(G,4) C Z'(G, A). We define
H'(G,A) = Z\(G, A)/B'(G, A).

For example, if G acts trivially on A, then H°(G, A) = A and H'(G, A) = hom(G, A).
Now, if A is a G—module, and if H is any subgroup of G, then A is an H-moudle.
Hence, We get the restriction map Z Y(G,A) — Z'(H, A). Also, under this map, B!(G, A)
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maps into B!(H, A). Hence, they induces the restriction map H'(G,A) — H'(H,A). If
0 —» A — B — C — 0is an exact sequence of G-modules, then we have the following long

exact sequence of homologies
0 — H°(G,A) —» H(G,B) - H*(G,C) - H'(G,A) » H'(G,B) — H'(G,C).

If H is a normal subgroup of G, A is a G/H-module. Then, we get the inflation map
ZY(G/H,A") - ZY(G,M). Also, BY(G/H, A¥) maps into B(G, A). Hence, they induces
the inflation map H'(G/H, A") —» H' (G, A).

Then, we have the tollowing exact sequence.

0 — HY(G/H, AH) 2 HY(G, M) =5 H'(H, M)

9. DEFINITION OF THE SHAFAREVICH-TATE GROUP OF AN ELLIPTIC CURVE

Let K be a number field, and E/K be an elliptic curve over K.

Let L be a finite extension field of K. We denote
E(L)={(z,y) € E:z,y € L}U{0}.

Then, E(L) is a finitely generated abelian group.

Let G = G(K/K), the Galois group of K over K. Then, G acts on E, via, for any o € G,

{(tm,ay), if P =(z,y)
oP = .
0, if P=0.
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Then, E(K)G(X/L) = E(L).

Let My be the set of all absolute values v in K such that v|q = I . |p or | . |oo. For
any v € Mk, fix an extensién w of v to K. This fixes an embedding K — K,. Let
G, ={ceG= G(I_(/K) : ow = w} be the decomposition group. Then, G, acts on

. E(K,). The natural inclusions G, — G and E(K) — E(K,) give the restriction maps on

cohomologies,

HY(G,E/K) — H(G,, E/K,).

And, hence, give the map

H'(G,E/K)— [] HY(Gu E/K,).
vEMg

Now, we define the Shafarevich-Tate group I I | (E/K) as the kernel of the above map.

3. SOME KNOWN FACTS

Proposition 1 ([2]). (1) M(E/K) is a torsion group.
(2) M(E/K)[p] ={z € M(E/K) : pz = 0}, ie, u(E/K)(p), the p—primary part

of M(E /K), is of finite corank.

Proof. (1) Since G = liI—nL/K:Galois Gk is pro-finite, H'(G,E/K) is a torsion group.
Therefore, l ||(E/K) is a torsion group.

(2) The following sequence

0> E[pl>E3E-0
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is exact. Hence, by acting G, we get the following long exact sequence
0 — E(K)[p] —» E(K) % E(K) —» H*(G, E[p|) - H*(G,E) % H'(G,E).

Hence, the diagram
0—  E(K)/pE(K) - HY(G,E}p) — H(GE -0
! l !

0 = Tl,enze B(Ko)/PE(K)~Tloerte H (G, Elp)~Tloersye H(Go, E)lpl— 0

is commutative. Therefore,
0 — E(K)/pE(K) — S®)(E/K) - |||(E/K)[p] = 0
is exact. Here,

SP(E/K) = Ker(H'(G,Elpl) = [ H'(Gs, E)lpl),
vEMg

which is called p—Selmer group. This group is finite and effectively computable. Therefore,

111 (B/K)p] is finite.

Conjecture 2. | | (E/K) is finite.

It is known that I | I (2) and | ] l (3) are finite for thousands of elliptic curves over Q.

Theorem 3 ([2]). If |||(E/K) is finite, then there is a non-degenrate canonical alter-
nating bilinear pairing

(/) x ||| (E/K) - @/z.
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Lemma 4. Let A be a finite abelian group. If there is a non-degenerate alternating
bilinear pairing

<,>:AxXxA—-Q/z,
then, A=~ S x § for some subgroup S of A, where § is the character group of S.

Proof. Let S be the subgroup of A such that < s,s' >=0for all 5,s' € S and S is maximal
with respect to this property. Since< 1,1 >= 0, there is at least one subgroup with the
property. Consider the character x,(s) =< a,s > of A, for each a € A. They are all
distinct, since the pairing <, > is non-degenerate. Consider A/S. For each a € A/S, we
have a character of S defined by Xa($) =< a,s > . By the definition of S, they are distinct.

Therefore, § = A/S. Therefore, A~ S x §.

As a corollary, we have

Corollary 5 ([2]). If | | I (E/K) is finte, then it is a square.

