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( $\varpi$田老弘) ( $\Theta_{\backslash \sim\backslash }.\rho$ 芹 $-$ 歳)

Mitsuhiro Okada Kazushige Terui
Department of Philosophy, Keio University

Abstract

We give semantic characterizations for reachability and trace equivalence in a version of
asynchronous process calculus based on linear logic.

Usually the reachabtlity relation in linear logic-based process calculi is characterized by
the logical notion of provability, which is in turn characterized by model-theoretic semantics
such as phase semantics. We introduce considerably simplified phase models, which we call
naive phase models, and show that reachability is also characterized by the completeness with
respect to the naive phase models.

On the other hand, logical provability does not provide any satisfactory notion of equiva-
lence on processes. We consider the trace equivalence $(\mathrm{H}\mathrm{o}\mathrm{a}\mathrm{r}\mathrm{e}[7])$ on our process calculus and
introduce certain algebraic models, which we call trace models. Then the trace equivalence is
characterized by the completeness with respect to the trace models.

\S 1 Introduction
We investigate a version of asynchronous process calculus based on linear logic. In our framework,
formulas are identified with processes and inference rules are identified with actions in terms of
“message passing”-based process calculi. Then a bottom-up proof construction of a formula $A$ is
naturally interpreted as a computation of the process $A$ (cf. \S 2).

Under these identifications, various notions which have been discussed in the framework of
process calculi are brought into logical study. This paper attempts to give a logical analysis to
these new notions from process calculi in the framework of traditonal model-theoretic semantics.

Usually the logical notion of provability captures the reachability relation from the inputs to
the outputs. On the other hand, the provability is characterized by logical semantics, $\mathrm{e}\mathrm{g}$ . phase
semantics, via the completeness theorem in the traditional framework of logic. However, the usual
logical semantics complete for full linear logic, $\mathrm{e}\mathrm{g}$ . phase semantics, is of rather abstract nature;
such a semantics interpretes a formula on a certain model-theoretic domain, but the interpretation
of a formula is usually so complicated that one could hardly catch any intuitive meaning of a
formula from such a semantics. For $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\rangle$ phase semantics requires a certain closure condition
to be complete with respect to full linear logic, and requires a formula to be interpreted by a
certain “

$\mathrm{c}1_{\mathrm{o}\mathrm{s}\mathrm{e}}\mathrm{d}’$

) set, called a fact (cf. \S 3.1), which makes the intuitive meaning of the formula
ambiguous.

Our theory of process calculus uses only a very restricted fragment, essentially Horn fragment
of linear logic. Hence there is a possibility to obtain simpler semantics that is complete with
respect to the framgent. In \S 3.2, we introduce a simplified semantics for the Horn fragment, called
naive phase semantics, which is obtained from phase semantics by dropping the closure condition.
Naive phase semantics gives more intuitive meaning of formula than the original phase semantics.
Our first main result says (in \S 3.2),
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1. The reachability relation is characterized by the completeness with respect to the naive phase
models.

The next problem which we address in this paper is to characterize certain notion of equivalence
on processes in the traditional framework of model-theoretic semantics. The identification of
formulas with processes naturally leads us to the following question, what is an appropriate notion
of equivalence on $\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}}1\mathrm{a}\mathrm{s}/\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{S}\mathrm{s}\mathrm{e}\mathrm{s}$ from the viewpoint of process calculi? One might expect
that logical equivalence, defined in terms of logical provability, provides such an adequate notion
of equivalence; $A$ and $B$ are logically equivalent if $A\vdash B$ and $B\vdash A$ are provable in linear logic.
Logical equivalence is, however, too coarse in a sense and too fine in another sense to be an adeqate
notion of equivalence on processes. Consider two processes $\alpha-0\beta-0\gamma$ and $\beta-0\alpha-0\gamma$ . $\alpha-0\beta-0\gamma$

intuitively means (
$‘ \mathrm{f}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}$ receive $\alpha$ , then receive $\beta$ and send $\gamma$ ”, while $\beta-0\alpha-0\gamma$ intuitively means

