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Abstract

As it is known that various combinatorial problems can be naturally formulated into CSP
(constraint satisfaction problem), we develop in this paper a tabu search based algorithm for CSP
in the hope of using it as a general problem solver. With our code, we solved various problems
selected from wide applications, e.g., graph coloring, block design, generalized assignment, set
covering, timetabling and nurse scheduling. The obtained results appear to be competitive with
those of existing algorithms specially developed for the respective problem domains. Among these
results, we report in this paper some computational results of graph coloring, timetabling, and
nurse scheduling.

1 Introduction

The constraint satisfaction problem (CSP) asks to find an assignment to its variables such that all

given constraints are satisfied (i.e., feasible). It is known that CSP is able to formalize a large variety

of combinatorial problems of practical importance, such as SAT (satisfiability), graph coloring, graph

partitioning, set covering, scheduling, generalized assignment, timetabling and many others. There-
fore, an algorithm for the CSP can solve all such $\mathrm{p}\mathrm{r}..0$ blems, and hence can be regarded as a $ge$. neral

problem solver.
CSP has been studied mainly in the field of artificial intelligence [4, 5, 6, 12, 15]. There are two

main approaches to solving CSP; “constructive” backtracking approaches and “repair” (i.e., iterative
improvement or hill climbing) approaches. In the early literature, most of the efforts were directed to

backtracking methods, in which we start from a partial assignment which satisfies all constraints, and

enlarge the assignment step by step until all variables are assigned feasible values. Various techniques of

problem reduction and constraint propagation have been developed to enhance backtracking procedure
[4, 5, 6, 15]. In contrast, in repair type approaches, an initial solution which is an assignment to

数理解析研究所講究録
981巻 1997年 11-21 11



all variables (but is not feasible) is gradually repaired in order to reduce the infeasibility until all
constraints are satisfied. Basic tools used for this procedure is local search and its variants. Recently,
this approach has been found to be very effective, particularly for large scale problems [10, 12, 14, 15].

It should be noted at this point that a repair type approach may fail to find a feasible solution
even if one exists, and cannot tell the fact if there exists no feasible solution. However, since CSP
is $\mathrm{N}\mathrm{P}$-complete (implying its intractability if exact solutions are needed), approximate or heuristic
methods which can find feasible solutions (or those satisfying most of the constraints) in reasonable
computation time are of great practical value. For such purposes, the repair type approach is better
suited because assignments to all variables, which satisfy most of the constraints, are usually available
even if the computation is cut off before normal termination.

This paper also pursues the same direction, and use the tabu search as a basic wheel to carry out
the repairing process. Tabu search is a metaheuristic method that has been proved successful in solving
many practical optimization problems $[7, 8]$ . It consists of such building blocks as neighborhood, short
term memory (tabu list), long term memory, aspiration criteria, and criteria for diversification $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

strategic oscillation.
To evaluate the performance of our approach, we tested various combinatorial problems such as

graph coloring, block designs, generalized assignment, set covering, timetabling, and nurse scheduling.
The tabu search based CSP algorithm developed in this paper turned out to be reasonably effective
to all these problems, even though it is still a preliminary version, indicating that the combination
of CSP and tabu search is a right choice as a general problem solver of this kind. In this paper, we
report some computational results of graph coloring, timetabling, and nurse scheduling.

2 Formulation of CSP

The CSP is formally defined by (V, $D,$ $C$ ) $[4,12,15]:V$ is a finite set of variables $\{X_{1}, X_{2}, \cdots, X_{n}\}$ ,
$D$ is a set of the corresponding domains $\{D_{1}, D_{2}, \cdots, D_{n}\}$ , where $D_{i}$ is a finite domain of variable $X_{i}$ ,
and $C$ is a finite set of constraints $\{c_{1}, c_{2}, \cdots, c_{r}\}$ , where each constraint is defined by

