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EVALUATION OF ACCELERATION
TECHNIQUES FOR THE RESTARTED ARNOLDI

METHOD
西田 晃 小柳 義夫

AKIRA NISHIDA* AND YOSHIO OYANAGI*

Abstract. We present an approach for the acceleration of the restarted Arnoldi iteration for the
computation of a number of eigenvalues of the standard-eigenproblem $Ax=\lambda x$ . This study applies the
Chebyshev polynomial to the restarted Arnoldi iteration and proves that it computes necessary eigenvalues
with far less complexity than the QR method. We also discuss the dependence of the convergence rate
of the restarted Arnoldi iteration on the distribution of spectrum. This research aims to compare this
algorithm with other state-of-the-art approaches.

Key words. sparse $\sim \mathrm{n}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{C}$ eigenvalue problems, restarted Arnoldi iteration, polynomial accel-
eration

1. Introduction. The situation of the computation of eigenpairs for the standard
eigenproblem was not satisfactory, since they can not be treated by the direct approaches.
The QR method requires $\mathcal{O}(n^{3})$ arithmetic operations, which puts restrictions on $n$ . For
nonsymmetric matrices, Arnoldi’s method [1], the two-sided Lanczos method [2], and
Davidson’s method [5] were available, although their behavior was still less understood.

In the past five years, there have been great progress in the further developments of these
methods. Arnoldi’s method, which had the defect of increasing computational complexity
per iteration step, was much improved by Saad [15] with the explicitly restarting technique,
by which the dimensions of the searchspaces can be kept modest. Although the restarted
Arnoldi iteration is quite effective, the dimension of the subspace is inevitably large, in
particular when the wanted eigenvalues are clustered. Moreover it favors the. convergence
on the envelope of the spectrum. In this paper, we use the convex hull proposed for the
solution of the nonsymmetric linear system to accelerate the convergence of the restarted
Arnoldi iteration. We also mention the relatively recent variant developed by Sorensen [20],
the implicitly restarted Arnoldi iteration, which is a truncation of the standard implicitly
shifted Arnoldi iteration.

2. Background. We will give an outline of the methods referred to in this paper here.
The idea of the iteration techniques is explained briefly. We then describe the least-squares
based method, which were originally developed for solving t.h$\mathrm{e}$ linear system $[16][17]$ .

2.1. The Arnoldi iteration. The Arnoldi approach involves the column-by-column
generation of an orthogonal $Q$ such that $Q^{T}AQ=H$ is the Hessenberg $\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}[7]$. If
$Q=[q_{1}, \ldots, q_{l}]$ and we isolate the last term in the summation $Aq_{\mathrm{t}}=\Sigma_{i=}^{l+1}1hilq_{l}$ , then

$h_{l+1},l.q_{l+}1^{-}-.Aq_{l}- \sum$ h$i=1l$ ilql $:\equiv..r_{l}$
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where $h_{il}=q_{i}^{T}Aq_{l}$ for $i=1,$ $\ldots,$

$l$ . We assume that $q_{1}$ is a given 2-norm starting vector.
The Arnoldi process computes an orthonormal basis for the Krylov subspace $\mathcal{K}(A, q_{1}, l)$ :

$\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{q_{1}, \ldots, q_{l}\}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{q1, Aq1, \ldots, Al-1q1\}$ ,

in which the map is represented by an upper Hessenberg matrix $H_{l}$ .
1. $h_{1,1}=(Aq1, q_{1})$ ;
2. for $j=1,$ $\ldots,$

$l-1$ , put

$r_{j}=Aqj- \sum_{i=1}jh_{i}jqi$ , $h_{j+1,j}=||r_{j}||_{2}$ ,

$q_{j+1}=h_{j+}-1r_{j}1$
’

$h_{i,j+1}=(Aqj+1, qi)$ , $(i\leq j+1)$ .

The situation after $l$ steps is summarized by the $l$-step Arnoldi factorization

$AQ_{l}=Q_{l}H_{\mathrm{t}}+rle^{\tau}k$

where $e_{k}=(0, \ldots, 0,1)^{\tau}$ and $H_{l}=(h_{ij})$ . The algorithm terminates when $r_{j}=0$ , which
is impossible if the minimal polynomial of $A$ with respect to $q_{1}\mathrm{i}.\mathrm{s}$ of degree $\geq l$ . If this
condition is satisfied, $H_{l}$ is an irreducible Hessenberg matrix.

