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Eigenvalue Asymptotics for the Schrodinger
Operator with Asymptotically Flat Magnetic
Fields and Decreasing Electric Potential

SHIRAL S. and IWATSUKA, A.

Faculty of Sciences, Osaka University
Faculty of Sciences, Kyoto University

1 Introduction

We investigate the asymptotic distribution of eigenvalues of the two
dimensional Schrédinger operator with an electromagnetic potential. We
consider the operator in L?(R?) of the form : '
02 (1 0

+

2.
Hy = —5-:1-;‘%‘ - — b(ml)) + V(-'El,:BZ), ’

1 81172
where (0, b(z;)) is the (magnetic) vector potential which gives a perturbed
constant magnetic field and V(z;, z) is the (electric) scalar potential decay-

ing at infinity.
First, we shall consider the magnetic field B(z;) obeying :

(B.1) B(z;) € C%*(R; R), real-valued C?-functions on R. Moreover, B(z;)
is a monotone increasing in z; and there exist positive numbers By > 0
such that ‘ |

B_< B, ,
lim B (.’1)1) = B:i: .

3 — Foo
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Under the assumption (B.1), we define the vector potential b(z;) as follows.

b(z1) = /0 ® B(t)dt.

‘ In the case where V (z;,z,) = 0, the spectrum of Hj has a band structure
if (B.1) holds (See, [Iwa]):

o(Ho) = 0 Ho) = (A7, A

n=1
Af = (2n - 1)B,.

(B.2)+ In addition to (B.1), B(z,) € B>*(R), moreover, there exists M > 0
such that, for each a € N U {0},

|07(B+ — B(z1))| < Cualz1)™ asz; — oo
holds for some constant Cq, where |
B*(R) = {f € C*(R)| for each a, ||0°f||o < o0},
and || - || denotes the usual L*®-norm.

(B.3) In addition to (B.1), assume that B(z,) fulfills the following conditions:

B, < 3B_,
16:1Bllc < By—-B_ ,
1 B, + B_
(By -B)(1 + )< 22t
| 36_ - B, 6

(V.1) V(21,22) € C°(R? R), real-valued C* -functions on RZ, and there
exists m > 0 such that

| 8205V (21, 22)| < Caplas; 22) ™
holds for some positive constant C,s independent of (:cl, ) in R?,

Here 0,, 0, denotes aa , aa respectlvely and (T1;22) = (1 + 22 + z2)3.

It is well-known that the operator Hy defined on C§°(R?) is essentially
self-adjoint and V is a relatively compact perturbation with respect to Hy
([L-S]). Thus one expects that Hy have discrete spectra in the spectral
gaps of Hy and they accumulate at most to the tips of the gap. In the case
where b(z;) is the vector potential which gives a constant magnetic field,
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the eigenvalue asymptotics around the essential spectrum tips is investigated -
([Rail], [Rai2]).
For p > 0,a9 € R, define

v (p;a0) = %vol{(ml,xz) € R¥|z; > ag, £V (21, 23) > p}.
and
vi(p; a0) = —2—17?v01{(a:1,:c2) € R?| —z; > ag, £V (21, 23) > p}.
For simplicity, we denote v} (u;ao), v=(1; ao) by vi(u; ao), v—(u; ao) respec-

tively.
For a positive, decreasing function f, we say that f satisfies (T) if

(T) there exist positive numbers 7, 7', uo such that

fm) (6‘2)7 (1.1)

flu2) = \
holds for 1, pg € (0, o) with y; < po . Moreover
"oz
flp) 2 ypm

holds for u € (0, uo)-

Let S be a self—adjoint operator in a Hilbert space, and suppose S has
purely discrete spectra in an open interval (a,b) C R. Then N((a,b)|5)
denotes the total multiplicity of the eigenvalues of S lying on (a, b), i.e.,

N((a,b)|S) = dim (RanEs(a, b))

where Es(a,b) denotes the spectral projection of S on (a,b).
We devote ourself to get the asymptotics at some specific gap such that

Ay <Ay,

holds where A} = 0. Thus we shall consider such a gap.
One of the main theorems is:

Theorem 1.1 Suppose that (V.1), (B.2); (resp. (B.2)_) and (B.3) with
m < M. Moreover suppose that v, (u; ao) (resp. v_(p;ao)) satisfies (T) and
v (145 a0) (resp. v¥(p;a0)) satysfies (1.1). Then we have

N((A7 + p, M,)|Hy) = Byvi(piao)(1+0(1)) as p |0,
(resp. N((Ma, A7y, — 1) By) = B_v_(p; a0)(1 + o(1)) as ul0,)

AY+AL L,
where we put M, = ==&t
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Remark 1.1 (i)As p | 0, the asymptotic behabior of vi(u;ao) does not

depend on a choice of ag > 0. (A similar assertion holds for vE(u; ag).)
(#)In case V(z1,x;) is non-negative (resp. non-positive), it follows from

the proof that the assumption on v_(u; ag) (resp. v4(u;a0)) is not needed.