$C_{l}(X\iota_{1}, Xl_{2}, \cdots, xl_{t_{l}})\subseteq D_{l_{1}}\cross D_{l_{2}}\cross\cdots\cross D_{l_{t_{i}}}$ ,

that is, a set of all the legal $t_{l}$-tuples on variables $x_{l_{1}},$ $\cdots,$ $x_{l_{t_{l}}}$ . Throughout this paper, we assume for
simplicity that

$D_{1}=\cdots=D_{n}=D$ ,

and that $|D|=d$ . A feasible solution of an instance of CSP is an assignment of exactly one value
in $D$ to each variable $X_{i},$ $i=1,2,$ $\cdots,$ $n$ such that all constraints $C_{1},$ $C_{2},$

$\cdots,$ $Cr$ are satisfied. In this
paper, we are mainly interested in finding one feasible solution (or a solution satisfying most of the
constraints), even if there may be many feasible solutions.

Let us introduce a $va\dot{l}ue$-variable $x_{ij}$ for each variable-value pair such that

$x_{ij}=\{$
1, if variable $X_{i}$ takes value $j(\in D)$ ,

(1)
$0$ , otherwise.

There are $\sum_{i=1}^{n}|D_{i}|=dn$ value-variables. With these value-variables, an assignment to all variables
$X_{i}$ can be represented by a $dn$ dimensional 0-1 vector $x=(x_{ij}|i=1,2, \cdots, n, j\in D)$ . For example,
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if $V=\{X_{1}, x_{2}, X3, x4\}$ and $D=\{1,2,3\}$ , an assignment $(X_{1}arrow 2, X_{2}arrow 1, X_{3}arrow 1, X_{4}arrow 3)$

is represented by a 0-1 vector $x=(010|100|100|001)$ . In this formulation, we always assume the
constraints,

$\sum_{j\in D}x_{ij}=1$
, $i=1,2,$ $\cdots,$ $n$ , (2)

so that all variables $X_{i}$ are respectively assigned exactly one value. We shall always consider constraints
(2) implicitly in our tabu search algorithm ( $\mathrm{i}.\mathrm{e}$ , the search is restricted only to these solutions satisfying
(2) $)$ .

At this point, we note that each constraint $C_{l}$ can be described in different ways. In this paper,
we take a view that the basic tool to represent a constraint $C_{l}$ is a set of linear inequalities, since any
constraint $C_{l}$ can always be represented in this way, and we know from the experience in operations
research that such formulations are usually very efficient to represent various constraints arising in
practical problems. For example, the constraint that at most (resp., at least) $K$ variables $X_{i}$ in set
$V’(\subseteq V)$ must take a value $j$ is given by

$\sum_{x_{i\in}V},$
$x_{ij}\leq K$ $(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}.,$

$x_{i\in} \sum_{V},$

$-x_{i}j\leq-K)$ , $j\in D$ ,

the constraint that any two variables $X_{i_{1}},$ $X_{i_{2}}$ in set $V”(\subseteq V)$ must take different values is given by

$\sum_{X_{i\in}V\prime\prime}Xij\leq 1$
, $j\in D$ ,

and the constraint that the total cost must be less than $c_{0}$ , when the cost coefficient of $x_{ij}$ is $c_{ij}$ , is
given by

$\sum_{i,j}c_{ij^{X}i}j\leq c_{0}$
.

In this paper, we assume that an instance of CSP is described by the following inequalities of 0-1
variables:

$\sum_{i,j}a_{hi}j^{X_{i}}j\leq b_{h}$
, $h=1,2,$ $\cdots m$ ,

(3)
$x_{ij}=0$ or 1, $i=1,2,$ $\cdots,$ $n$ , $j\in D$ ,

in addition to constraint (2) of the value-variables. Our goal is to find a feasible 0-1 vector $x\in\{0,1\}^{dn}$

that satisfies all these constraints.