In the iterative variant [16], we start with an initial vector $q_{1}$ and fix a moderate value
$m$ , then compute the eigenvectors of $H_{m}$ . We begin again, using as a starting vector a
linear combination of the eigenvectors.

2.2. Explicitly restarted Arnoldi iteration. The algorithm of the explicitly restarted
Arnoldi iteration is summarized in Table 1. The choice of $m$ is usually a tradeoff between
the length of the reduction that may be tolerated and the rate of convergence. The accu-
racy of the Ritz values typically increases as $m$ does. For most problems, the size of $m$ is
determined experimentally.

TABLE 1
A block version of explicitly restarted Amoldi reduction with polynomial acceleration

1. Choose $V_{1}\in \mathrm{R}^{n\cross r}$ .
2. For $j=1,$ $\ldots,$ $m-1$ do

$W_{j}=AV_{j}$

For $i=1,$ $\ldots,j$ do
$H_{i,j}=V_{i}^{T}W_{j;}$ $W_{j}=W_{j}-V_{i}H_{i,j}$

end for
$Q_{j}R_{j}=Wj$ ; $V_{j+1}=Q_{j;}$ $H_{j+1,j}=R_{j}$

end for
3. Compute the eigenvalues of $H_{m}=(H_{i,j})\in \mathrm{R}^{mr\mathrm{x}mr}$ and select $\{\tilde{\lambda}_{1}, \ldots,\tilde{\lambda}_{r}\}$ of
largest real parts.
4. Stop if their Ritz vectors $\tilde{X}_{0}=\{\tilde{x}_{1}, \ldots,\tilde{x}_{r}\}$ satisfy the convergence criteria.
5. Define the iteration polynomial $p_{k}(\lambda)$ of degree $k$ by $\mathrm{S}\mathrm{p}(Hm)-\{\tilde{\lambda}_{1}, \ldots,\tilde{\lambda}_{r}\}$ .
6. $\tilde{X}_{k}=p_{k}(A)\tilde{X}_{0;}$ $Q_{k}R_{k}=\tilde{X}_{k;}$ $V_{1}=Q_{k}$

7. Goto 2.
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2.3. Implicitly restarted Arnoldi iteration. The ARPACK software package [9]
implements an implicitly restarted Arnoldi method. The scheme is called implicit because
the starting vector is updated with an implicitly shifted QR algorithm on the Hessenberg
matrix $H_{m}$ . This method is motivated by the following result:

Let $AX_{m}=X_{m}H_{m}+r_{m}e_{m}^{T}$ be a length $m$ Arnoldi reduction and $\phi(\cdot)$ a polynomial of
degree $p=m-k$ where. $k<m$ . Since

$\phi(A)X_{k}--X\phi m(H)m[e_{1}e_{2}\cdots e_{k}]$

holds, if we compute the QR factorization of $\phi(H_{m})[e_{1}e_{2}\cdots e_{k}]=Q_{k}R_{k}$ then the columns
of $X_{m}Q_{k}$ are an orthogonal basis for $\mathcal{R}(\phi(A)Xk)$ , where we denote by $\mathcal{R}(A)$ the range of
matrix $A$ .

Table 2 gives the basic algorithm as implemented by ARPACK. Note that the conver-
gence rate of the method does not depend on the distribution of the spectrum.

TABLE 2
An implicitly restarted Arnoldi iteration as implemented by ARPACK. Start: Build a length $m$ Arnoldi reduction $AX_{m}=X_{m}H_{m}+r_{m}e_{m}^{T}$ with
the starting vector $x_{1}$ .. Iteration: Until convergence

1. Compute the eigensystem $H_{m}S_{m}=S_{m}D_{m}$ ordered with the $k$

wanted eigenvalues located in the leading portion of the
quasi-diagonal matrix $D_{m}$ .

2. Perform $m-k=p$ steps of the QR iteration with the unwanted
eigenvalues of $D_{m}$ as shifts to obtain $H_{m}Q_{m}=Q_{m}H_{m}^{+}$ .

3. Restart: Postmultiply the length $m$ Arnoldi reduction with $Q_{k}$ to
obtain the length $k$ Arnoldi reduction
$AX_{m}Q_{k}=X+mQ_{k}H_{k}^{+}+r_{k}^{+}e_{k}^{\tau}$ . $Q_{k}$ represents the matrix
consisting of the leading $k$ columns of $Q_{m}$ , and $H_{k}^{+}$ is the leading
principal submatrix of order $k$ of $H_{m}^{+}$ .

