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Abstract

In this article we discuss the application of a Lagrange multiplier based domain
embedding method (also called fictitious domain method) to the numerical simulation
of incompressible viscous flow modelled by the Navier-Stokes equations around moving
bodies. The solution method combines finite element approximations, time discretization
by operator splitting and conjugate gradient algorithms for the solution of the linearly
constrained quadratic minimization problems coming from the splitting method. The
results of several numerical experiments for two-dimensional flow around a moving disk
are presented.

1. Introduction: Principle, Historical Facts and Synopsis

Supposed that $\Omega\subset lR^{d}(d=1,2,3)$ is a connected open set (a domain) containing an
inclusion $\omega$ , as shown in Figure 1, below; we denote by $\Gamma$ and $\gamma$ the boundaries of $\Omega$ and
$\omega$ , respectively. We consider now the following boundary value problem

$A(u)=f$ in $\Omega\backslash \overline{\omega}$ , (1)
$B_{0}(u)=g_{0}$ on $\Gamma$ , (2)
$B_{1}(u)=g1$ on $\gamma$ , (3)

where, in (1)$-(3)$ , the functions $f,g_{0},g_{1}$ , and operators $A,$ $B_{0},$ $B_{1}$ , are given.
Assuming that the shape of $\Omega$ is simple (which is clearly the case for the example

of Figure 1) it is reasonable to want to take advantage of that simplicity when solving
problem (1)$-(3)$ numerically; indeed, it may allow, among other things, the use of regular
finite difference or finite element meshes and consequently of fast solvers for the finite
dimensional systems approximating problem (1) $-(3)$ on these grids. In order to address
this goal a reasonable idea is to replace problem (1)$-(3)$ by the following one:

Find $\tilde{u}$ defined over $\Omega$ and $S_{\gamma}$ a measure supported by $\gamma_{f}$ so that
$\tilde{A}(\tilde{u})=\tilde{f}+^{s}\gamma$ in $\Omega$ , (4)
$\tilde{B}_{0}(\tilde{u})=g_{0}$ on $\Gamma$ , (5)
$\tilde{B}_{1}(\tilde{u}|_{\Omega\backslash }\overline{\omega})=g_{1}$ on $\gamma$ ; (6)
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Figure 1 Geometry of Problem (1)$-(3)$

in (4)$-(6)$ , operator $\tilde{A}$ is an operator of the same type than $A$ , which concides- in some
sense- with $A$ on $\Omega\backslash \overline{\omega},\tilde{f}$ is some extension of $f$ over $\Omega$ and $\tilde{B}_{0},\tilde{B}_{1}$ are extensions of $B_{0}$ ,
$B_{1}$ . If $S_{\gamma}$ is well-chosen, so that the corresponding solution of the boundary value problem
(4), (5) satisfies relation (6) we can expect to have $\tilde{u}|_{\Omega\backslash \overline{\omega}}=u$ , where $u$ is the solution of
problem (1)$-(3)$ . At that stage, several comments are in order:

Remark 1. There are other ways to “embed” domain $\Omega\backslash \overline{\omega}$, in the larger domain $\Omega$ . We
can use penalty, for example, as shown in refs. [1] and [2].

Remark 2. Domain embedding methods can also be applied to time dependent problems
as shown in this article (see also $[3]-[7]$ ).

Remark 3. There is no particular difficulty to replace $\omega$ by a finite number of “holes”, $\omega_{1}$ ,
$\omega_{2},$

$\ldots,$ $\omega_{q}$ , with $q\geq 2$ .

Remark 4. Most references on domain embedding methods are concerned by application to
linear problems. Actually, these methods are also well-suited to the solution of nonlinear
problems as shown, for example, in $[4]-[7]$ (and in the present article). $\ovalbox{\tt\small REJECT}$

To our knowledge domain embedding techniques for the solution of partial differential
equations have been advocated for the first time, more than thirty years ago, by various
investigators of the Marchuk-Yanenko school of Numerical Mathematics, at Novossibirsk.
These methods belong, essentially, to the class of boundary fitted domain embedding
methods, since the discretization is taking place on a mesh which is a regular one with
the exception of a neighborhood of $\gamma$ where the mesh is locally distorted in order to
fit accurately the boundary $\gamma$ . This approach has motivated a very large number of
publications; we shall limit our references to $[8]-[10]$ which are typical examples of the
Novossibirsk domain embedding methodology (see also the references therein). In the
early seventies $\mathrm{G}.\mathrm{H}$ . Golub and collaborators introduced a domain embedding technique
for elliptic problems where, once again, the mesh has to follow the boundary $\gamma$ (see ref. [11]
for details). The domain embedding methods discussed in the present article are closer
to the method advocated by Ch. Peskin in [12]; indeed, in [12] Peskin uses a domain
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embedding method to simulate blood flow around heart valves (natural or artificial), the
flow being modelled by the incompressible Navier-Stokes equations. An important analogy
between the work in [12] and the present article is that in both cases one uses a mesh
which is nonfitted to $\gamma$ , and which therefore can stay fixed even if $\gamma$ moves. More recently,
R. Leveque and collaborators have developed in [13] a method closely related to Peskin’s
one.