3 Basic implementation of tabu search

During the entire search process, we assume that constraint (2) is always satisfied; i.e., we consider
only the following search space $X^{*}$ of value-variables:

$X^{*}= \{x|\sum_{j\in D}Xij=1$ , $i=1,2,$ $\cdots,$ $n\}$ . (4)
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Starting with an initial solution $x\in X^{*}$ , we repeat modifying $x$ so that the number of violated
constraints (or $ConfliCt\mathit{8}$) may decrease. For this, we introduce the penalty function $p(x)$ defined by

$p(x)= \sum_{h}m=1w_{h}p_{h(X)}$ , (5)

where

$p_{h}(x)= \max(\sum_{i,j}a_{h}ijx_{i}j-bh,$ $0)$ ,

and $w_{h}>0$ is a weight given to constraint $\sum i,jahij^{X}ij\leq b_{h}$ .
Function $p$ satisfies $p(x)=0$ if and only if $x$ is a feasible solution of the given CSP instance. In

other words, we treat CSP as a minimization problem:

minimize $p(x)$
(6)

subject to $x\in X^{*}$ .

Determination of appropriate weights $w_{h}$ of inequalities is an important issue, because the performance
of the search highly depends on them. Furthermore, when the optimal value is not $0$ (i.e. the CSP has
no feasible solution), we may want to find an acceptable solution that violates only a small number of
less important inequalities. In this case, the resulting solution is obviously influenced by such weights,
and we may have to tune them carefully so that satisfactory results may be reached.

We next describe the neighborhood $N(x)$ used in our implementation of tabu search. Let $x(x_{ij}arrow$

1) denote the solution obtained from $x$ by changing $x_{ij}$ from $0$ to 1 (which then incurs the change
$x_{ij’}arrow 0$ for the value-variable $x_{ij’}$ that currently satisfies $x_{ij’}=1$ , as a result of the constraint
$x\in X^{*})$ . $N(x)$ denotes the set of solutions obtained by such modifications, i.e.

$N(x)=\{x(X_{ij}arrow 1)|x_{ij}=0,$ $i=1,2,$ $\cdots,$ $n,$ $j\in D\}$ , (7)

where $|N(x)|=(d-1)n$ holds. In each iteration $k$ of tabu search, the current solution $x^{(k)}$ is replaced
by $x^{(k+1)}=x^{(k)}(Xi^{*}j^{*}arrow 1)$ , which is the best solution in $N(x^{(k)})\backslash T$ in the sense that

$p(x^{(k)}(X_{i^{*}j^{*}}arrow 1))\leq p(x^{(k)}(x_{ij}arrow 1))$ for all $x^{(k)}(xijarrow 1)\in N(x^{(k)})\backslash T$ . (8)

In this case, we say that $x^{(k+1)}$ is obtained from $x^{(k)}$ by a move $x_{i^{*}j^{*}}arrow 1$ .
The above set $T$ in (8) is called a tabu list (or short term memory). Let $t=|T|$ , which is a program

parameter called tabu tenure. Tabu list $T$ stores $t$ solutions obtainable from the current solution $x^{(k)}$

by reversing the moves chosen in the most recent $t$ iterations. The idea of $T$ is to suppress a move
that brings the current solution $x^{(k)}$ back to a solution that was recently tested, whereby preventing
a cycling over a small set of solutions. Although not explicitly stated in the above, we incorporate an
additional rule in our implementation that if $x_{ij}arrow 1$ is the move used in the k-th iteration, no move
$x_{ij’}arrow 1$ is allowed in the next iteration for the same $i$ .

As a standard equipment of tabu search, we also maintain an array $LTM$ of long term memory,
where $LTM(X_{ij})$ records the number of times the move $x_{ij}arrow 1$ has been chosen. To include the
effect of $LTM$ in the choice of moves, we modify the selection rule (8) as follows: Choose $x^{(k+1)}=$