4. Extend the length $k$ Arnoldi reduction to a length $m$ one.

3. Polynomial Accelerations Techniques. Suppose $A$ is diagonalizable with eigen-
pairs $(u_{j}, \lambda_{j})$ for $j=1,$ $\ldots,$

$n$ . If $\psi(\cdot)$ is some polynomial and we expand the current starting
vector $x_{1}$ in terms of the basis of eigenvectors, then

$\psi(A)x_{1}=u_{1}\psi(\lambda_{1})\zeta_{1}+\cdots+un\psi(\lambda)n\zeta n$

Assuming that the eigenpairs $(u_{i}, \lambda_{i})$ are ordered so that the wanted $k$ ones are at the
beginning of the expansion, we seek a polynomial such that

$i=k+1,..n \mathrm{m}\mathrm{a}\mathrm{x}.,|\psi(\lambda_{i})|<\min_{i=1,\ldots,k}|\psi(\lambda_{i})|$ .

Components in the direction of unwanted eigenvectors are dumped.
The acceleration techniques and hybrid methods presented by Saad [16] attempt to

improve the explicitly restarted Arnoldi iteration by approximately solving this min-max
problem. $\mathrm{M}\mathrm{o}\mathrm{t}\mathrm{i}_{\mathrm{V}}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ by $\mathrm{M}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{e}1_{\mathrm{S}}$

’ scheme $[\dot{1}2]$ , Saad proposed the use of Chebyshev
polynomials. A Chebyshev polynomial $\psi(A)$ on an ellipse containing the unwanted Ritz
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values is applied to the restart vector in an attempt to accelerate convergence of the original
explicitly restarted Arnoldi iteration. The polynomial is applied with the use of the familiar
three-term recurrence. ..

3.1. The least-squares based method. The choice of ellipses as enclosing regions
in Chebyshev acceleration may be overly restrictive and ineffective if the shape of the
convex hull of the unwanted eigenvalues bears little resemblance with an ellipse. This has
spurred much research in which the acceleration polynomial is chosen so as to minimize
an $L_{2}$ norm of the polynomial $\psi$ on $\sim \mathrm{t}\mathrm{h}\mathrm{e}$ boundary of the convex hull of the unwanted
eigenvalues with respect to some suitable weight function $\omega$ . The only restriction with
this technique is that the degree of the polynomial is limited because of cost and storage
requirements. This, however, is overcome by compounding low degree polynomials. The
stability of the computation is enhanced by employing a Chebyshev basis. It has been
shown that the least-squares based method for solving linear systems is competitive with
the ellipse based methods and are more reliable $[17][13]$ .

For convenience we can always normalize the polynomial so that $\psi(\lambda_{1})=1$ . The desired
polynomial satisfying the above constraint can be sought in the form $\psi_{n}(\lambda)\equiv 1-\lambda_{S_{n}()}\lambda$ .
By the maximum principle, the maximum modulus of $|1-\lambda S_{n}(\lambda)|$ is found on the boundary
of some region $H$ of the complex plane that includes the spectrum of $A$ and it is sufficient
to regard the problem as being defined on the boundary. We use the ieast squares residual
polynomial minimizing the $L_{2}$ norm $||1-\lambda_{S_{n}}(\lambda)||_{w}$ with respect to some weight $w(\lambda)$

on the boundary of $H[17]$ . Suppose that the $\mu+1$ points $h_{0},$ $h_{1,\mu}\ldots,$$h$ constitute the
vertices of $H$ . On each edge $E_{\nu},$ $\nu=1,$ $\cdots,$ $\mu$ , of the convex hull, we choose a weight
function $w_{\nu}(\lambda)$ . Denoting by $c_{\nu}$ the center of the $\nu \mathrm{t}\mathrm{h}$ edge and by $d_{\nu}$ the half width, i.e.,
$c_{\nu}=(h_{\nu}+h_{\nu-1})/2,$ $d_{\nu}=(h_{\nu}-h_{\nu-1})/2$ , the weight function on each edge is defined by
$w_{\nu}( \lambda)=2|d_{\nu}^{2}-(\lambda-c_{\nu})^{2}|^{-}\frac{1}{2}/\pi$ . The inner product on the space of complex polynomials is
defined by $\langle p, q\rangle=\Sigma_{\nu=1}^{\mu}\int_{E}\nu p(\lambda)\overline{q(\lambda)}w_{\nu}(\lambda)|d\lambda|$ . An algorithm using explicitly the modified
moments $\langle t_{i}(\lambda), t_{j}(\lambda)\rangle$ , where $\{t_{j}\}$ is some suitable basis of polynomials, is developed for
the problem of computing the least squares polynomials in the complex plane.

