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SYMMETRIC DUALITY FOR MULTIOBJECTIVE VARIATIONAL

PROBLEMS WITH PSEUDO-INVEXITY*

Do SaNnG Kim, GUE MYUNG LEE
AND WON JUNG LEE
Department of Applied Mathematics, Pukyong National University

Daeyeon-§ Dong, Nam-Gu, Pusan 608-737, Korea

1. INTRODUCTION

Dantzig, Eisenberg and Cottle [1] first formulated a pair of symmetric dual nonlinear
programs in which the dual of dual equals the prime and established the weak and strong
duality for these problems concerning convex and concave functions. Mond and Hanson
[5] extended the symmetric duality results to variational problems, giving continuous
analogues of the results of the above authors. Since the invexity conditions on functions
were first defined by Hanson [2] as a generalization of convexity ones, many authors
([4],18,19]) have extended the concepts of invexity to continuous functions. Smart and
Mond [9] extended the symmetric duality results to variational problems by using the
continuous version of invexity.

Recently, Kim and Lee [3] presented a pair of symmetric dual variational problems in
the spirit of Mond and Weir [6] different from the one formulated by Smart and Mond
[9], using the continuous version of pseudo-invexity which is a generalization of that of
nvexity.

On the other hand, Mond and Weir [6] gave a different pair of symmetric dual non-
linear programming problems in which the convexity and concavity assumptions were
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reduced to the pseudo-convexity and pseudo-concavity ones, and obtained the weak and
strong duality of these problems.

In this paper, we formulate a pair of multiobjective symmetric variational problems.
Weak, strong and converse duality theorems are established under pseudo-invexity as-
sumptions for these problems by using the concept of efficiency. Self-dual problems
and static symmetric dual programs are included as special cases. Also, Kim and Lee’s

results [3] are obtained as special cases.

2. NOTATIONS AND STATEMENT OF THE PROBLEMS

The following conventions for vectors in R™ will be used :
r<yer; <y, 1=12-,n
rSyex; Sy, 1=1,2,--,m
r<y&z; Sy, 1=1,2---.n but z#uy;
z £y is the negation of z <.

Let [a,b] be a real interval and f : [a,b] x R™ x R* x R™ x R™ — RP. Consider the
vector valued function f(t,z,z’,y,y"), where t € [a, ], z and y are functions of ¢ with
z(t) € R™ and y(¢) € R™, and z' and y' denote the derivatives of z and y, respectively,
with respect to . Assume that f has continuous fourth-order partial derivatives with
respect to z,z',y and y'. f, and f,» denote the p X n matrices of first partial derivatives

with respect to z and z'. i.e.,

(o8 o8 C_(of apN
fz—<a$l,.. ’5‘.7Jn> and fx:——(ax,l,..-,amgl , 1=1,2,---p.

Similarly, f, and f, denote the p X m matrices of first partial derivatives with

respect to y and y'. We consider the problem of finding functions = : [a,b] — R™ and
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y : [a,b] — R™, with (2'(t),y'(t)) piecewise smooth on [a, D], to solve the following pair

of multiobjective variational problems.

(MSP)
b
Minimize / flt,z, 2y, y')dt
/ftz:x,l,y /fptxz,zy)(lt>
subject to  z(a) =z, z(b) =z1, y(a)=yo, y(b) =y,
T d
A fy(t oz, a,y, y)~—/\ fy(t,z,2'y,y') 20, (1)
d
T [ATfy(t,x,a:',y,y'>—— S| 20, @
A>0, ATe=1,
(MSD)

b
Maximize / fltu,u' v, 0")dt
a

b b
:(/ fl(t,u,u',v,v')dt,--- 7/ fp(t,uau,vvvv,)dt)

subject to  u(a) = zo, uw(b) =21, v(a)=1yo, v(b) =y,

)\fL(tU'lt,U,'U)—-/\ fl(tuu v,v') 20, (3)
T [/\Tfl.(t,u,u',v,v') - ;lt)\ fer(tu,u' o0 )] <0, (4)

/\>0., /\Tfi:].,

where A € R? and e = (1,---,1)T € R?.

Remark 2.1. Observe that if p =1 in (MSP) and (MSD), then (MSP) and (MSD)

become (SP) and (SD) given by Kim and Lee [3].
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3. SYMMETRIC DUALITY

We consider the following multiobjective variational problem.

b b b
(MP) Minimize / f(t,z,2")dt = (/ fldt, .- ,/ f”dt)

subject to  z(a) = «, z(b) =4,

g(t,z,2") £0, t € [a,b],

where f : [a,0] X R®* x R® — RP, g : [a,b] Xx R® Xx R® — R™. Let K = {.r €
C ([a,b],R") | z(a) = «a,z(b) = B, g(t,z(t),2'(t))) £ 0, t € [a, b]} be the set of

feasible solutions for (M P).