In this article, motivated by the simulation of Navier-Stokes flow around moving rigid
bodies, we shall follow Peskin philosophy in the sense that we shall not use body fitted
meshes; also-unlike Peskin-we shall make a systematic use of variational principles and
of a Lagrange multiplier to enforce the boundary condition on $\gamma$ . In fact the Lagrange
multiplier will be the measure $S_{\gamma}$ in equation (4). The content of this article is as follows:

In Section 2 we shall formulate a model flow probl.e$\mathrm{m}$ governed by the incompressible
Navier-Stokes equations. A Lagrange $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{r}/\mathrm{d}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}$ embedding based variational
formulation of the above problem will be given in Section 3. In Section 4, we shall
describe a finite element approximation of the above variational problem, while in Section
5 we shall discuss its time discretization by operator splitting methods \‘a la Marchuk-
Yanenko. In Section 6 we shall discuss the solution of the various sub-problems associated
to the splitting method, and finally, in Section 7, we shall present the results of numerical
experiments.

Remark 5. The present article is not a close repetition of the Navier-Stokes/domain
embedding methods related parts of refs. $[5]-[7]$ . Indeed in the above articles the
incompressibility condition was forced via a Stokes solver \‘a la Cahouet-Chabard (see
refs. $[14]-[19])$ , while in this chapter we shall use a $L^{2}$ -projection method, closely related
to the one used in, e.g., [20] (see also the references therein).

2. Formulation of a Model Problem

The geometrical situation being like in Figure 1 (with $d=2,3$ ) with $\omega=\omega(t)$ a moving
rigid body we consider for $t\geq 0$ the solution of the following system of Navier-Stokes
equations

$\frac{\partial \mathrm{u}}{\partial t}-\nu\triangle \mathrm{u}+(\mathrm{u}\cdot\nabla)\mathrm{u}+\nabla p=\mathrm{f}$ in $\Omega\backslash \overline{\omega(t)}$ , (7)

$\nabla\cdot \mathrm{u}=0$ in $\Omega\backslash \overline{\omega(t)}$, (8)
$\mathrm{u}(\mathrm{x},0)=\mathrm{u}_{0}(\mathrm{x})$ , $\mathrm{x}\in\Omega\backslash \overline{\omega(0)}$ , (with $\nabla\cdot \mathrm{u}_{0}=0$), (9)
$\mathrm{u}=\mathrm{g}_{0}$ on $\Gamma$ , (10)
$\mathrm{u}=\mathrm{g}_{1}$ on $\gamma(t)$ . (11)

In (7)$-(11),$ $\mathrm{u}$ and $p$ denote as usual velocity and pressure, respectively; $\nu(>0)$ is a
viscosity coefficient, $\mathrm{f}$ a density of extemal forces, $\mathrm{x}$ the generic point of $R^{d}(\mathrm{x}=\{x_{i}\}_{i1}^{d}=)$ ,
$\gamma(t)=\partial\omega(t)$ and $( \mathrm{u}\cdot\nabla)\mathrm{u}=\{\Sigma_{j=1}^{jd}=u_{j}\frac{\partial u}{\partial x_{j}}\}_{i=1}i=d$ . We suppose that

$\int_{\Gamma}\mathrm{g}_{0}\cdot \mathrm{n}d\Gamma=^{\mathrm{o}}$, $\int_{\gamma(t)}\mathrm{g}_{1}\cdot \mathrm{n}d\gamma=0$, (12)
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where, in (12), $\mathrm{n}$ is the outer normal unit vector at $\partial(\Omega\backslash \overline{\omega(t)})$ ; if $\mathrm{g}_{1}$ is the velocity
associated to a rigid body motion the second condition in (12) is automatically satisfied.
In the following, we shall use, if necessary, the notation $\emptyset(t)$ for the function

$\mathrm{x}arrow\emptyset(\mathrm{x}, t)$ .

The existence of solution for problem (7)$-(11)$ is a nontrial mathematical issue when $\omega$ is
moving; we shall not address it in this article (see however [21] and the references therein).