“first receive $\beta$ , then receive $\alpha$ and send $\gamma$”. So they behave quite differently, whereas the logical
equivalence identifies them. On the other hand, it is reasonable to think that $(\alpha-0\beta)\otimes(\gamma-0\delta)$

and $\alpha-0$ $(\beta\otimes (\gamma-0 \delta))$ &\mbox{\boldmath $\gamma$}-0 $((\alpha-0\beta)\otimes\delta))$ are equivalent with respect to their behavior, whereas
they are not logically equivalent. Here $\alpha-0$ $A$ means “receive a and invoke $A$”, $\alpha\otimes A$ means “send
$\alpha$ and invoke $A’$), A&B means “choose $A$ or $B$”. (See $\mathrm{K}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{y}\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{i}\ \mathrm{Y}_{0}\mathrm{n}\mathrm{e}\mathrm{z}\mathrm{a}\mathrm{W}\mathrm{a}[11]$ for a slightly
different view of logical equivalence.)

The leading principle to find an adequate notion of equivalence is that processes should be
equivalent if they are indistinguishable by an external observer. What makes two processes equiv-
alent or distinct is their observable behavior. Under this principle, various notions of equivalence
have been proposed in the literature (cf. van $\mathrm{G}\mathrm{l}\mathrm{a}\mathrm{b}\mathrm{b}\mathrm{e}\mathrm{e}\mathrm{k}[29][30]$). Among those, we deal with trace
equivalence in this paper.

Trace equivalence, presented by Hoare[7], is known to be one of the simplest notion of equiv-
alence; roughly, $A$ and $B$ are trace equivalent if they can perform the same set of sequences of
observable actions. Trace equivalence provides a better notion of equivalence on processes than
that of logical equivalence from the observational point of view. As a matter of fact, it is easily
shown that $\alpha\infty\beta-0\gamma$ and $\beta-0\alpha-0\gamma$ are not trace equivalent, and that $(\alpha-0\beta)\otimes(\gamma-0\delta)$

and $\alpha-0$ $(\beta\otimes (\gamma-0 \delta))$ &\mbox{\boldmath $\gamma$}-0 $((\alpha\infty\beta)\otimes\delta))$ are trace equivalent. Trace equivalence is sometimes
considered to be too weak to identify processes in the sense that it identifies too many processes.
In particular, it possibly identifies a deadlocking process with one that does not deadlock (see Ex-
ample 3(2) in \S 4.1). Nevertheless it is of significance as the basis for other equivalence notions of
processes. Trace equivalence provides a simple formalization of our basic intuition that processes
are equivalent if they are observationally indistiguishable, and any equivalence naturally defined
on the basis of this intuition can be seen as a refinement of trace equivalence.

In \S 4.1 we consider the trace equivalence in our framework, defined in terms of observable
behavior of processes, and in \S 4.2 we introduce certain algebraic models, which we call trace
models. Trace models are defined in the traditional frame work of algebraic semantics. Then our
second main result says (in \S 4.2);

2. Trace equivalence is characterized by the completeness with respect to the trace models.

For the completeness proof we use the technique similar to the phase-semantic completeness
proof.

In this preliminary report, we only deal with the systems that can be developed in propositional
fragment of linear logic.

\S 2 Syntax and Operational Semantics
Through this paper, we consider the following correspondence between the logical notions and the
notions from the theory of “message passing”-based process calculi;
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$\mathrm{T}\mathrm{a}\mathrm{h}1_{\mathrm{P}}\rceil$

propositional variables $=$ tokens or messages
logical connectives $=$ action names

inference rules $=$ transition rules
formulas $=$ processes
sequents $=$ process configurations

bottom-up proof construction $=$ computation

We identify a propositional variable with a token or a message, and each logical connective sym-
bol with an action name. Then the operational meaning of an action, namely the transition rule
determining the behavior of the action, is described in terms of a logical inference rule correspond-
ing to the logical connective associated to the action. A formula constructed from propositional
variables and logical connectives is viewed as a process and a sequent (in the sequent-calculus
formulation of logic) is viewed as a process configuration. A logical inference is interpreted as a
state-transition by reading them bottom-up, thus, $\mathrm{e}\mathrm{g}$ . a logical inference of the form