We express the polynomial $t_{j}(\lambda)$ in terms of the Chebyshev polynomials $t_{j}(\lambda)$

$=\Sigma_{i=0}^{j}\gamma^{(\nu)}i,j\tau_{i}(\xi)$ where $\xi=(\lambda-c_{\nu})/d_{\nu}$ is real. The expansion coefficients $\gamma_{i,j}^{(\nu)}$ can be
computed easily from the three term recurrence of the polynomials $\beta_{k+1}t_{k+}1(\lambda)=(\lambda-$

$\alpha_{k})t_{k}(\lambda)-\delta_{kk}t-1(\lambda)$ . The problem $\min_{s\in\psi_{n}}-1||1-\lambda_{S_{n}()}\lambda||_{w}$ is to find $\eta=(\eta 0, \eta 1, \cdots, \eta n-1)^{T}$

of $s_{n}(\lambda)=\Sigma_{i=0}^{n-1}\eta iti(\lambda)$ so that $J(\eta)=||1-\lambda_{S_{n}()}\lambda||_{w}$ is minimum.

3.2. Approach. In the previous section we described the outline of the least-squares
based method on any arbitrary area. It has a difficulty on the application. to other purposes
due to the constraint $\psi_{n}(0)=1$ .

We use the fact that the eigenvalue problem does not require any such condition to the
polynomial and propose a new simple algorithm to get the mini-max polynomial to accel-
erate the convergence of the projection method. The minimum property of the Chebyshev
functions described below is important to prove the optimality of this polynomial.

Let $.\mathrm{a}$ non-negative weight function $w(\lambda)$ be given in the interval $a\geq\lambda\geq b$ . The
orthogonal polynomials $p\mathrm{o}(\lambda.),p1(\lambda),$ $\cdots,$

.
when multiplied by suitable factors $C$ , possess a

minimum property: . .,

44



the integral $\int(\lambda^{n}+a_{n-1}\lambda^{n-1}+\cdots+a_{0})^{2}w(\lambda)d\lambda$ takes on its least value when the poly-
nomial in the integrand is $Cp_{n}(\lambda)$ . The polynomial in the integrand may be written as
a linear combination of the $p_{i}(\lambda)$ , in the form $(c_{p_{n}}(\lambda)+c_{n-1}p_{n}-1(\lambda)+\cdots c_{0})$. Since
the functions $p_{n}(\lambda)\sqrt{w(\lambda)}$ are orthogonal, and in fact, orthogonal if the $p_{i}(\lambda)$ are appro-
priately defined, the integral is equal to $C^{2}+\Sigma_{\nu 0}^{n-1}=c_{\nu}^{2}$

.
’ which assumes its minimum at

$c_{0}=c_{1}=\cdots=Cn-1=0$ .
Using the above property, we $\dot{\mathrm{d}}$escribe the new method to generate the coefficients of

the ortho-normal polynomials in terms of the Chebyshev weight below.
We use the three term recurrence $\beta_{n+1}p_{n+}1(\lambda)=(\lambda-\alpha_{n})p_{n}(\lambda)-\beta_{n}p_{n-1}(\lambda)$ , where

$p_{i}(\lambda)$ satisfies the ortho-normality. Because of the condition of the use of the Chebyshev
polynomial $\psi_{n}(\lambda)=\Sigma_{i=}^{n}0\gamma_{i,n}\tau_{i}(\nu)[(\lambda-C_{\nu})/d_{\nu}]$ , the constraints $\langle\psi_{0}, \psi_{0}\rangle=2\Sigma_{\nu=1}^{\mu}|\gamma_{0}^{(\nu_{0}},|^{2})=$

$1,$ $\langle\psi_{1}, \psi_{1}\rangle=\Sigma_{\nu=1}^{\mu}[2|\gamma_{0,1}^{(\nu)}|^{2}+|\gamma_{1,1}^{(\nu)}|^{2}]=1$ , and $\langle\psi_{0}, \psi_{1}\rangle=2\Sigma_{\nu=1}^{\mu}\gamma_{0}^{(\nu)},0\overline{\gamma}_{1,1}^{(\nu)}=0$ must hold.
Moreover each expansion of $\psi_{i}(\lambda)$ at each edge must be consistent.