3. A Lagrange $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{r}/\mathrm{d}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}$ embedding variational formulation of
problem (7)$-(11)$

We introduce first the following functional spaces

$\mathrm{V}_{\mathrm{g}_{0}\langle t)}=$ { $\mathrm{v}|\mathrm{v}\in(\mathrm{H}^{1}(\Omega))^{d},\mathrm{v}=\mathrm{g}_{0}(t)$ on $\Gamma$ }, (13)
$\mathrm{V}_{0=}(\mathrm{H}1(0)\Omega)^{d}$ , (14)
$L_{0}^{2}( \Omega)=\{q|q\in L^{2}(\Omega);\int_{\Omega}qd\mathrm{x}=0\}$, (15)
$\Lambda(t)=(\mathrm{H}-1/2(\gamma(t)))^{d}$ . (16)

We consider next $\mathrm{U}_{0}$ (resp., $\tilde{\mathrm{f}}$) such that

$\nabla\cdot \mathrm{U}_{0=}0,$ $\mathrm{U}_{0}|_{\Omega\backslash \overline{\omega \mathrm{t})}}0\mathrm{u}_{0}=$ , (17)

(resp., $\tilde{\mathrm{f}}|_{\Omega\backslash \overline{\omega}}=\mathrm{f}$).
It can be shown- at least formally- that problem (7)$-(11)$ is equivalent to:

For $t\geq 0_{\mathrm{Z}}$ find $\{\mathrm{U}(t), P(t), \lambda(t)\}\in \mathrm{V}_{\mathrm{g}_{0}\langle t)}\cross L_{0}^{2}(\Omega)\cross\Lambda(t)$ such that
$\int_{\Omega}\frac{\partial \mathrm{U}}{\partial t}\cdot \mathrm{v}d\mathrm{X}+\nu\int_{\Omega}\nabla \mathrm{U}\cdot\nabla \mathrm{v}d\mathrm{X}+\int_{\Omega}(\mathrm{U}\cdot\nabla)\mathrm{U}\cdot \mathrm{V}d\mathrm{x}-\int_{\Omega}P\nabla\cdot \mathrm{v}d\mathrm{x}$

$= \int_{\Omega}\tilde{\mathrm{f}}\cdot \mathrm{v}d_{\mathrm{X}}+\int_{\gamma\langle t)}\lambda\cdot \mathrm{V}d\gamma,$ $\forall \mathrm{v}\in \mathrm{V}_{0}$, (18)

$\nabla\cdot \mathrm{U}(t)=0$ , (19)
$\mathrm{U}(0)=\mathrm{U}_{0}$ , (20)
$\mathrm{U}(t)=\mathrm{g}1(t)$ on $\gamma(t)$ , (21)

in the sense that

$\mathrm{U}(t)|_{\Omega}\backslash \overline{\omega}=\mathrm{u},$ $P|_{\Omega\backslash \overline{\omega}}=p$ ; (22)

it is very easily shown that

$\lambda=[\nu\frac{\partial \mathrm{U}}{\partial \mathrm{n}}-\mathrm{n}P]_{\gamma}$ . (23)

where $[$ $]_{\gamma}$ denotes the jump at $\gamma$ .
Remark 6. For $\tilde{\mathrm{f}}$ we can take an $L^{2}$ -extension of $\mathrm{f}$ (by $0$ for example).
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Figure 2 Part of the triangulation of $\Omega$ with mesh points

indicated by $”*$ ” on the disk boundary

Remark 7. We observe that the actual geometry, i.e. $\omega(t)$ and $\gamma(t)$ , occurs “only” through
the $\gamma(t)$-integral in (18) and in (21).

4. Finite element approximation of problem (18)$-(21)$

We suppose that $\Omega\subset R^{2}(d=2)$ . With $h$ a space discretization step we introduce a
finite element triangulation $\mathcal{T}_{h}\mathrm{o}\mathrm{f}\overline{\Omega}$ and then $T_{2h}$ a triangulation twice coarser (in practice
we should construct $\mathcal{T}_{2h}$ first and then $\mathcal{T}_{h}$ by joining the midpoints of the edges of $\mathcal{T}_{2h}$ ,
dividing thus each triangle of $\mathcal{T}_{2h}$ into 4 similar subtriangles). We define then the following
finite dimensional spaces which approximate $\mathrm{v}_{\mathrm{g}\mathrm{o}(t}\mathrm{v}$), $0,$

$L2(\Omega),$ $L_{0}^{2}(\Omega)$ , respectively:

