
Title Fighting Livelock in the i-Protocol with the Concurrency
Factory(Concurrency Theory and Applications '96)

Author(s) Ramakrishna, Y.S.; Smolka, Scott A.; Stark, Eugene W.;
Sokolsky, Oleg

Citation 数理解析研究所講究録 (1997), 996: 1-4

Issue Date 1997-05

URL http://hdl.handle.net/2433/61245

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39194829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fighting Livelock in the i-Protocol
with the Concurrency Factory*

$\mathrm{Y}.\mathrm{S}$. Ramakrishna, Scott A. Smolka, Eugene W. Stark
Department of Computer Science

SUNY at Stony Brook
Stony Brook, NY 11794-4400

USA
$\mathrm{y}\mathrm{s}\mathrm{r},$

$\mathrm{S}\mathrm{a}\mathrm{s}$, stark@cs.sunysb.edu

Oleg Sokolsky
Computer Command and Control Company

2300 Chestnut Street
Philadelphia, PA 19103

USA
sokolsky@cccc.com

Abstract

We report on our efforts to detect, locate, and correct a non-trivial livelock error in
the i-protocol, a bidirectional sliding-window protocol employed in the publicly avail-
able GNU UUCP file transfer utility. The Concurrency Factory’s local model checker
for the modal $\mathrm{m}\mathrm{u}$-calculus was used to verify the presence of the livelock in an instance
of the protocol having a window size of 1, exploring about 1.7 $\cross 10^{5}$ states out of a
total estimated global state space of 2.749 $\cross 10^{14}$. A simple inductive argument shows
that the same error is present in the protocol for $\mathrm{a}\mathrm{l}\mathrm{i}$ larger window sizes.

Key to the Factory’s success was the use of an abstraction to reduce the message
sequence number space from 32 –the constant defined in the protocol’s C-code–to
$2W$, where W is the window size. This abstraction is shown to preserve the truthhood
of all modal $\mathrm{m}\mathrm{u}- \mathrm{c}\mathrm{a}\dot{\mathrm{l}}$ culus formulae.

A performance comparison with the SPIN and SMV model checkers has also been
carriedr out. Indeed, the i-protocol appears well-suited as a benchmark for verification
tools aimed at real-life concurrent systems software.

*Research supported in part by NSF grant CCR-9505562, and AFOSR grants
$\mathrm{F}.4962..\mathrm{o}_{- 95}.-$

1-0508 and
F49620-96-1-0087.

数理解析研究所講究録
996巻 1997年 1-4 1

1 Introduction

Concurrent systems, in general, and communication protocols, in particular, are notoriously
difficult to program, debug, and prove correct. Much of this difficulty stems from the large
number of interleavings that a set of concurrently executing processes generate, resulting in
the well-known state space explosion problem.

Model checking [CE81, CES86] has proved to be a particularly effective method for
detecting bugs in the design of concurrent systems, and, to better cope with state explosion,
a number of enhancements to the basic technique have been proposed; e.g., modular model
checking [KV95], symbolic model checking $[\mathrm{B}\mathrm{C}+90]$, local model checking [La92], partial
model checking [HP94, Va93, GW91], compositional model checking [CLM89], the use of
abstraction mappings [Wo86, DGG93], and the exploitation of symmetries [ES93].

In this abstract, we report on our experience in using the Concurrency Factory’s model
checking facility to detect and correct a non-trivial livelock in a communication protocol that
forms part of a widely used set of communication tools. The Concurrency Factory $[\mathrm{C}\mathrm{G}+94]$

is a joint project between the State University of New York at Stony Brook and North
Carolina State University to develop an integrated toolset for the specification, verification,
and implementation of concurrent and distributed systems. Like the Concurrency Work-
bench [CPS93], the Factory employs bisimulation, preorder, and model checking as its main
avenues of analysis.

The protocol that we investigate, the i-protocol, is part of the GNU UUCP package,
available from the Free Software Foundation, and is used for file transfers over serial lines,
such as telephone lines. The i-protocol is part of a protocol stack; its purpose is to ensure
ordered reliable duplex communication between two sites. At its lower interface, the i-
protocol assumes unreliable (lossy) packet-based FIFO connectivity. To its upper interface,
it provides reliable packet-based FIFO service. The GNU UUCP package also contains the
g- and j-protocols, which are variants of the i-protocol.

A problem with the i-protocol was first noticed by Stark, while trying to transfer large
files from a remote computer to his home PC over a modem line. In particular, under
certain message loss conditions, the protocol would enter a “confused” state and drop the
connection. In order to diagnose this problem, we extracted an abstract version of the i-
protocol from its source code,1 consisting of approximately 1500 lines of C-code, formalizing
it in a Value Passing Language (VPL). VPL is the textual specification language of the
Concurrency Factory and is derived from Milner’s \mathcal{M}_{0} [Mi89].

The VPL source of the i-protocol was then subjected to a series of model checking exper-
iments using the Concurrency Factory’s local model checker for the modal $\mathrm{m}\mathrm{u}$-calculus. This
led us to the source of the problem: a livelock that occurs when a particular series of message
losses drives the protocol into a state where the communicating parties enter into a cycle of
fruitless message exchanges without any packets being delivered to the upper layer entities.
Seeing no progress, the two sides close the connection, which must then be reestablished. If

1The source code is freely available from GNU software repositories; see, for instance,
prep. $\mathrm{a}\mathrm{i}$. mit. edu $:/\mathrm{p}\mathrm{u}\mathrm{b}/\mathrm{g}\mathrm{n}\mathrm{u}$.