Using the three term recurrence of the Chebyshev polynomials, a similar recurrence
$\beta_{k+1}\psi_{k1}+(\lambda)=(\lambda-\alpha_{k})\psi k(\lambda)-\delta_{k}\psi k-1(\lambda)$ on $\psi_{i}(\lambda)$ holds. Denoting $\xi_{\nu}$ by $\xi_{\nu}=(\lambda-c_{\nu})/d_{\nu}$ ,
the equation can be rewritten as

$\beta_{k+1}\psi_{k+}1(\lambda)=(d\nu\xi+c_{\nu}-\alpha_{k})\sum^{k}\gamma^{(}i,kTi=0(\nu)\xi i)-\delta_{k}\sum_{i=0}\gamma_{i,k-1}T_{i}(k-1(\nu)\xi)$ .

From the relations $\xi T_{i}(\xi)=[T_{i+1}(\xi)+T_{i-1}(\xi)]/2,$ $i>0$ and $\xi T_{0}(\xi)=T_{1}(\xi)$ , it is expressed
by

$\sum\gamma_{i}\xi Ti(\xi)=\frac{1}{2}\gamma 1T\mathrm{o}(\xi)+(\gamma_{0}+\frac{1}{2}\gamma 2)\tau 1(\xi)+\cdots+^{1}\neg 2(\gamma i-1+\gamma i+1)\tau_{i}(\xi)+\cdots+\frac{1}{2}(\gamma n-1+\gamma_{n}+1)T_{n}(\xi)$,

where $\gamma_{n+1}=0$ , and arranged into

$\beta_{n+1}\psi n+1(\lambda)=d$ [$\nu\frac{\gamma_{1,n}^{(\nu)}}{2}$To $( \xi)+(\gamma 0,n+(\nu)\frac{\gamma_{2,n}^{(\nu)}}{2})T_{1}(\xi)+\cdots+\sum_{=i2}^{n}\frac{1}{2}(\gamma i(\nu)1-,n\gamma^{(}i++1,n)\nu)\tau_{i}(\xi)$]

$+(c \nu-\alpha_{n})\sum_{0i=}^{n}\gamma i,nT_{i}(\nu)(\xi)-\delta_{n}\sum_{=i0}^{n}-1\gamma^{(}i,n-1\nu)\tau_{i}(\xi)$ $(T_{-1}=T_{1})$ .

Comparing the equation with $\psi_{n+1}(\lambda)=\sum_{i=0}^{n+1}\gamma^{(\nu)}i,n+1\tau i(\xi)$, we find the following relations

$\beta_{n+1}\gamma_{0,n}^{(}+1\frac{1}{2}d_{\nu}\gamma_{1,n}=+\nu)(\nu)(_{C}\nu-\alpha_{n})\gamma^{(\nu)}0,n-\delta_{n}\gamma_{0}(,\nu)n-1$
’

$\beta n+1\gamma_{1,+}^{(}n1=d\nu\nu)(\gamma^{(\nu)}0,n+\frac{1}{2}\gamma^{(\nu}2,n))+(c_{\nu}-\alpha n)\gamma_{1}^{()},n-\nu\delta_{n}\gamma^{(}1,n-1\nu)$ ,

and

$\beta n+1\gamma_{i,n}^{(}\nu)\frac{d_{\nu}}{2}[\gamma_{i}(+1=+1,n\gamma+i-1,n]\nu)(\nu)+(c-\nu n\alpha)\gamma_{i,nn}^{(}-\delta\gamma^{(}i,n-1\nu)\nu)$
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$i=2,$ $\ldots,$
$n+1$ $(\gamma_{-1}^{(\nu)},n=\gamma_{1,n}^{()}\nu, \gamma_{i,n}^{(\nu)}=0 i>n)$ .