$\mathrm{V}_{\mathrm{g}_{0h}}=\{\mathrm{v}_{h}|\mathrm{v}_{h}\in C^{0}(\overline{\Omega})^{2}, \mathrm{v}h|_{T}\in P_{1}\cross P_{1}, \forall T\in \mathcal{T}_{h}, \mathrm{v}_{h}|\mathrm{r}=\mathrm{g}_{0h}\}$, (24)
$\mathrm{v}_{0h}=\{\mathrm{v}_{h}|\mathrm{v}_{h}\in C^{0}(\overline{\Omega})^{2}, \mathrm{v}h|_{T}\in P_{1}\cross P_{1}, \forall T\in \mathcal{T}_{h}, \mathrm{v}_{h}|_{\Gamma}=0\}$ , (25)
$L_{h}^{2}=\{q_{h}|q_{h}\in C^{0}(\overline{\Omega}), q_{h}|\tau\in P1, \forall T\in \mathcal{T}2h\}$, (26)

$L_{0h}^{2}= \{q_{h}|qh\in L_{h}2, \int_{\Omega}q_{h}d\mathrm{x}=0\}$ ; (27)

in (24), $\mathrm{g}_{0h}$ is an approximation of $\mathrm{g}_{0}$ satisfying $\int_{\Gamma}\mathrm{g}_{0h}\cdot \mathrm{n}d\mathrm{r}=0$ .
Concerning the space $\Lambda_{h}(t)$ approximating $\Lambda(t)$ , we define it by

$\Lambda_{h}(t)=\{\mu_{h}|\mu_{h}\in(L^{\infty}(\gamma(t)))2,$
$\mu h$ is constant on the arcjoining (28)

2 consecutive mesh points on $\gamma(t)\}$ .

A particular choice for the mesh points on $\gamma$ is visualized on Figure 2 where $\omega$ is a
disk. Let us mention that the mesh points on $\gamma$ do not have to be at the intersection
of $\gamma$ with the triangle edges; as shown in [22] one still has convergence properties (for
elliptic problems at least) if $h_{\gamma}\geq Ch_{\Omega}$ with $C$ of the order of 3 (numerical experiments
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suggest that $C=2\sqrt{2}$). This kind of decoupling between the $\Omega$ and $\gamma$ meshes makes the
domain embedding approach very attractive $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{p}\Gamma 0:\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}$

.
$\mathrm{s}$ with moving boundaries, like

those addressed in this article.
With the above spaces it is quite natural to approximate problem (18)$-(21)$ (with obvious

notation) by:

$\int_{\Omega}\frac{\partial \mathrm{U}_{h}}{\partial t}\cdot \mathrm{v}d\mathrm{x}+\nu\int_{\Omega}\nabla \mathrm{U}_{h}\cdot\nabla \mathrm{v}d\mathrm{X}+\int_{\Omega}(\mathrm{U}_{h}\cdot\nabla)\mathrm{U}h\mathrm{v}d_{\mathrm{X}}-\int_{\Omega}P_{h}\nabla\cdot \mathrm{v}d\mathrm{X}$

$= \int_{\Omega}\tilde{\mathrm{f}}_{h}\cdot \mathrm{v}d\mathrm{x}+\int_{\gamma(t)}\lambda h.\mathrm{V}d\gamma,$
$\forall \mathrm{V}\in \mathrm{V}0h$ , (29)

$\int_{\Omega}q\nabla\cdot \mathrm{U}_{h}(t)d\mathrm{x}=0,$ $\forall q\in L_{h}^{2}$ , (30)

$\mathrm{U}_{h}(0)=\mathrm{U}0h$ , (31)

$\int_{\gamma\langle t)}(\mathrm{U}_{h}(t)-\mathrm{g}1(t))\cdot\mu d\gamma=0,$ $\forall\mu\in\Lambda_{h}(t)$ , (32)

$\{\mathrm{U}_{h}(t),P_{h}(t), \lambda_{h}(t)\}\in \mathrm{V}_{\mathrm{g}\mathrm{o}\mathrm{t}^{t}})h\cross L_{0h}^{2}\cross\Lambda_{h}(t)$ ; (33)

in (31), $\mathrm{U}_{0h}$ is an approximation of $\mathrm{U}_{0}$ so that $\int_{\Omega}q\nabla\cdot \mathrm{U}0hd_{\mathrm{X}}=0,$ $\forall q\in L_{h}^{2}$ . The time
discretization of problem (29)$-(33)$ by operator splitting methods will be discussed in
Section 5.

5. Time discretization of problem (29)$-(33)$ by operator splitting methods

Most “modern” Navier-Stokes solvers are based on operator splitting algorithms in order
to force the incompressibility condition via a Stokes solver or a $L^{2}-$ projection method
(see refs. [19], [20] for details). This approach still applies to the initial value problem
(29)$-(33)$ . Indeed this problem contains three numerical difficulties to each of which can
be associated a specific operator, namely

1. The incompressibility condition and the related unknown pressure.
2. An advection-diffusion term.
3. The boundary condition on $\gamma(t)$ and the related multiplier $\lambda(t)$ .
The operators in (1) and (3) are essentially projection operators.