$x^{(k)}(xi*j^{*}arrow 1)\in N(x^{(k)})\backslash T$ such that
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$p(x^{(k)}(Xi*j^{*}arrow 1)).+\alpha LTM(X_{i}*j^{*)}\leq p(x^{(k)}(x_{ij}arrow 1))+\alpha LTM(x_{ij})$ ,

for all $x^{(k)}(xijarrow 1)\in N(x^{(k)})\backslash T$ ,
(9)

where $\alpha\geq 0$ is also a program parameter. The incorporation of $LTM$ makes the selection of $x_{ij}arrow 1$

difficult if the move $x_{ij}arrow 1$ has been used frequently in the past iterations.
The $a\mathit{8}piration$ criteria is also incorporated in our code; i.e., if a tested solution $x^{(k)}(xijarrow 1)$ is

better than the currently best solution found so far (in the sense of having a smaller penalty), it is
selected as $x^{(k+1)}$ even if it belongs to $T$ .

Before proceeding further, we briefiy mention some implementation issues of the above algorithm.
First, since the $m\cross dn$ coefficient matrix $A=(a_{hij})$ of (3) is usually sparse for large-scale applications,
we keep only nonzero elements in the form of linked lists, in which pointers are constructed so that
the nonzero coefficients can be retrieved efficiently both column-wise and row-wise. Using this data
structure, the difference

$\triangle p(x^{()}(kXijarrow 1))=p(x^{(k)}(Xijarrow 1))-p(x^{(k)})$ (10)

can be computed only by looking at relevant nonzero coefficients, and, from this information, the move
$x_{i^{*}j^{*}}arrow 1$ of (9) can be efficiently determined.

To make the references to $T$ efficient, instead of keeping $t$ solutions in $T$ explicitly, we implement
$T$ in the form of an array such that component $T(x_{ij})$ keeps the iteration number $k$ at which the move
$x_{ij}arrow 0$ has occurred most recently. In this way, the condition whether $x(x_{ij}arrow 1)\in T$ or not can be
checked in constant time.

All the algorithms in this paper are coded in $\mathrm{C}$ , and run on Sun SPARC classic 4/15 (59.1MIPS,
4. $6\mathrm{M}\mathrm{F}\mathrm{L}\mathrm{O}\mathrm{p}\mathrm{S}$ ).

Graph coloring problem. We first apply the above tabu search algorithm to the graph coloring
problem (GCP). GCP is the problem to assign a color to each vertex of a given undirected graph
$G(V, E)$ , so that every pair of adjacent vertices gets different colors. To handie GCP in the framework
of CSP, we consider GCP as a decision problem that asks whether $k$ colors are sufficient or not. The
GCP can be formulated as CSP by introducing variables $X_{i}$ corresponding to vertices $i=1,2,$ $\cdot’\cdot,$ $n$ ,
domain $D=\{1,2, \cdot\cdot’, k\}$ representing possible colors, and $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}- \mathrm{V}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\dot{\mathrm{b}}\mathrm{l}\mathrm{e}\mathrm{S}xij$ such that

$x_{ij}=\{$
1, if vertex $i$ gets color $j$ ,
$0$ , otherwise.

Then constraint $C_{l}(X_{i_{1}}, X_{i})2$ is prepared for each edge $(i_{1}, i_{2})\in E$ by

$x_{i_{1}j}+x_{i_{2}j}\leq 1$ , $j\in D$ .

Therefore, in this formulation, there are $k|V|=kn$ value-variables and $m=k|E|$ inequalities (in

addition to those in $X^{*}$ of (4) $)$ .
To see the performance of our tabu search algorithm, some of the DIMACS benchmarks are tested

by solving each problem instance ten times. In each run, we set the maximum computational time as
600 seconds. If a feasible solution is found before 600 seconds, it is considered a $succeS\mathit{8}$; otherwise a

failure. The computational results are shown in Table 1, where $k$ is set to the number of colors obtained
by the approximate graph coloring algorithm developed by Goto [9], and $t$ is a tabu tenure $|T|$ . For all
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instances, a program parameter $\alpha$ is set to 0.01. This approximate algorithm performs very well and
usually gives better $k$ than other well known heuristic coloring algorithms such as DSATUR [1] and
COSINE [11], though it usually consumes more computation time (it is an $O(n^{3})$ time algorithm).
The column “success rate” denotes the number of success runs (out of 10), and column “CPU time”
denotes the average CPU time (in seconds) of one run. It is observed that our CSP algorithm is about
1.5-9 times slower than the above heuristic graph coloring algorithm [9]. However, in view of that our
algorithm is general purpose and use many value-variables for its formulation (the program of Goto
[9] uses only $n$ variables), the results may be considered encouraging because our algorithm could find
solutions of the same quality with high probability (except for a few instances).