Using the relation $\beta_{k+1}\psi_{k+1}(\lambda)=(\lambda-\alpha_{k})\psi_{k}(\lambda)-\delta_{k}\psi_{k}-1(\lambda)$ and the orthogonality of
the Chebyshev polynomials, we derive

$\beta_{k+1}=\langle\psi k+1, \psi k+1\rangle^{1}/2=\sum\int_{E_{\nu}}\psi_{k+1}\overline{\psi_{k}+1}w\nu(\lambda)|d\lambda|=\sum^{\mu}\sum_{i0}=\gamma_{i}\nu=1\mu/k+1,\overline{\gamma_{i,k+1}^{(\nu)}}\nu=1(\nu_{k+})1$

where we denote by $\Sigma_{i=0}^{\prime n}ai=2a_{0}+\sum_{i=1}^{n}a_{i}$ .
$\alpha$ and $\delta$ are computed similarly:

$\alpha_{k}=\langle\lambda\psi_{k}, \psi_{k}\rangle=\sum_{\nu=}\mu 1(c_{\nu^{\sum_{i}\sum)}}/k=0i,k\overline{\gamma_{i,k}^{(\nu)}}+d_{\nu}i=\gamma^{(}\nu)/k0\gamma_{i}^{(\nu_{k}},\gamma i+1,k)\overline{(\nu)}$, $\delta_{k}=\langle\lambda\psi k, \psi_{k-}1\rangle=\sum_{=\nu 1}^{\mu}d_{\nu}v\nu$

where $v_{\nu}= \gamma_{1,k}^{(\nu)}\overline{\gamma_{0}^{\not\in\nu)},k-1}+(\gamma_{0,k}^{(\nu)}+\frac{1}{2}\gamma_{2,k}^{()(}\nu)\overline{\gamma_{1},\nu)k-1}+\Sigma_{i=2}^{k-1}\frac{1}{2}(\gamma i(\nu)-1,k+\gamma_{i+k}^{(\nu)}1,)\overline{\gamma i,k(\nu)-1}$.

4. Evaluation.

4.1. Complexity of the algorithms. The cost in terms of the number of floating-
point operations are as follows: We denote by $n,$ $nz,$ $m,$ $r,$

$k$ respectively the order of
the matrix, its number of nonzero entries, the number of block Arnoldi steps, the number
of required eigenvalues, and the degree of the Chebyshev polynomial. The block Arnoldi
method costs $\sum_{j=1}^{m}\{2rnz+4nr^{2}j+2r(r+1)n\}=2rmnz+2mr(mr+2r+1)n$ flops.
$10r^{3}m^{3}$ flops are required for the computation of the eigenvalues of $H_{m}$ of order $mr$ by
the QR method, $r^{3}\mathcal{O}(m^{2})$ for the corresponding eigenvectors by the inverse iteration, and
$2krnz+\mathcal{O}(n)$ for the Chebyshev iteration $[7, 18]$ . The computation of the coefficients costs
approximately $\mathcal{O}(\mu k^{2})$ flops, where $\mu$ is the number of the vertices of the convex hull.

4.2. Numerical results. This section reports the results of the numerical experi-
ments of our method and evaluates its performance. The experiments are performed on
$\mathrm{H}\mathrm{P}9000/720$ using double precision.

We start with the decision of each element of the matrix given in the problem. In this
section, the scaled sequences of random numbers are assigned respectively to the real and
the imaginary parts of the eigenvalues except for those which are to be selected. The
matrices are block diagonals with 2 $\cross 2$ or 1 $\cross 1$ diagonal blocks. Each block is of the

form $[-2bab/2a]$ to prevent the matrix to be normal and has eigenvalues $a\pm bi$ . It

is transformed by an orthogonal matrix generated from a matrix with random elements
by the Schmidt’s $\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{g}_{\mathrm{o}\mathrm{n}}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{\mathrm{o}\mathrm{d}}$. $m$ and $n_{c}\dot{\mathrm{d}}$enote the order of the Arnoldi
method and the maximum order of the Chebyshev polynomials respectively. We compare
this algorithm with the double-shifted QR method. The error is computed by the $L_{2}$ norm.

In this section we test the some variations of the distribution of the eigenvalues using the
matrices of order 50, the cases of $\lambda_{\max}=2,1.5$ , and 1.1 while the distribution of the other
eigenvalues is $\Re \mathrm{e}\lambda\in[0,1]$ , and $s^{\infty}\mathrm{m}\lambda\in[-1,1]$ . We denote the number of the iterations
by $n_{iter}$ .

.$\cdot$.
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4.3. Comparison with other methods. Some test problems from the Harwell-
Boeing sparse matrix collection [4], the spectral portraits [6] of which are shown in Figure
1 and Figure 2, are solved using the block Arnoldi method. Ho’s algorithm is used for
reference.