$\frac{A,B,\Gamma\vdash}{A\otimes B,\Gamma\vdash}\otimes$

is read as “state $A\otimes B,$ $\Gamma$ transforms to state $A,$ $B,$ $\Gamma$ by Parallel $\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\otimes^{)}’$ . Then a bottom-up
proof construction for a sequent “$\Gamma\vdash$ ” corresponds to a computation starting from a process
configuration “

$\Gamma\vdash$”.
We introduce the system $S$ , a version of asynchronous concurrent process calculus $\mathrm{b}\mathrm{a}s$ed on

linear logic proof search, that is essentially a subsystem of the system considered by $\mathrm{O}\mathrm{k}\mathrm{a}\mathrm{d}\mathrm{a}[20][21]$ .
$S$ is based on left one-sided sequent calculus. However, nothing important is missing for theo-
retical issues compared with process calculi based on two-sided (classical) sequent calculi such as
Andreoi&Pareschi[2]’s LO and $\mathrm{K}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{y}\mathrm{a}\mathrm{S}\mathrm{h}\mathrm{i}\ \mathrm{Y}_{\mathrm{o}\mathrm{n}}\mathrm{e}\mathrm{Z}\mathrm{a}\mathrm{w}\mathrm{a}[10][12]’ \mathrm{s}$ACL, although $\mathrm{t}\mathrm{w}(\succ \mathrm{S}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{d}$ formula-
tion would be convenient for practical issues like the logic programming languages design.

Let us begin by defining the language $L(S)$ of our system $S$ . We presuppose that a set $\mathcal{P}$

of propositional variables is given. As mentioned before, logical constants and connectives can
be naturally interpreted by actions in our process calculus. In the following definition, we give
the action names corresponding to the outermost logical connectives. Their precise operational
meanings will be given below in terms of logical inference rules of linear logic.

Definition 1 The language $L(S)$ is defined as follows;

1. If $\alpha\in \mathcal{P}$ , then $\alpha\in L(S)$ (Token or Message).

2. $1\in \mathcal{L}(S)$ (Suicide-action).

3. If $A,$ $B\in \mathcal{L}(S)$ , then $A\otimes B\in \mathcal{L}(S)$ (Parallel-action), in particular if $\alpha\in \mathcal{P}$ , then $\alpha\otimes B$ is
called a Sending-action

4. If $\alpha_{1},$
$\ldots,$

$\alpha_{n}\in \mathcal{P}(n\geq 1)$ and $B\in \mathcal{L}(S)$ , then $\alpha_{1}\otimes\cdots\otimes\alpha_{n}-\mathrm{o}B\in \mathcal{L}(S)$ (Receiving-action).

5. If $A,$ $B\in \mathcal{L}(S)$ , then A&B\in L(S) (Choice-action).

6. If $A\in L(S)$ , then $!A\in \mathcal{L}(S)$ (Bang-action).

Thus our language $\mathcal{L}(S)$ is a subset of that of the usual intuitionistic linear logic; $\mathcal{L}(S)$ lacks
$\mathrm{T},$ $0,$ $\perp,$ $\oplus$ , and implications are restricted to the Horn implications in $\mathcal{L}(S)$ that require antecedents
to be of the form $\alpha_{1}\otimes\cdots\otimes\alpha_{n}$ for $\alpha_{i}\in \mathcal{P}$ .