In the case where the scalar potential V(zy,z;) decays slowly, i.e., of
order m with 0 < m < 1, satisfying the assumption (V.2) with the constant
m, some of assumptions on V(z;,x2) and B(z;) can be weakend:

(V.2) V(21,%2) € C*(R? R) and there exist m,m’,C > 0 such that
. 0<m<l , 2m<m,
V(z1,22)] < Clzi522)™
|01V (z1,22)| + |8V (z1,22)| < Clzyyz)™

(B.4)+ In addition to (B.1), there exist constants M, M, C such that

!

M > 3M
|B(z1) = Bz| < Cle)™  asaz; — oo,
|0.B(z1)] < Cle))™ asz; — +oo.

The other of the main theorems is:

Theorem 1.2 Suppose that (V.2) and (B.4)+ (resp. (B.4)_) hold with
M >m. And suppose that vy(u; ao) (resp. v_(u;ao)) satisfies (T). Then we
have the same eigenvalue asymptotics as in Theorem 1.1.

We shall give only a proof of Theorem 1.2 in the following sections. Theorem
1.2 can be prove using the min-max principle and estimates of the number of
eigenvalues of self-adjoint operators associated with suitable quadratic forms
derived from the results in [Col].

2 Direct integral decomposition

[Iwa] proved that Hy is unitarily equivalent to the self-adjoint opera-
tor L acting in L*(R,, x R;) that has the (constant fiber) direct integral
decomposition (see, e.g., [R-S4]) :

. |
L= [ L(£)d, (2.1)

R

using the partial Fourier transformation

(Fu)(os,€) = (2m)F [ e u(zs,ar)da, (2.2)
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which is a unitary operator from L(R,, X R,,) to L(R.,, X R¢). Here for
each £ in R, L(£) is a second-order ordinary differential operator in L?(R,,)
of the form : dz

L(¢) = @t (€ — b(z1))*. (2.3)

Lemma 2.1 ([Iwa]) Assume that (B.1) holds. Let ¢ be a real number.
Then there exists a complete orthonormal system {@n(1,£€)}52, in L*(R,,)
of eigenfunctions for L(£) :

L(E)on(e1,6) = MlE)onlon€), (2.4)
10< M(E) < Maf) < Aa(€) < -+ — 00, (2.5

so that forn € N

(i) each \,(&) is non-degenerate, and depends analytically on ¢ ,
(i) An(€) is monotone increasing in &, and limg_, 4o Aa(€) = AT,

(iii) pa(-,€) € D(L(0)) and depends analytically on ¢ with respect to the
graph norm |[ully o = (Jlull® + IL(0)u||®)z , where || - || stands for the
L%-norm. -

(tv) @n(1,€) is a real-valued continuous function of ; and & , and, more-

over p,(x1,&) is infinitely differentiable in x, for each ¢ and is analytic
in € for each ;.

Proof. See lemma 2.3 and a remark at the end of [Iwa]. []

Now we consider the following assumption on the eigenvalues {A()}:

(A.1) There exists a constant C > 0 such that for j,k € N, j # k ,
[A;(€) — A(€)] > C holds for all ¢ € R .

Although it is not tr1v1al whether the (non-constant) magnetic ﬁelds satis-
fying this condition (A.1) in addition to (B.2) exist, but the following lemma
glves an answer. We shall give the proof in Sect.12.

Lemma 2.2 (B.3) implies (A.1).
Hence we get Theorem 1.1 if only we prove the following theorem:

Theorem 2.3 Under the same assumptions as in Theorem 1.1, except
that (B. 8) is replaed by (A.1), we have the same eigenvalue asymptotics.



189

3 Proof of Theorem 2.3

In the proof of Theorem 2.3, we denote the variables (z1, ;) by (z,y)
for notational convinience. Coresponding to this, 8;,8; shall be replaced
by 0,8, etc. And we shall often denote by C various (positive) constants
appeared in estimates. In the case where we want to specify the dependence
of some constants, we shall denote them by C., C(n) or C,p etc.

Using the partial Fourier transformation F defined by (2.2), we consider
the operator Ly as follows. :

Ly=L+FVF! in L*(R, x Re), (3.1)

where V' stands for the multiplication operator by V(z,y) in L*(R, x R,)
(Generally we shall use the notation f to the multiplication operator f(z)
acting in a function space throughout this paper).

In the sequel we denote FVF~1 by V.