Table 1: Computational results for DIMACS benchmarks of the graph coloring problem (GCP).

$\overline{\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{C}\mathrm{e}\mathrm{s}|V||E|\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{m}k\mathrm{l}\mathrm{c}t\mathrm{s}\mathrm{u}\mathrm{C}\mathrm{C}\mathrm{e}\mathrm{S}\mathrm{S}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{P}\mathrm{U}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\overline{\overline{4920}}}$

$\underline{\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{l}.\mathrm{i}.1.}$col1973925–10/1035.0

$\frac{}{-312010/10}\frac{\mathrm{m}\mathrm{u}1\mathrm{s}\mathrm{o}1.\mathrm{i}.2_{\mathrm{C}\mathrm{o}}11883885-312010/1018.4}{\mathrm{m}\mathrm{u}1\mathrm{S}\mathrm{o}1.\mathrm{i}.3.\mathrm{c}\mathrm{o}11843916-312010/1018.4}$

$\frac{\mathrm{m}\mathrm{u}1_{\mathrm{S}\mathrm{O}}1.\mathrm{i}.4.\mathrm{c}\mathrm{o}1185394618.6}{-312010/10}$

$. \frac{\mathrm{m}\mathrm{u}1_{\mathrm{S}\mathrm{O}}1.\mathrm{i}.5_{\mathrm{C}}\circ 1186397318.8}{-492010/10}$

$. \frac{\mathrm{z}\mathrm{e}\mathrm{r}\circ \mathrm{i}\mathrm{n}.\mathrm{i}.1_{\mathrm{C}}\mathrm{o}1211410036.6}{-302010/10}$

$\frac{\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{i}\mathrm{n}.\mathrm{i}.2.\mathrm{C}\mathrm{o}1211354116.8}{-302010/10}$

$\underline{\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{i}\mathrm{n}.\mathrm{i}.3.}$col206354016.6

$\underline{1\mathrm{e}450_{-}5\mathrm{a}.}$col450571455309/10277.8

$\underline{1\mathrm{e}450_{-}5\mathrm{b}.}$col450573455304/10415.2

$\frac{1\mathrm{e}450_{-}5\mathrm{C}.\mathrm{C}.\mathrm{o}145098\mathrm{o}\mathrm{s}553010/1073.3}{\frac\frac{1\mathrm{e}450_{-5\mathrm{d}_{\mathrm{C}}}.\mathrm{o}14509757553010/10102.2}{1\mathrm{e}450_{-}15\mathrm{a}.\mathrm{C}\mathrm{o}1450816815173010/10161.3},\frac{1\mathrm{e}450_{-15\mathrm{b}_{\mathrm{C}\mathrm{o}}}1450816915173010/101617}{1519306\mathrm{o}\mathrm{o}}}$

.

$\frac{1\mathrm{e}450_{-15\mathrm{C}}.\mathrm{C}\mathrm{o}1450166800/10}{1519300/10600}$
$\underline{1\mathrm{e}450_{-15\mathrm{d}}.}$col45016750

$\underline{1\mathrm{e}450_{-25\mathrm{a}}.}$col450826025253010/1081.7

$\frac{\frac{1\mathrm{e}450-25\mathrm{b}.\mathrm{c}\mathrm{o}1450826325253010/1070.2}{1\mathrm{e}450_{-25\mathrm{c}}\mathrm{c}.\mathrm{o}1450173432528301/10583.8}}{1\mathrm{e}450_{-}25\mathrm{d}.\mathrm{c}\mathrm{o}1450174252529306/10393.6}$

1. The minimum number of colors needed; ‘–, means that the optimal
value is not known.

4 Problems from real applications

As emphasized in the introduction, our CSP code is designed as a general purpose problem solver.
From this view point, it is important to test it against a wide variety of problems encountered in
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practical applications. We are currently collecting problem data from real world applications. Here,
we report the results of two case studies on timetabling at a high school and nurse scheduling in a
hospital.