Untﬂ 1987, there was not a single example of an eliptic curve whose Safarevich-Tate
group was known to be finite.

In 1987, Rubin proved that if £/Q has complex multiplication and L(E/Q,1) # 0,
then M(E /Q) is finite. Here L(E/Q,s) is L—series of E/Q. He actually calculated
l | (E/Q) for some elliptic curves with complex multiplication. For example, if E is given

as E : y? = 2% — 1z, then]_“_:O; if £:y? =23 4 17z, then__“_=Z/QZ X Z [2Z; and if
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E :y? = 2% — 283%5?, then l ] | = 7/3Z x Z /3Z. These were the first known examples of

elliptic curves with finite Safarevich-Tate groups.
In 1989, Kolyvagin proved that if £/Q is a modular curve and if L(E /Q, s) has no zero
or simple zero at s = 1, then | l |(E/Q) is finite. For example, if E : y? = 42® — 4z + 1,

then it has not complex multiplication, and | | = 0.

Proposition 6. Let L be a finite Galois extention field of a number field K with Galois

group G. Let E be an elliptic curve over K. If | | | (E/L) is finite, then so is I | I(E/K)

Proof. From the inflation-restriction exact sequence, we have the following commutative
diagram with exact rows
0 —— ® —  |||(B/K) —— ||(E/L)

l l !

0 —— HY(G,E(L)) — HYGg/k, E(K)) —— H'(Gr/1, E(L))
Here, all vertical arrows are inclusions.

Since H(G, E(L)) is finite, so is ®. Therefore, if ||| (E/L) is finite, so is ||| (E/K).
4. MAIN RESULT

Let G be a finite group. For any subgroup H of G, we put

6H=—!—-[1{—}ZG€Q[G],

and call it the idempotent associated with H. Note that ey is indeed an idempotent in

Q[G), i.e., € = €n.
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A relation of the form

Y nuew =0, ny €Q,
H

is called an idempotent relation in G. Whenever G is non-cyclic, G has a non-trivial

idempotent relation [1].

Theorem 7 ([3]). Let G be a fintie group, and let > npen = ), muen, where ny and

mpy are non-negative intergers. Let A = Z[lGl_l]. If M is a finite A[G]—module, then

there a A—module isomorphism

@(MEH)T&H N @(MGH)"}.H.
H . H
" Here, M2 = {z® : z € M}.

In particular, [[ 4 |M€H|nH =1y IMGH lmH.

As a cofollary, we have

Lemma 8. If M is a finite G—module, and if ZH nyeg = 0 is an idempotent relation in

G, then
[T |™ ~ig 1.
H

Here, a ~,, b means a and b are the same up to prime factors of n.

Proof. Let M = {z € M : The order of z is prime to |G|.}. Then, M is a finite A—module.

Hence, by the above theorem, we have

IT 3= =1.

H
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But, [J\Zfé*"l ~|G| |M‘H | Therefore,

[T e ™ ~ig 1.
H

Proposition 9. Let M be a finite G—module. If ),y ngey = 0 is an idempotent relation

in G, then

[T1M7 ™ ~g) 1.
H

Proof. By lemma 8, it is enough to show that MH = M as A—modules. If z € MH,
then z° = z for every o € H. Hence, gXoen? = |H|w, i.e., z¢# = . Therefore, t € M¥.
Conversely, if € M, then z = y*® for some y € M. Let 7 € H be any element.

Then,

wTZyEHrzy]%TEUGHUT :yﬁlﬂz"'GHﬂzyGH =Zz.

Hence, z € M| which completes the proof.

Rerurning to our elliptic curve case, again we assume that E is an elliptic curve over a

number field K, and L is a finite Galois extention field with Galois group G.
Suppose Y g naen = 0 is an idempotent relation in G.

Lemma 10. [[y IEto”(LH)| ~g 1.

Proof. Eiors(L) is a finite G—module. Therefore, by Proposition 9, we get the result.
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Lemma 11. | ||(E/LI‘_’)|~|G||||_|(E/L)H[.

Proof. We have the following commutative diagram with inflation- restriction exact rows
0— o - ||[(E/LE) - |||(E/DE — V]

l l ! l
0 »H(H,E(L))—H" (Gpa,a, E)—H Gy, E)! - H*(H,E(L))

Here, all vertical arrows are inclusions.

Since E(L) is finitely generated, H'(H, E(L)) and H?(H,E(L)) are finite groups anni-
hilated by |H I, hence by |G I Hence, ® and ¥ are also finite groups annihilated by IG ',
ie.,

2] ~iar L |¥] ~ie 1
Therefore, we have

| [H(E/L®)| ~ar | | [(E/D)].

Combining Propositon 9 and Lemma 11, we have

Theorem 12. [ | M(E/LH)]nH ~g| 1.
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