2

the communication line (or virtual circuit) is sufficiently noisy, or if one of the sides is slow
in emptying communication buffers, say due to disk waits, leading to buffer overflows, the
chances of this scenario recurring are high.

Using the diagnostic facility that accompanies the Factory’s model checker, we were able
to pinpoint and subsequently “patch” the bug in the VPL code. The fix to the protocol
consists of a fairly simple change in the way negative acknowledgements are handled by the
protocol.

The verification was particularly challenging because of the large theoretical state space
of the protocol. Indeed, most exhaustive verifiers, or global model checkers, would be inade-
quate for this verification, since the state space of the protocol, even for a window size of 1,
is approximately 2.8 $\cross 10^{14}$. The Concurrency Factory’s model checker was, however, able
to detect and diagnose the livelock, since it is a local model checker. In effect, it exploits the
structure of the formula expressing the property of interest to guide and limit its search to
only the “relevant” $\mathrm{p}\mathrm{o}\mathrm{r}$.tions of the global state space.

In addition, some judicious abstractions were used to $\mathrm{r}\mathrm{e}\dot{\mathrm{d}}\mathrm{u}\mathrm{c}\mathrm{e}\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ size of $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ state space,
retaining in our model only as much detail as appeared necessary for finding the bug. While
many of these abstractions have been verified only in an informal sense, we verified formally
the soundness of an abstraction that reduced the message sequence number space from 32 –
the constant defined in the protocol’s C-code–to $2W$, where W is the window size. This
abstraction preserved the truth of all modal $\mathrm{m}\mathrm{u}$-calculus formulae, and reduced the state
space of the $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{C}\mathrm{o}\dot{1}$ by several orders of magnitude.

We also compare the performance of the Concurrency Factory on the i-protocol with the
SPIN [Ho93] and SMV [Mc92] model checkers. Indeed, the i-protocol appears well-suited as
a benchmark for verification tools aimed at real-life concurrent systems software.

References

$[\mathrm{B}\mathrm{C}+90]$ J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic model
checking: 10^{20} states and beyond, in: Proc. 5th IEEE LICS (1990) 428-439.

[CE81] E. M. Clarke and E. A. Emerson, Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic, LNCS 131, 1981.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic Verification of Finite
State Concurrent Systems Using Temporal Logic Specifications, ACM Trans.
Prog. Lang. Syst., 8(2), 1986.

[CLM89] E.M. Clarke, D.E. Long, K.L. McMillan, Compositional Model Checking, in: Proc.
4 th IEEE LICS, 1989.

$[\mathrm{C}\mathrm{G}+94]$ R. Cleaveland, J. N. Gada, P. M. Lewis, S. A. Smolka, O. V. Sokolsky, S. Zhang,
The Concurrency Factory–practical tools for specification, simulation, verifica-
tion and implementation of concurrent systems, in Proceedings of the DIMACS

3

Workshop on Specification Techniques for Concurrent Systems, Princeton, NJ,
1994.

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen, The Concurrency Workbench: A
Semantics-Based Tool for the Verification of Concurrent Systems, ACM TOPLAS,
15(1), 1993.

[DGG93] D. Dams and O. Grumberg, R. Gerth, Generation of reduced models for checking
fragments of CTL, in Proc. 5th CAV (1993) LNCS 697.

[ES93] $\mathrm{E}.\mathrm{A}$. Emerson, $\mathrm{A}.\mathrm{P}$. Sistla, Symmetry and model checking, in: Proc. 5th CAV

(1993) LNCS 697.

[GW91] P. Godefroid, P. Wolper, A partial approach to model checking, in: Proc. 6th
IEEE LICS (1991) 406-415.

[Ho93] $\mathrm{G}.\mathrm{J}$. Holzmann, Design and validation of protocols: a tutorial, Computer Networks
and ISDN Systems 25 (1993) 981-1017.

[HP94] $\mathrm{G}.\mathrm{J}$. Holzmann, D. Peled, An improvement in formal verification, in: Proc.
FORTE (1994).

[KV95] O. Kupferman, $\mathrm{M}.\mathrm{Y}$. Vardi, On the complexity of branching modular model check-
ing, in: Proc. 6th Conf. CONCUR (1995) LNCS 962, 408-422.

[La92] $\mathrm{K}.\mathrm{G}$. Larsen, Efficient local correctness checking, in: Proc. 4th CAV (1992) LNCS
663.

[Mc92] K. $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{n}$, Symbolic model checking –an approach to the state explosion
problem, Ph.D. Thesis, School of Computer Science, Carnegie Mellon University
(1992)

[Mi89] R. Milner, Communication and concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[Va93] A. Valmari, On-the-fly verification of stubborn sets, in: Proc. 5th CAV (1993),
LNCS 697, 397-408.

[Wo86] P. Wolper, Expressing interesting properties of programs in propositional temporal
logic, in: Proc. 13th ACM POPL (1986).

4