Definition 3.1. A point 2* in K is an efficient solution (Pareto optimum) of (M P)

if for all z in K,
b b
/ flt,x,z")dt £ / f(t,z*, z*"de.

(i.e., there exists no other z € K such that fab f(t,z,z")dt < f; ft,z*, z*")dt)
Now we defined the pseudo-invexity as follows;

Definition 3.2. The functional f: AT f is pseudo-invex in z and z' if for each
y : [a,b] = R™, with y' piecewise smooth, there exists a function 75 : [a,b] x R® x R™ x
R™ x R® — R" such that for all z : [a¢,b] —» R",u : [a,b] — R", with (2'(t),u'(t))

piecewise smooth on [a, ],

b
: d S
/ 77(tv z, .73,, u, u,)T [/\szr(ta u, U'I7 Y, U,) - a/\T.fx'(ta u, ula Y, yl) dt g 0 nnphes
a

b b
| AT s e | ATt 2 0

a a

Definition 3.3. The functional — f( Lb AT f is pseudo-invex in y and y' if for each

z : [a,b] = R", with 2’ piecewise smooth, there exists a function ¢ : [a, b] x R™ x R™ x
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R™ x R™ — R™ such that for all v : [a,0] - R™,y : [a,b] — R™, with (v'(t),y'(t))

piecewise smooth on [a, ],

b
1
—/ E(t,v,v',y,y)T [/\Tfy(t,:v,w’,y,y') —~ d%f\Tfyf(t,af,w’,y,y') dt 2 0 implies
a

b b
——/ )\Tf(t,:c,x',v,v')dt+/ M f(t,z, 2’ y,y')dt 2 0.

In the sequel, we will write n(z, w) for n(t,z,2',u,u") and &(v,y) for £(¢,v, 0"y, y').

Remark 3.1. If f is independent of ¢, the definitions (3.2-3.3) reduce to the defini-

tions of pseudo-invexity of the static case in [3].

Theorem 3.1. (Weak duality) Let (z,y, A) be feasible for (M SP) and (u,v,\) be
feasible for (M SD). Assume that f(i) AT f is pseudo-invez in z and x', and — f: AT f s
pseudo-invez in y and y', with n(x,u) + u(t) 2 0 and &(v,y) + y(t) 2 0 for all t € [a,b]
(ezcept perhaps at corners of (2'(t),y'(t)) or (u'(¢),v'(t))).

Then fab ft,z,z' y,y")dt £ f: ft,u,u' v, 0")dt.

Proof: Assume the contrary that ff flt,z, 2"y, y')dt < fab ft u,u' v, v")dt.

Then, since A > 0,

b b
/ATf(t,x,;zr’,y,y')(lt</ ATt u, !, v,v")dt. (5)

From (3) and (4),
b T d
/ n(z,u) [)\Tj'x(t,u,lt',v,lr') - a/\fo:(t,u,u',v,v')} dt

b
1
> / [n(z,u) + u(t)]” [/\wa(t,u,u',v,v') - %/\Tfl,r(t,u, u',v,v')] dt 2 0.
a at

. b . . )
Since fa AT f is pseudo-invex in z and ', we have

b b
/ At 2,2, v, v')dt—/ AT F(t, uy ! v, 0")dt 2 0. (6)

a
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From (1) and (2),

b
d
—/ E(vay)T |:/\Tfy(ta:1:’$’7 Y, yl) - ;l‘t‘)\Tfyl(t,.’E,IL',,l ayl)] dt

v

b
—/ [E(v,y) +y()]T

d
/\Tfy(t,:v, 'y, y') — EZ)\Tfyz(t,m,x',y,y')] dt 2 0.

. b . . .
Since — fa AT f is pseudo-invex in y and y', we have

b b
—/ )\Tf(t,x,:z',v,v')dt—i-/ M f(t, 2,2y, y")dt 2 0. (7)

From (6) and (7), fab M f(t e, 2!y, y')dt 2 fab AT f(t,u,u',v,v")dt, a contradiction to

(5). Thus the result holds. a

In the following theorems and proofs, AT fx represents AT f(t,z*, z*,y*,y*') and par-
g I . Y.y I

tial derivatives are similarly denoted.