- Lemma 3.1 ([Iwa]) Assume (B.1) holds. For eachn € N, let H, be
the closed subspace of L*(R, X R;) defined by

Ha = {0a(2, ) F(6)|f(6) € L*(Re)} (3.2)

where p,(z,€) is as in Lemma 2.1. Then we have

(i) L*(R; X R¢) =Y, ®H,, (the orthogonal sum of Hilbert spaces).
(i) L is reduced by H,.

(i) Llw, (restriction of L to Hy) is unitarily equivalent to the operator of
multiplication by \,(£€) on L*(R,)}.

where @n(x,€) and A\, (£) is as in Lemma 2.1.
Proof. See [Iwa], Lemma 2.5. []
We define the operator |
To: L(R¢) — Ha (< L*(R. x Ry))
by
(Tnf)(=,€) = pn(z,)£(€) | - (33)
for f(£) € L*(R¢) (then we can find
| 1, - ’Hn - Lz(Rﬁ)
by
(TF)) = [ oale,)F(2,6)da (3.4)



for F(z,¢) € H,) , and define P, : L*(R, x R;) — L*(R, x R;) by
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(Put)(@,) = ¢a(@,8) [ 0u(z,Eu(z, £)do (35)

for u(z,€) € L*(R, X Ry) . | |

Note that P, is the orthogonal projection with the range H, and T, is
a unitary operator from L?(Ry) to H, which gives the equivalence stated in
Lemma 2.1(iii). Furthermore T, T P, = P, on L*(R, X Ry) holds.

Lemma 3.2 VP, is a compact operator on L*(R, x R¢) .
Proof. We can find that ,
VP, = FVF'P, (3.6)

= fV(HO-i)-lf"lf(ﬂo—i)F“an (3.7)
= FV(Ho— i) 'F YL —i)P, . (3.8)

Then VP, is compact, since V(Hy — i)~! is compact(see [A-H-S], Theorem
2.6) and (L—1)P, is bounded by Lemma 3.1(¢%) and the closed graph theorem.

O

Set |
K = —i(P,V -VP,)

and denote by K, K_ the positive and negative part of K respectively so
that K = K, — K_,|K| = K, + K_. Further, for ¢ > 0 denote by Y. ()
the operator associated with the quadratic form

(YE(e)u,u) = |k Quu £ K Pyl + |ie K Quu F eKE P> (3.9)

for u € LZ(R?), where @, = I — P,. Throughout this paper, (-,-) stands
for the standard inner product of L2. It is easy to see, by the definition,

that Y;F(g) are compact and nonnegative self-adjoint operators. And direct
computations lead us to

Lv = P,Ly P, + Qu(Lv £ ¢ %|K|)Qn = P,|K|P. FYE(e) . (3.10)

Let us prepare a useful inequality called the Weyl-Ky Fan inequality. We

shall frequently make use of it to estimate the upper bound of the number
of eigenvalues:

Lemma 3.3 ([Rail]) Let Ag, A; be bounded self-adjoint operators act-

ing on a Hilbert space. Assume A; is compact and set A = Ay + A;. Then
the estimates

N((p1, p2)| A0y € N((p1 — 11, iz + 72)| A)
+ N((m1,00)| — A1) + N((72, )| A1)
~ hold for each interval (uy, p2) C R and every 7y > 0,75 > 0.
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Proof. See [Rail], Lemma 5.4. []

‘Applying Lemma 3.3 to the former of (3.10) twice (first, with 4; =
Y+(€) AO - LV, H = A +/1" /1'2 - Mna 1 = /*"a T2 = ';'a‘ a'nd
second, with A1 =P [KIP,,, A =P LVP + Qn(LV + 6—2|K|)Qn, n =
A++(1f- —)u, po=My+%, 1= 2178 T2 = ;, and using the non-negativity
of Y (¢) and e2P,|K|P,, we find S o

N((Af + p, My)|Ly) :

N((Af + (1 — €)u, My + €)| P, Ly P,)

+ N((A7 + (1 = €)u, My + €)|Qu(Ly + € 7*|K[)Qn)
N((
N((

In

1)
+ N((L, )| PIKIPy)
£

R R C 3¢)

N

where we also used, at the second 1nequa11ty, the fact tha.t P, LVP +Qn(LV+

e~2|K|)Q, is a direct sum of two operators for P, and Qn = I — P, are
orthogonal projections.