Timetabling. The data is taken from a real high school located in the suburb of Tokyo. This
high school has 30 classes, 60 teachers, 30 classrooms and 3 rooms designed for some special subjects
(such as painting and cooking). There are a total of 780 lectures, each of which is defined by its
subject, class and teacher, and 13 meetings, each of which is defined by a set of teachers to attend.
All of these lectures and meetings must be assigned to 34 periods in a week (6 periods a day from
Monday through Friday, and 4 periods in Saturday morning) under various constraints to be described
shortly. To formulate this problem as CSP, we introduce $n=780+13=793$ variables $X_{i}$ and domain
$D=\{1,2, \cdots, 34\}$ corresponding to the periods in a week; i.e., there are 793 $\cross 34=$ 26962 value-
variables $x_{ij}$ .

There are a large number of constraints to be satisfied. Some of them are common to all timetabling
problems, but others reflect special requirements from subjects, teachers and classes. We list here part
of such constraints:. Each lecture or meeting is assigned to exactly one period.

$\bullet$ Each class receives at most one lecture in each period.. Each teacher has at most one lecture or meeting in each period.. Each special room receives at most one lecture of the corresponding subject in each period.

$\bullet$ For each class, each teacher and each special room, there may be some periods which have
already been scheduled, or which must not be assigned for some reason. (In other words, the
corresponding value-variables are fixed beforehand.). For each teacher, the number of lectures and meetings in a day must not exceed a given upper
bound (which is typically 4).. Some lectures must be assigned to successive periods on the same day.

$\bullet$ Some lectures of similar subjects must not be scheduled on the same day.

These constraints are described by 12747 linear inequalities.
We ran our tabu search algorithm with 50 minutes upper bound on computational time, using

$t=15$ and $\alpha=0.01$ , and could find a solution that satisfies all constraints except one. By analyzing
the violated constraint and the related ones, however, we could show that it is not possible to satisfy
all constraints. Hence the solution found by our tabu search turned out to be best possible.

There are a number of papers on timetabling such as [2, 3, 16]. Among these, [3] contains com-
putational results on large scale instances with similar side constraints, which are also taken from an
existing high school. Although it is difficult to make precise comparison, our CSP algorithm appears
to be as good as this special purpose algorithm in [3].

Nurse scheduling. The nurse scheduling problem is also discussed in various papers (e.g., [13]).
In this problem, each nurse must be assigned every day one of the five alternatives: day shift, evening
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shift, night shift, scheduled meeting and day off. Our example, which is based on the real data in a
hospital in Tokyo, has 25 nurses. To make a schedule of these nurses on 30 days (one month), CSP
formulation has $25\cross 30=750$ variables $X_{i}$ and domain $D=$ {day shift, . . . , day off} with $d=5$ ; hence
750 $\cross 5=3750$ value-variables $x_{ij}$ . This problem also has many constraints, some of which are quite
complicated. We list here some representative ones.

$\bullet$ The nurses are divided into two teams A and $\mathrm{B}$ , where team A has 13 nurses and team $\mathrm{B}$ has
12 nurses. Among 25 nurses, 6 in A and 5 in $\mathrm{B}$ are regarded as leaders, respectively.

$\bullet$ In each shift of each day, the predetermined numbers of nurses and leaders (which vary depending
on the days) must be selected evenly from the two teams (more precisely at least $\min\{4, \lfloor k/2\rfloor\}$

members must be selected from A and $\mathrm{B}$ respectively, if the total size is $k$ ). Typically, a day
shift consists of 10 nurses, among which 4 nurses are leaders, an evening shift requires 4 nurses
including 2 leaders, and a night shift requires 3 nurses including 2 leaders.