$i^{\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{m}}$ an abstract point of view problem (29)$-(33)$ is a particular case of the following
class of initial value problems

$\{$

$\frac{d\phi}{dt}+A_{1}(\phi)+A_{2}(\emptyset)+A3(\emptyset)=f$ , (34)
$\phi(0)=\phi_{0}$ ,

where operators $A_{i}$ can be multivalued. Among the many operator splitting schemes which
can be employed to solve (34) we shall advocate the very simple one below (analyzed in,
e.g., [23] $)$ ; it is only first order accurate, but its low order accuracy is compensated by
good stability and robustness properties.

A fractional step scheme \‘a la Marchuk- Yanenko:
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$\phi^{0}=\phi 0$ , (35)

for $n\geq 0$ , we obtain $\phi^{n+1}$ from $\phi^{n}$ via the solution of

$\frac{\phi^{n+1/3}-\phi n}{\triangle t}+A_{1}(\phi^{n}+1/3)=f_{1}n+1$ , (36)

$\frac{\phi n+2/3-\emptyset n+1/3}{\triangle t}+A_{2}(\emptyset^{n+}2/3)=f_{2}^{n+}1$ , (37)

$\frac{\phi^{n+1}-\phi^{n+2}/3}{\triangle t}+A_{3}(\phi n+1)=f_{3}^{n+}1$ . (38)

with $\triangle t$ a time discretization step and $\sum_{i=1}^{3}f_{i}n+1=f^{n+1}$ .

Applying the above scheme to problem (29)$-(33)$ we obtain (with $0\leq\alpha,$ $\beta\leq 1,$ $\alpha+\beta=1$

and after dropping some of the subscripts $h$ ):

$\mathrm{U}^{0}=\mathrm{U}_{0h}$ ; (39)

for $n\geq 0_{J}$ we compute $\{\mathrm{u}^{n+1}/3, P^{n+}1/3\},$ $\mathrm{U}^{n+2/3},$ $\{\mathrm{U}^{n+1}, \lambda^{n+1}\}$ via the solution of

$\{$

$\int_{\Omega}\frac{\mathrm{U}^{n+1/3}-\mathrm{U}^{n}}{\triangle t}\cdot \mathrm{v}d\mathrm{x}-\int_{\Omega}P^{n+/3}1\nabla\cdot \mathrm{V}d\mathrm{x}=0,$
$\forall \mathrm{v}\in \mathrm{v}_{0h}$, (40)

$\int_{\Omega}q\nabla\cdot \mathrm{U}^{n+1}/3d\mathrm{x}=0,$ $\forall q\in L_{h}^{2};\mathrm{U}^{n+1/3}\in \mathrm{V}_{\mathrm{g}_{0}h}^{n+}1,$ $Pn+1/3\in L_{0h}^{2}$ ,

$\{$

$\int_{\Omega}\frac{\mathrm{U}^{n+1}-\mathrm{U}n+2/3}{\triangle t}\cdot \mathrm{v}d\mathrm{x}+\beta\nu\int_{\Omega}\nabla \mathrm{U}^{n+1}$ . Vv $d\mathrm{x}$

$= \beta\int_{\Omega}\tilde{\mathrm{f}}^{n+1}\cdot \mathrm{v}d\mathrm{x}+\int_{\gamma^{n+1}}\lambda^{n}+1.d\mathrm{V}\gamma,$ $\forall \mathrm{v}\in \mathrm{V}_{0h}$ ,

$\int_{\gamma^{n+1}}(\mathrm{u}^{n+1}-\mathrm{g}^{n}1h)+1.d=0,$$\forall\in\mu\gamma\mu\Lambda_{h}^{n}+1$ ;

$\mathrm{U}^{n+1}\in \mathrm{V}_{\mathrm{g}\mathrm{o}h}^{n}+1,$ $\lambda n+1\in\Lambda_{h}^{n+1}$ .

(42)

In (40)$-(42)$ we have used the following notation $\mathrm{V}_{\mathrm{g}_{0h}}^{n+}1=\mathrm{V}_{\mathrm{g}_{0}((+1}n$ ) $\triangle t$ ) $h,$ $\Lambda_{h}^{n+1}=\Lambda_{h}((n+$

$1)\triangle t)$ .