Theorem 3.2. (Strong duality) Let (z*, y*, A*) be an efficient solution for (MSP).

Suppose that

d d
T «*T px T px T T px
[])(t) (/\ fyy - a/\ fyy’) + —(—ZZ <p(t) a/\ fy’y’)

d?

+ 2?2— (— ])(t)T)\*Tf.;'y')] P(t) =0 (8)

only has the solution p(t) = 0 for allt € [a,b], and the set
i 4 i S :
Iy = afy, :1=1,2,--- ,p?1s linearly independent. (9)

Then (z*,y*, \*) 1s feasible for (M SD). If, in addition, the pseudo-invezity conditions
of Theorem 3.1 are satisfied, then (x*,y*, \*) 1s an efficient solution for (M SD), and

the optimal values of (M SP) and (M SD) are equal.
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Proof: Applying the necessary conditions of Valentine [10], if (x*,y*, \*) is an efficient

solution of (MSP), then there exist « € R?, £ :[a,b] = R™, v € R and § € RP such

that
T d «T *T px *T xT d *T T\ *
= af = )7 (070 =38 ) =T (Th - S Tp) o7
satisfies
* d * d? *
Hy - 2 Hy + < Hy =0, (10)
d d?
e * H./l -
H; ltH , + proRclt 0, (11)
. . d ., X
T (_l *T px T px \ _
/[3 (dt\ fy’ /\ fy) '_07 (13)
; «T )\*T d /\*T -0
1 - IaTh) =, (14)
§TA* =0, (15)
(o, B,7,6) 20, (16)

throughout [a, b] (except at coners of (z*'(¢), y*'(t)) where (10) and (11) hold for unique
right-and left-hand limits). «, 3(t),y and § cannot be simultaneously zero at any t €
[a, 0], and f is contimuous except perhaps at corners of (z*'(t), y*'(t)).

From (10), we have

* d «T % d d .
(B =y ) </\ va/J (‘H/\ Tjﬂ’y) + 7 ((ﬁ—’)’l )T lt)\ TfJJ)
d? T \xT rx* T - .
+W<_ (F=7v")"A fy’y')+(a'"7)‘) fy_zl—tfy’ =0. (17)

From (11), we have

% * d * 1T px d %
aleri— (B=y" I (/\ Tjﬂ - a/\ ij,z) - ‘C“fo'

d * * d * * "k
_ 4 ((/5_7/ YT fr — A T = NTf2, )

({2 .
+ o3 (— (B -y )TA Tf Iy Jc) =0. (18)
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Multiplying (17) by 8 — yy* and then using (12), (13), (14) and (15) gives

{
(B=r)" (75— 05 )+ 5 (=N )

d2 ] 3 * T/\*T * :8 *\ 0
Thus by the assumption (8),

B=y* (19)
From (17), we have
(0 —yAH)T (f,* _4 ;3) =0.
By the assumption (9),

o =gA". (20)

This gives v > 0, since if ¥ = 0, then by (12), (18) and (19) o = S(t) = ¢ = 0 for all
€ [a, ], contradicting the necessary condition (16). The equation (18) with (20) now
becomes

*T rx
AT e dt dt

1 y 1
AT =0 and 2*7 (,\*T fr— T f;;,) =0. (21)
By (21), (z*,y*, A*) is feasible for (MSD). If the pseudo-invexity conditions of Theorem
3.1 are satisfied, then by weak duality, (z*,y*, A\*) is an efficient solution for (MSD),

and the optimal values of (MSP) and (MSD) are equal. O

Remark 3.2. If f does not explicitly depend on ', the system reduces to p(t)T/\*T foy

p(t) = 0, which has only a zero solution iff A*7 fyy 18 positive or negative definite for all

€ [a,b].

A converse duality theorem may be stated; the proof would be analogous to that of

Theorem 3.2.
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Theorem 3.3. (Converse duality) Let (z*,y*, \*) be an efficient solution for
(MSD). Assume that the system

T *T px d *T rx d Td *T rx
0 (3T h - ST )+ b g (07 )
2

+ —ft—;( pOTN T f)| =0

only has the solution p(t) = 0, t € [a,b] and the set {fi* — Lfix:i=1,2,... p}
is linearly independent. Then (x*,y*, \*) s feasible for (M SP). If, in addition, the
pseudo-invezity conditions of Theorem 3.1 are satisfied, then (z*,y*, \*) is an efficient

solution for (M SP), and the optimal values of (MSP) and (MSD) are equal.