$\bullet$ Each nurse may have some days which have already been scheduled (e.g., scheduled meetings
and days off).. The numbers of day shifts, evening shifts, night shifts, scheduled meetings and days off assigned
to each nurse during 30 days must be within their lower and upper bounds, respectively.

$\bullet$ Each nurse must get day shift and day off at least once a week, respectively. The pattern of (day
off, duty, day off) should be avoided.

$\bullet$ The following severe patterns must be avoided: (i) 3 successive night shifts, (ii) 4 successive
evening shifts, (iii) 5 successive day shifts, (iv) day shift, evening shift or meeting after a night
shift, (v) day shift or meeting after an evening shift.

$\bullet$ An isolated night shift must be avoided (i.e., we need two successive night shifts). After a series
of night shifts is over, the next night shift should be avoided for at least 6 days.

The resulting formulation has 9731 inequalities to describe the above and other constraints. It turns
out, however, that there are some conflicting constraints which make a solution satisfying all con-
straints impossible to exist. Therefore, we are asked to achieve certain compromise among constraints,
by taking into account the fact that some constraints are not very rigid and can be ignored if there is
other compensation. In our computation, we set our target to minimize the number of day shifts which
do not have the required number of leaders, under the condition that all the important constraints
are satisfied (but some of the constraints of less importance may be violated). To achieve this, we
introduced weights $w_{h}$ of (5) to all inequalities and manually controlled them so that the target can
be achieved smoothly.

We ran our CSP algorithm several times, consuming 30 minutes each time, and could find a number
of acceptable solutions, where we used $t=35$ and $\alpha=0.001$ . An example is illustrated in Figure 1. In
this schedule, the numbers of leaders on day shifts are not sufficient for 6 days, the numbers of nurses
on day shifts are not sufficient for 2 days, and there are the following additional violations:

$\bullet$ Nurse 1 does not have the required interval of 6 days between the night shift on day 19 and the
night shift on day 25.
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. Nurse 2 has an isolated night shift on day 8.

$\bullet$ Nurse 2 has a pattern of three successive night shifts from day 20 to day 22.. Nurse 17 has a day shift after the night shift on day 10.

5 Conclusion and discussion

We developed in this paper a tabu search algorithm for CSP in order to use it as a general problem
solver. Judging from the computational results for the problems chosen from a wide variety of appli-
cations, our CSP algorithm appears to be competitive with special purpose algorithms developed in
the respective domains.

However, the algorithm contains some program parameters, such as tabu tenure $t$ , weights $\alpha$ of the
long term memory, and weights $w_{h}$ to constraints, all of which must be adjusted beforehand (usually
by preliminary experiment) to attain its maximum efficiency. To make our algorithm more easily
usable, it would be important to establish a guide line for adjusting such parameters, or preferably,
to develop some automatic mechanism for that purpose.

As our project is still on-going, we plan to increase its power and applicability by further elabora-
tion. Toward this goal, the following points may deserve consideration:

1. More sophisticated elements of tabu search, such as strategic oscillation, path relinking and
target analysis, may be worthwhile to include.

2. Incorporation of neighborhoods other than $N(x)$ may also be useful. Flexible choices of neighbor-
hood structures will enlarge the applicability of our algorithm, but at the same time necessitate
establishment of a rule of choosing an appropriate neighborhood from many possibilities.

3. Most of the problems tested in this paper are combinatorial in the sense that all the coefficients
$a_{hij}$ in constraints (3) are $0$ or $\pm 1$ . However, our algorithm may not be very effective for the
problems with general $a_{hij}$ . To overcome this, it appears necessary to exploit mathematical pro-
gramming techniques (e.g., linear programming) in order to extract global structural information
of the entire feasible region and to use it in the search process.