Remark 8. Many other splitting schemes are possible, some more complicated (and
accurate) than the one above; on the other hand, scheme (35)$-(38)$ is the simplest splitting
scheme for those situations involving three operators and the results obtained with it
compare favorablely with those obtained by more sophisticated schemes (for the particular
problem considered here, at least).
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6. Solution of the subrpoblems (40), (41) and (42)

6.1 Solution of the subproblem (40): $L^{2}$-projection on $\mathrm{V}_{\mathrm{g}_{0h}}$

The subproblems (40) can be viewed as degenerated (zero viscosity) quasi-Stokes
problems of the following form (some $h$ and $n$ have been dropped):

$\alpha\int_{\Omega}\mathrm{U}\cdot \mathrm{v}d\mathrm{x}-\int_{\Omega}P\nabla\cdot \mathrm{V}d_{\mathrm{X}}=\int_{\Omega}\mathrm{f}\cdot \mathrm{v}d\mathrm{x},$ $\forall \mathrm{v}\in \mathrm{v}_{0h}$ , (43)

$\int_{\Omega}q\nabla\cdot \mathrm{U}d\mathrm{x}=0,$ $\forall q\in L_{h}^{2}$ , (44)

with $\{\mathrm{U}, P\}\in \mathrm{V}_{\mathrm{g}_{0h}}\cross L_{0h}^{2}$ (and $\alpha=1/\triangle t$).
It is very easy to interpret $\mathrm{U}$ in (43), (44); it is the $L^{2}$ -projection of $\mathrm{f}/\alpha$ on the subspace

of $\mathrm{V}_{\mathrm{g}0h}$ consisting of those functions satisfying

$\int_{\Omega}q\nabla\cdot \mathrm{v}d_{\mathrm{X}}=^{\mathrm{o}},$ $\forall q\in L_{h}2$ . (45)

The pressure $P$ is the Lagrange multiplier associated to the linear constrains (45); $P$ is
nonunique unless we specify an additional relation, like- for example $- \int_{\Omega}Pd\mathrm{x}=0$ , i.e.
$P\in L_{0h}^{2}$ .

The saddle-point problem (43), (44) can be solved by an $Uzawa/PreConditioned$
Conjugate Gradient algorithm operating in the space $L_{0h}^{2}$ . This algorithm is as follows:

Step $\mathit{0}$ : Initialization
$P^{0}\in L_{0h}^{2}$ is given; (46)

solve the projection problem:

$\{$

$\alpha\int_{\Omega}\mathrm{U}^{0}\cdot \mathrm{v}d_{\mathrm{X}}=\int_{\Omega}\mathrm{f}\cdot \mathrm{v}d\mathrm{X}+\int_{\Omega}P^{0}\nabla\cdot \mathrm{V}d\mathrm{x}\forall \mathrm{v}\in \mathrm{V}_{0h}$ ; (47)
$\mathrm{U}^{0}\in \mathrm{V}_{\mathrm{g}h}0$

’

then

$\{$

$\int_{\Omega}r^{0}qd\mathrm{x}=\int_{\Omega}q\nabla\cdot \mathrm{U}^{0}d\mathrm{x},$ $\forall q\in L_{0h}^{2}$ , (48)
$r^{0}\in L_{0h}^{2}$ ,

and finally

$\{$

$\int_{\Omega}\nabla g^{0}\cdot\nabla qd_{\mathrm{X}}=\int_{\Omega}r^{0}qd\mathrm{x},$ $\forall q\in L_{h}^{2}$ , (49)
$g^{0}\in L^{2}0h$ .

Take $w^{0}=g^{0}$ . (50)

Then for $k\geq 0$ , assuming that $P^{k},$ $r^{k},$ $g^{k},$ $w^{k}$ are known, compute $P^{kkk}+1\prime^{\Gamma}+1,$$g,$$w^{k+}+11$

as follows:
Step 1: Descent

8



Solve:

$\{$

$\alpha\int_{\Omega}\overline{\mathrm{U}}^{k}\cdot \mathrm{v}d\mathrm{x}=\int_{\Omega}w^{k}\nabla\cdot \mathrm{v}d\mathrm{X},$ $\forall \mathrm{v}\in \mathrm{V}_{0h}$ ; (51)
$\overline{\mathrm{U}}^{k}\in \mathrm{V}_{0h}$ ,

then

$\{$

$\int_{\Omega}\overline{r}^{k}qd_{\mathrm{X}}=\int_{\Omega}q\nabla\cdot\overline{\mathrm{U}}^{k}d\mathrm{x},$ $\forall q\in L_{0h}^{2}$ , (52)
$\overline{r}^{k}\in L_{0h}2$ ,

and finally

$\{$

$\int_{\Omega}\nabla\overline{g}^{k}\cdot\nabla qd\mathrm{x}=\int_{\Omega}\overline{r}^{k}qd\mathrm{x},$ $\forall q\in L_{h}^{2}$ , (53)
$\overline{g}^{k}\in L_{0h}^{2}$ .