The stopping criterion is based on the maximum of all computed residuals $\max_{1\leq i\leq r}$ ||
$Ax_{i}- \lambda_{i}X_{i}||_{2}/||x_{i}||_{2}\equiv\max_{1\leq i\leq r}||Hm+1,m\mathrm{Y}m,r,i||_{2}/||\mathrm{Y}_{m,i}||_{2}\leq\epsilon$ . $\mathrm{Y}_{m,r,i}$ and $\mathrm{Y}_{m,i}$ stand
for the i-th column of the $\mathrm{Y}_{m,r}$ and $\mathrm{Y}_{m}$ .

Table 4 and Table 5 indicate that Ho’s algorithm shows better performance than the
orthogonality-based method in most conditions except for the cases where the moduli of the
necessary eigenvalues are much larger than those of the unnecessary eigenvalues. We may
derive from the result the poor optimality of the convex hul.l despite its low computation
cost.

Lehoucq and Scott [10] presented a software survey of large-scale eigenvalue methods
and comparative results. The Arnoldi-based software included the following three packages
ARNCHEB package [3], the ARPACK software package [11], and the Harwell Subroutine Library
code EB13 [19].

The ARNCHEB package provides the subroutine ARN0L, which implements an explicitly
restarted Arnoldi iteration. The code is based on the deflated polynomial accelerated
Arnoldi iteration and uses Chebyshev polynomial acceleration. The Harwell Subroutine
Library code EB13 implements the similar algorithm and also uses Ho’s Chebyshev polyno-
mial acceleration. The ARPAcK provides subroutine DNAUPD that implements the implicitly
restarted Arnoldi iteration.

Some findings are reported on these methods:
\bullet ARNCHEB gives reasonable results for computing a single eigenpair but it can strug-

gle on problems for which several eigenvalues are requested.
\bullet ARPACK displays monotonic consistency and is generally the fastest and most de-

pendable of the codes studied, especially for small convergence $\mathrm{t}\mathrm{o}\mathrm{l}\mathrm{e}\mathrm{r}\dot{\mathrm{a}}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{S}$ and large
departures from normality. It uses dramatically fewer matrix-vector product than
ARNCHEB. However, its restarting strategy can be more expensive.

Moreover, from the results of Table 6 and $\mathrm{T}\mathrm{a}\mathrm{b}\mathrm{l}\dot{\mathrm{e}}7$ , we can derive the strong dependency
of EB13 on the distribution of spectrum.

TABLE 3
The distribution of the other eigenvalues: $\Re \mathrm{e}\lambda\in$ [0,1], $s^{\infty}\mathrm{m}\lambda\in$ [-1,1]. CPU times (in seconds) by

$HP\mathit{9}\mathit{0}\mathit{0}\mathit{0}/7\mathit{2}\mathit{0}$.

$\ovalbox{\tt\small REJECT} 115102029\mathrm{R}146111535203\mathrm{o}^{\mathrm{R}}\mathrm{E}-150_{1}352.251536150_{70}3821507583975\mathrm{R}13393\mathrm{E}1\mathrm{R}1650820575136\mathrm{L}152\mathrm{L}\mathrm{R}15188151851875$

.

5. Parallelization. The parallelization of non-Hermitian eigenproblem is not com-
monly studied. A MIMD parallel implementation of the Arnoldi method is implemented
and mentioned in [14] for both tightly coupled as well as loosely coupled memory machines
with vector elementary processors and large granularity. This study has already shown
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TABLE 4
Test problems from CHEMWEST, a library in the Harwell-Boeing Sparse Matrix Collection, which

was extracted from modeling of chemical enginee$r\dot{\tau}ng$ plants. The results by $Ho’ s$ algorithm (right) versus
those by the orthogonality-based method (left), with size of the basis 20, degree of the polynomial 20, and
block size 1; respectively, are listed. $*’$ denotes the algorithm fails to converge. $t$
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$\ovalbox{\tt\small REJECT}_{0370}^{\mathrm{n}\mathrm{u}}\mathrm{n}\mathrm{u}\mathrm{m}_{\mathrm{U}}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{r}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}_{\mathrm{S}1}41032162*\mathrm{b}\mathrm{e}_{\mathrm{i}\mathrm{e}}\mathrm{r}\mathrm{o}\mathrm{f}\mathrm{m}\mathrm{u}\mathrm{I}\mathrm{t}\mathrm{i}\mathrm{p}1\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}924440275120137517\mathit{6}732\mathrm{o}\mathrm{C}\mathrm{p}\mathrm{m}_{\mathrm{b}\mathrm{f}\mathrm{e}}\mathrm{t}\mathrm{m}(\sec)22017012871*128067*127$

TABLE 5
Test problems from TOLOSA extracted from fluid-structure coupling (flutter problem). Size of the

basis, degree of the polynomial, and block size are 20, 20, 1, respectively.