4. To make the system easily accessible from many users, it should be equipped with a friendly
interface so that the user can easily input $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ problem in the CSP form and execute the
CSP algorithm effectively. Development of such an interface is an important future project.

Acknowledgments

We appreciate M. Watanabe and K. Kaneko of C&C Research Laboratories, NEC Corporation for the
data of timetabling in Section 4, and A. Ikegami of Seikei University for the data of nurse scheduling
also in Section 4. This research was partially supported by the Scientific Grant in Aid by the Ministry
of Education, Science and Culture of Japan.

19



nurses
$\frac{\mathrm{d}\mathrm{a}\mathrm{y}\mathrm{s}}{123456789101112131415161718192021222324252627282930}$

$\overline{\overline{1^{*}/--==/-=\equiv\equiv/----/-\equiv\equiv//-=/\equiv\equiv/-=/}}$
$2^{*}$ $\equiv//--==\equiv//--+//-=/-\equiv\equiv\equiv/--==/--$
$3^{*}$ $-/-\equiv\equiv//----==/\equiv\equiv/-===/--=/--//$
$4^{*}$ $/==/–/–=//\equiv\equiv/--=/+---=//-=\equiv\equiv$
$5^{*}$ $—-/\equiv\equiv/--=/-===\equiv\equiv/--////-\equiv\equiv/=$
$6^{*}$ $=\equiv\equiv//--/==\equiv\equiv/--//---/=\equiv\equiv/--/--$

A 7 / / $–/—=/–=/–/–\equiv\equiv/----==//$
$8$ $==/—=/-+/–\equiv\equiv/-==/---=///--/$
$9$ / $-=//-\equiv\equiv/--//-===/---=/---/---$

$10$ $+//–=/-\equiv\equiv//-=/+---=/-=/---/\equiv\equiv$
$11$ $–/\equiv\equiv/-=//--/--+/---/---==/-=/$
$12$ / $—-////-==/–+-\equiv\equiv/--/----/--$
$13$ $—==/+-///\equiv\equiv/----/-=\equiv\equiv///---=$
$14^{*}$ $–=/-=/–+//-\equiv\equiv//-===/-\equiv\equiv//---$
$15^{*}$ $-\equiv\equiv////----\equiv\equiv//-=/---==/-\equiv\equiv/==$
$16^{*}$ / / $–=\equiv\equiv/-==/+-/---//+\equiv\equiv/--=/--$
$17^{*}$ $\equiv//---/==\equiv\equiv-+/-=/\equiv\equiv//---/--=/\equiv$
$18^{*}$ / $–=/-=\equiv\equiv//-==/\equiv\equiv f-+/---==/\equiv\equiv/$

$\mathrm{B}$ 19 $=f–/-+==\equiv\equiv/---+/--/--////-=/-$
$20$ $-==///–/–==/—//–/-==\equiv\equiv/-+$
$21$ / $–==\equiv\equiv/-=/--//-=/-=/--\equiv\equiv/--/+$
$22$ $+\equiv\equiv/-==///--/--/-=/-=/---==/-+$
$23$ $–//—-//–/=\equiv\equiv/-=/-==/--\equiv\equiv/+$
$24$ $\equiv//----/--=//-==\equiv\equiv/-=/--///-==$

$\overline{\overline{-810}}25==/\equiv 101010108\equiv/--/10981^{-}-010=/-=/-=/7101081010109\equiv\equiv 91^{/=/-}01^{-}31091-0101^{-/}010-8$

$=$ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4
total $\equiv$ 3 3 3 3 3 3 4 3 3 4 3 3 3 3 4 3 3 5 3 3 3 3 3 3 3 3 4 3 3 3

$+/$

2 $00000200200300400021000000004$
8 8 8 8 8 8 7 8 9 7 8 8 8 8 7 6 8 6 8 7 7 8 5 8 9 8 7 8 8 6

-: day shift
$=$ : evening shift
$\equiv$ : night shift
$+$ : meeting
/: day off

$*$ : leader

Figure 1: A schedule of 25 nurses on 30 days.
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