Compute

$\rho_{k}=\int_{\Omega}r^{k}g^{k}d\mathrm{x}/\int_{\Omega}\overline{r}^{k}w^{k}d_{\mathrm{X}}$, (54)

and then

$P^{k+1}=P^{k}-\rho kw^{k}$ , (55)
$g^{k+1}=g^{k}-\rho k\overline{g}^{k}$ , (56)
$r^{k1}=r-+k\rho_{k}\overline{r}^{k}$ . (57)

Step 2: Convergence Testing and Construction of the New Descent Direction

If $\int_{\Omega}r^{k1}+_{g}k+1d\mathrm{x}/\int_{\Omega}r^{0}g^{0}d\mathrm{x}\leq\epsilon$, (58)

take $P=P^{k+1}$ and compute $\mathrm{U}$ from relation (43). Else, compute

$\gamma_{k}=\int_{\Omega}r^{k+1}gdk+1\mathrm{X}/\int_{\Omega}r^{k}g^{k}d\mathrm{x}$ (59)

and set $w^{k+1}=g^{k+1}+\gamma_{k}w^{k}$ . (60)

Do $k=k+1$ and go back to (51).

The choice of $\epsilon$ in the stopping test (58) will be discussed in Section 7.

Remark 9. Using the trapezoidal rule to evaluate the various $L^{2}(\Omega)$-integrals in (40)$-(42)$

and in algorithm (46)$-(60)$ makes very easy and ecomomical the implementation of the
above algorithm.

6.2 Solution of the subproblems (41)

The solution by least $\mathrm{s}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{s}/\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{d}$conjugate gradient methods of linear or
nonlinear advection-diffusion problems such as (41) has been discussed at length in [15],
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[16], [19] (see also [24]). Due to page limitation we shall skip it in the present article. Let
us mention that iterative methods like GMRES can also be used to solve problems such
as (40).

6.3 Solution of the subproblems (42): Forcing the Dirichlet conditions on $\gamma$

If $\beta>0$ , problem (42) is indeed a saddle-point problem whose solution has been
discussed in [4], [5]. It can be solved by an $\mathrm{U}\mathrm{z}\mathrm{a}\mathrm{w}\mathrm{a}/\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}$ gradient algorithm operating
in the space $\Lambda_{h}^{n+1}$ . For two-dimensional problems an efficient preconditioning operator is

provided by a discrete version of the boundary operator $( \frac{\triangle t}{\beta\nu}I-\frac{\partial^{2}}{\partial s^{2}})-1/2$ , where $s$ is the

arc-length along $\gamma$ (see [4] for details and computational experiments).
In the particular case where $\beta=0$ , problem (42) reduces to an $L^{2}(\Omega)$-projection over

the subspace of $\mathrm{V}_{\mathrm{g}_{0}h}^{n+1}$ of the functions satisfying the condition

$\int_{\gamma^{n+1}}(\mathrm{v}-\mathrm{g}^{n}1h)+1.\forall\mu\in\Lambda\mu d\gamma=0,hn+1$ .

It follows from the above observation that if $\beta=0$ , problem (42) can be solved by
an $\mathrm{U}\mathrm{z}\mathrm{a}\mathrm{w}\mathrm{a}/\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}$ gradient algorithm operating in the space $\Lambda_{h}^{n+1}$ , which has many
similarities with algorithm (46)$-(60)$ . If one uses the trapezoidal rule to compute the
various $L^{2}(\Omega)$-integrals in (42), taking $\beta=0$ brings further simplification since in that
particular case $\mathrm{U}^{n+1}$ will coincide with $\mathrm{U}^{n+2/3}$ at those vertices of $\mathcal{T}_{h}$ such that the support
of the related shape function does not intersect $\gamma^{n+1}$ ; from the above observation it follows
that to obtain $\mathrm{U}^{n+1}$ and $\lambda^{n+1}$ we have to solve a linear system of the following form

$\{$

$A_{\mathrm{X}}+Bt\mathrm{y}$ $=\mathrm{b}$ ,
$B_{\mathrm{X}}$ $=\mathrm{c}$ , (61)

where $A$ is a $N\cross N$ matrix, symmetric and positive definite and where $B$ is a $N\cross M$

matrix; we have $M$ and $N$ both of the order of $1/h$ . The saddle-point problem (61) can be
solved also by an $\mathrm{U}\mathrm{Z}\mathrm{a}\mathrm{w}\mathrm{a}/\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}$ gradient algorithm operating in $R^{M}$ (other methods
are possible).