$\ovalbox{\tt\small REJECT}_{\mathrm{c}}\mathrm{n}\mathrm{u}_{\mathrm{P}}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}45332\mathrm{n}\mathrm{u}\mathrm{m}_{\mathrm{U}}\mathrm{b}\mathrm{e}_{\mathrm{i}\mathrm{m}}\mathrm{r}\mathrm{t}\mathrm{o}\mathrm{f}\mathrm{m}\mathrm{e}(\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{u}1\mathrm{t}\mathrm{i})083043124070123085257281\mathrm{p}_{\mathrm{S}7}1\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}58924039318023\mathit{6}14039338023\mathit{6}857214310970$

TABLE 6
Evaluation by Lehoucq and Scott. $CPU$ times (in $\mathit{8}econd_{S)}$ by $IBMRS/\theta \mathrm{O}\mathrm{O}\mathrm{O}\mathit{3}BT$ and matrix-vector

products for computing the right-most eigenvalues of WEST2021 from CHEMWEST $(^{*}$ denotes convergence
not reached within $2000_{m}$ matrix-vector products). We denote by $r$ the block size and by $m$ the subspace
dimension.

$\overline{\frac{\mathrm{A}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{r}=1,\mathrm{m}=8\mathrm{r}--5,\mathrm{m}_{-}^{-}20}{\mathrm{E}\mathrm{B}12*98/20930}}$

ARNCHEB 8.6/3233 71/15921
EB13 17/4860 18/4149
ARPACK 3.7/401 2.1/167

TABLE 7
$CPU$ times (in $\mathit{8}econd_{S)}$ and matrix-vector products for computing the $r\cdot ight$-most eigenvalues of

PORES2, matrix of order 1224 with 9613 entries, which was extracted from reservoir simulation.

$\overline{\frac{\mathrm{A}\circ \mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{r}=1,\mathrm{m}=12\mathrm{r}=4,\mathrm{m}=20}{\mathrm{E}\mathrm{B}120.\mathit{6}/4239.1/2890}}$

ARNCHEB 3.4/1401 4.7/1712
EB13 0.4/119 1.3/305
ARPACK 0.5/90 1.3/151
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FIG. 1. Spectral Portraits of WEST0655 and WEST0989 from CHEMWEST.

FIG. 2. Spectral Portraits of WEST2021 and PORES2
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that the QR method is the most significant bottleneck on these MIMD architectures. The
speed of convergence for such methods usually increases which the subspace size $m$ is cho-
sen larger. The number of floating-point operations, and therefore the time required by the
algorithm, rapidly increases with subspace dimension $m$ . Furthermore, $m$ must be taken
as small as possible to avoid QR to become a bottleneck.

Henry and van de Geijn [8] show that under certain conditions the described approach
is asymptotically 100% efficient. It is impossible to find an implementation with better
scalability properties, since for maintaining a given level of efficiency the dimension of the
matrix must grow linearly with the number of processors. Therefore, it will be impossible
to maintain the performance as processors are added, since memory requirements grow
with the square of the dimension, and physical memory grows only with the number of
processors. They also show that for the standard implementation of the sequential QR
algorithm, it is impossible to find an implementation with better scalability properties.

6. Conclusion. We simplified the computation of the least-squares polynomial which
minimizes its norm on the boundary of the convex hull enclosing unwanted eigenvalues,
using the minimum property of the orthogonal polynomials. This method requires the
computation of $2rmnZ+2mr(mr+2r+1)n$ flops for the block Arnoldi method, $r^{3}[10m^{3}+$

$\mathcal{O}(m^{2})]$ for the computation of the eigenvalues of $H_{m}$ , and $2krnz+\mathcal{O}(n)$ for the Chebyshev
iteration. The number of floating point operations rapidly increases with the size of the
subspace dimension $m$ and it indicates that we need to take $m$ as small as possible if we
want to avoid QR to become a bottleneck, even on parallel architectures. Although some
problems are to be solved, the validity of our method was confirmed by the experiments
using the Harwell-Boeing Sparse Matrix Collection, which is a set of standard test matrices
for sparse matrix problems. A more detailed analysis of the precision and the complexity
of the methods is required.
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