To obtain the converse 1nequa.]ity, apply Lemma 3.3 again to the latter
half of (3.10) twice (first with Ay = —2P,Lyv P, + Qn(LV + |K|)Qn, A1 =
Yn‘(a) TL = 5M, T2 = g, and second, with A; = —¢?P,|K|P,, A=Ly, 1, =
si, T2 = %) . Then we get the followmg estlmate as before ,

N((A+ + M,M )|Lv)

> N(AT+(1+ ) My — )Py Py)
ML+ (1+ e Ma = ) Qully =< IKDQ)
- N((£, )P, IKIPH) |
- NNy (3.12)

In what follows we treat only the asymptyotics of N ((A+ +p, M,,)|Ly), since
we can prove the case of minus sign of Theorem 2.3 (, as we shall meet later,
also in the case of Theorem 1.2) in the same way with obvious modifications.

- Lemma 3.4 Forpu>0,
N((1, o) PalK|Ps) < 2N (-, 00)| T3 7T,
Rolds. | o N

Proof. Set . -
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~ then we have _
K*< K*+(K')?=2(E*E + EE") . - (3.13)

By the variational principle, it is easily seen that pr(P,|K|P.) < (| K])
where pi(-) stands for the k-th eigenvalue, of decreasing order, counting
multiplicity and (41,...,%)" is shorthand for {y|(p, %) = 0,k = 1,...,1}.
Then it follows that |

N((p, )| PalK|P) < N((p,00)|IK])
< N((MZ,OO)IKz)
N((-’iz-, )|E*E + EE*) (3.14)

where we used (3.13) at the third inequality.

- We choose ¢, ..., on(1esp. ¥n+1,---,@N+m) to be an orthonormal basis
of Ra,nE(l)("— o) (resp RanE(z)("— o0)), where we denote the spectral
projection of the self-adjoint operator E*E (resp. EE*) by EW(.) (resp.

E®(.)) . Now let ¢ be arbitrary element such that ¢ € (p,..., )" and
llpll = 1. Then

2

(¢, (E"E + EE")p) < -’:‘4— +£ =L

¥
| 4
holds. From this inequality and the variational principle, we get
w
2

pn+m+1(E*E + EE*) <

He'nceforth, it follows that
2
N((-Z—, o)|E*E + EE*)

N+M
2

7 . TR
N((7» )|E"E) + N((7, )| EE") .

IA

By considering the canonical form of compact operators E*E and EE*, we
conclude that two terms in the R.H.S. of the above inequality are equal.
Finally the statement of the lemma follows from the fact that P,V2P, |, is
unitarily equivalent to T*VT,. 1

Lemma 3.5 Fore > 0 small enough, there ezists Ci(e) > 0 independent
of 1 such that

N((A7 + (L £ e)p, My £ €)|Qu(Lv — €72 K|)Qa) < Cife)
holds.



193

Proof. Using the fact that L is reduced by RanQ,,
Qn(Lv — 7| K])Qn(QnLQn — i) |
= Qn(LV - S_ZIKI)(L - i)_l(L - i)(QnLQn - i)—lQn
+ e72Qn|K|(QuLQr — 1)71Q,, .
We observe that V(L —1)~! is compact, as commented in the proof of Lemma
3.2, and (L — )(QnLQn — i)7'Q,, is bounded by the closed graph theorem,
and that the last term of the R.H.S. is compact owing to |K|. Therefore
Qu(Lv — €7?|K|)Qn is relatively compact with respect to Q,LQ,,. Finally,
Oess(@nLQn) N (AL + (1L €)p, M, £¢)
= UB7AfIn (A + (1t e)p, M, +¢)
j#n
= 9,

holds for € > 0 small enough. Putting together these facts, we come to the
conclusion. []

We state a key proposition without proof. This can be proved using
the asymptotic estimate of the number of eigenvalues of pseudodifferential
operators of negative order ([D-R]) :

Proposition 3.6 (i) Assume (V.1), (B.2) and (A.1) hold. Moreover
assume that vE(u) satisfy the condition (T). Then we have

N((A} + 1, My)| Ty LyTa) = Byva(p)(1+0(1)) aspl0.

(i) Under the same assumptions as (i), we have

2 ~
lim lim sup N((E-, 0o)|T*V2T,) /vy (1) = 0 .
ElO ulo I )

Now let us set about a proof of one of main theorems.

Proof of Theorem 2.3. Since Y. () is compact, for each ¢ > 0, there
exists a constant Cy(¢) > 0 independent of p, it is derived that

N((5,00)¥:5(e)) < Cale) (3.15)
Putting together (3.11), (3.12), (3.15), lemma 3.4, and lemma 3.5,
EN((A7 +p Mo)lLv) < £ N((A} + (1 —e)p, M, + )| T2 Ly Ts)
+ N o) TP,
+ Ci(e) + Cae) .
Furthermore, by Proposition 3.6,
+lim lirﬁﬁ)up N((A7 + p, My)|Lv)/Byvy (p) < £1

holds where we also used (T). This proves Theorem 2.3. []
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