7. Numerical Experiments

For the test problem that we consider, we shall simulate a two-dimensional flow with
$\Omega=(-0.35,0.9)\cross(-0.5,0.5)$ (see Figure 3) and $\omega$ a moving disk of radius 0.125. The
center of the disk is moving between $(0,0)$ and

,

$(0.5,0)$ along a prescribed trajectory
$(x(t), y(t))$ (see Figure 3) given as follows

$x(t)=0.25(1- \cos(\frac{\pi t}{2}))$ , $y(t)=- \mathrm{O}.1\sin(\pi(1-\cos(\frac{\pi t}{2})))$ ;

we have thus a periodic motion of period 4. Several different positions of the disk have been
shown on Figure 3. The boundary conditions are $\mathrm{u}=0$ on $\Gamma$ and $\mathrm{u}$ on $\partial\omega(t)$ coinciding
with the disk velocity.
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Figure 3

We suppose that the disk rotates counterclockwisely at angular velocity $2\pi$ . Since
we are taking $\nu=$ 0.005 the maximum Reynold’s number based on the disk diameter
as characteristic length is 102.336. On $\Omega$ we have used a regular triangulation $\mathcal{T}_{h}$ to
approximate the velocity, like the one in Figure 2, the pressure grid $\mathcal{T}_{2h}$ being twice
coarser. Concerning $\Lambda_{h}(t),$ $\gamma(t)$ has been divided into $M$ subarcs of equal length.

We have run two series of tests: For the first series we have taken $h=$ 1/128,
$\triangle t=0.00125$ and $M=80$ . For the second we have taken $h=1/256,$ $\triangle t=0.00125$ and
$M=160$ . With stopping criteria of the order of $10^{-12}$ we need around 10 iterations at
most to have convergence of the $\mathrm{c}\mathrm{o}\mathrm{n}.\mathrm{j}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}$ gradient algorithms used to solve the problems
at each step of scheme (39)$-(42)$ .

On Figures 4 and 5 (resp., 6 and 7) we show the isobar contours, the vorticity density
and the streamlines obtained at $t=4.5,5,5.5,6,6.5,7,7.5,8$ for $h=1/128,$ $\triangle t=0.00125$

and $M=80$ (resp., $h=1/256,$ $\triangle t=0.00125$ and $M=160$ ). There is a good agreement
between those results, concerning particularly streamlines and vorticity density. In order
to improve pressure convergence we intend to consider more sophisticated methods with
a stronger coupling between the steps of scheme (39)$-(42)$ . The corresponding results will
be reported in a forthcoming publication.

Acknowledgements

We would like to acknowledge the helpful comments and suggestions of E. J. Dean, $\mathrm{J}.\mathrm{W}$ .
He, $\mathrm{H}.\mathrm{H}$ . Hu, $\mathrm{D}.\mathrm{D}$ . Joseph, Y. Kuznetsov, B. Maury, $\mathrm{A}.\mathrm{H}$ . Sameh and $\mathrm{F}.\mathrm{J}$ . Sanchez.

The support of the following institutions is acknowledged: University of Houston and
Department of Computer Science, University of Minnesota. We also benefited from the
support of NSF (Grants DMS 8822522, DMS 9112847, DMS 9217374), DRET (Grant
89424), DARPA (Contracts AFOSR F49620-89-C-0125 and AFOSR-90-0334), the Texas
Board of Higher Education (Grants $003652156\mathrm{A}\mathrm{R}\mathrm{P}$ and $003652146\mathrm{A}\mathrm{T}\mathrm{P}$ ), University of
Houston (PEER grant 1-27682) and again NSF under the HPCC Grand Challenge Grant
ECS-9527123.

11



Figure 3 Isobar contours (at left), vorticity density (at middle) and streamlines (at right) at time $t=4.5,5$ ,
5.5, 6 during first half of one period of the disk motion. The disk is moving from the left to the right. The mesh

size for velocity is $h=1/128$ and the mesh size for pressure is $h=1/64$ .
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Figure 4 Isobar contours (at left), vorticity density (at middle) and streamlines (at right) at time $t=6.5,7$,
7.5, 8 during second half of one period of the disk motion. The disk is moving from the right to the left. The

mesh size for velocity is $h=1/128$ and the mesh size for pressure is $h=1/64$ .
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Figure 5 Isobar contours (at left), vorticity density (at middle) and streamlines (at right) at time $t=4.5,5$ ,
5.5, 6 during first half of one period of the disk motion. The disk is moving from the left to the right. The mesh

size for velocity is $h=1/256$ and the mesh size for pressure is $h=1/128$ .
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Figure 6 Isobar contours (at left), vorticity density (at middle) and streamlines (at right) at time $t=6.5,7$ ,
7.5, 8 during second half of one period of the disk motion. The disk is moving from the right to the left. The

mesh size for velocity is $h=1/256$ and the mesh size for pressure is $h=1/128$ .
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