4. SELF DUALITY

Assume that m = n, f(t,z,2',y,y") = = f(t,y,vy',z,2") (i.e., f skew-symmetric) for
all (2(t),y(t)),t € [a,b] such that (2'(t),y'(t)) is piecewise smooth on [a,b] and that
Zo = Yo, T1 = Y1.

It follows that (MSD) may be rewritten as a minimization problem :

(MSD")

b
Minimize / f(t,y, v, x, 2" )dt

subject to  x(a) = xo, x(b) =1, y(a) =z, y(b) = z1,
AT Fult, g,y m,a’) — th far(tyy,y's2,2") S0,
. 1
T [AT.)L.’E(t7 y?yl7x’x/) - E(EAT.fx’(t?'l 7y,3"l:7"l",) z 07

A>0, Me=1.

(M SD') is formally identical to (MSP); that is, the objective and constraint functions
and initial conditions of (MSP) and (M SD') are identical. This problem is said to be

self-dual.
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It is easily seen that whenever (z,y, \) is feasible for (M SP), then (y,z, ) is feasible

for (M SD), and vice versa.

Theorem 4.1. Assume that (MSP) 1s self-dual a"nd the pseudo-invezity conditions
of Theorem 3.1 are satisfied. If (z*,y*,\*) is an efficient solution for (MSP) and
the assumptions of Theorem 3.2 hold, then (y*,z*,\*) is an efficient solution for both
(MSP) and (MSD), and the common optimal value is 0.

Proof: By Theorem 3.2, (z*,y*, \*) is an efficient solution for (M SD), and the
optimal values of (M SP) and (M SD) are equal to fj f(t,z*, z*',y*,y*")dt. From self-
duality, (y*,z*, \*) is feasible for both (A SP) and (M SD), so Theorems 3.1 and 3.2
give optimality in both problems, and thus objective values of fab flt,y*, y*', z*, z*")dt.
But fab flt,y* y* a*, 2*)dt = — f: f(t,z*,xz*,y*,y*")dt by skew-symmetry‘of f.
Hence

b b .
[ sttty = = [ feata gty =0 O
a a

5. STATIC SYMMETRIC DUAL PROGRAMS

If the time dependency of programs (M SP) and (M SD) is removed and f is consid-

ered to have domain R™ x R™, we obtain the symmetric dual pair given by

(SP) Minimize  f(z,y)
subject to (AT f)y(z,y) £0,
yT (AT f)y(2,9) 20,
A>0, ATe=1.
(SD) Maximize  f(u,v)
subject to (AT f)z(u,v) 20,
wT (AT f)e(u,v) 0,

A>0, ATe=1.
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The following duality theorems can be proved along the lines of Theorems 3.1, 3.2 and

3.3.

Theorem 5.1. Let (z,y,)) be feasible for (SP) and (u,v,\) be feasible for (SD).
Assume that AT f is pseudo-invez in x, and —\T f s pseudo-invez in y, with n(x,u)+u 2
0 and £(v,y) +y 2 0.

Then f(z,y) £ f(u,v).

Theorem 5.2. Let (¢*,y*,\*) be an efficient solution for (SP). Assume that \*T vy
18 positive or negative definite, and the set {f;* =12, ,p} 18 linearly independent.
Then (z*,y*,\*) is feasible for (SD). If, in addition, the pseudo-invezity conditions of
Theorem 5.1 are satisfied, then (x*,y*,A*) is an efficient solution for (SD), and the

optimal values of (SP) and (SD) are equal.

Theorem 5.3. Let (z*,y*, \*) be an efficient solution for (SD). Assume that \*T .
is positive or negative definite, and the set {f;* 11=1,2,--- ,p} is linearly independent.
Then (x*,y*,\*) is feasible for (SP). If, in addition, the pseudo-invezity conditions of
Theorem 5.1 are satisfied, then (x*,y*,A*) is an efficient solution for (SP), and the

optimal values of (SP) and (SD) are equal.

The pair (SP) and (SD) will be self-dual when m =n and f is skew-symmetric (i.e.,

f(z,y) = =f(y,z) for all z,y € R™).
We state without proof a static version of Theorem 4.1.

Theorem 5.4. Assume that (SP) is self-dual and the pseudo-invezity conditions of
Theorem 5.1 are satisfied. If (x*,y*,\*) is an efficient solution for (SP), /\*Tf;‘y 18

positive or negative definite and the set {,j* t1=1,2,--- ,p} is linearly independent,
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then (y*,z*, \*) is an efficient solution for both (SP) and (SD), and the common optimalr

value s 0.
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