Roughly speaking, the formulas in $\mathcal{L}(S)$ correspond to the processes in $\mathrm{C}\mathrm{C}\mathrm{S}[16]$ and $\pi- \mathrm{c}\mathrm{a}\mathrm{l}\mathrm{C}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{s}[19][18]$

in the way described in Table 2.
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Table 2: Correspondence between formulas in $S$ and processes in CCS and $\pi$-calculus

It should be noted, however, that there are some serious differences between them; $S$ is an asyn-
chronous calculus in the sense explained later whereas CCS and $\pi$-calculus are synchronous, and
$S$ is based on proof-theoretic notions whereas CCS and $\pi$-calculus are based on algebraic notions.
(An asynchronous version of $\pi$-calculus was also introduced in $\mathrm{H}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{a}[9]$ on the basis of algebraic
notions.)

A finite multiset of formulas in $\mathcal{L}(S)$ is called a process configuration. A sequent of $S$ of the
form $\Gamma\vdash \mathrm{i}\mathrm{s}$ identified with a process configuration F. In the sequel, $\alpha,$

$\beta,$
$\ldots$ range over $\mathcal{P},$ $A,$ $B,$ $\ldots$

range over $\mathcal{L}(S)$ , and $\Gamma,$ $\Delta,$
$\ldots$ range over the process configurations of $\mathcal{L}(S).\vec{\alpha},\vec{\beta},$

$\ldots$ range over
the finite sequences of propositional variables. If $\vec{\alpha}=\alpha_{1},$

$\ldots,$
$\alpha_{n},$

$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\otimes\vec{\alpha}$ stands for $\alpha_{1}\otimes\cdots\otimes\alpha_{n}$ .
In particular, if $\vec{\alpha_{i}}$ is the empty sequence, $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\otimes\vec{\alpha}$ stands for 1. We write $A^{n}$ to denote a formula
$\sim A\otimes\cdots\otimes A$ . A formula of the form !A is called a modal formula.

$n$ times
The inference rules of $S$ , which corresponds to the transition rules in process calculi (when

read bottom-up), are essentially those of linear logic restricted to our language $\mathcal{L}(S)$ . It should be
noted that $\Gamma$ below is considered as a multiset, hence the exchange rule is implicit.. Parallel Action $(\otimes)$

$\frac{A,B,\Gamma\vdash}{A\otimes B,\Gamma\vdash}\otimes$

(Parallel action $A\otimes B$ invokes processes $A$ and $B$ in parallel.) A special case of this action
is the Sending Action

$\alpha B\mathrm{r}\vdash$

,–,
$\otimes$

$\alpha\otimes B,$ $\Gamma\vdash$

(Sending action $\alpha\otimes B$ sends a token $\alpha$ and invokes $B.$ ). Receiving Action $(-0)$

$\frac{(\vec{\alpha}\vdash\otimes\vec{\alpha})A,\mathrm{r}\vdash}{arrow}-0$

$\alpha,$
$\otimes\vec{\alpha}-\mathrm{o}A,$ $\Gamma\vdash$

where $\vec{\alpha}$ denotes $\alpha_{1},$
$\ldots,$

$\alpha_{n}(n\geq 1)$ . (Receiving action $\otimes\vec{\alpha}-0$ $A$ receives tokens $\vec{\alpha}$ from the
environment and invokes $A.$ ) We treat this $\mathrm{r}\mathrm{u}\mathrm{l}\mathrm{e}/\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ as if it had only one premise. This
convention is justified by the fact that the left premise of this rule is always provable, (hence
the proof construction of the left premise terminates immediately.). Choice Action (&)
$\frac{A,\Gamma\vdash}{A\ B,\Gamma\vdash}\$ $\frac{B,\Gamma\vdash}{A\ B,\Gamma\vdash}\$

(Choice action A&B chooses either A or $\mathrm{B}$ , and invokes it.). Suicide Action (1)
$\frac{\Gamma\vdash}{1,\Gamma\vdash}1$

(Suicide action 1 terminates itself.). Bang Action (!)
$\underline{!A,A,\Gamma\vdash}!$

$!A,$ $\Gamma\vdash$

(Bang action !A produces a copy $A$ and invokes it.)

Note that the above Bang ! rule is slightly different from $\mathrm{G}\mathrm{i}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{d}[5]’ \mathrm{S}$ original bang (modality)
rules; ours is derivable from Girard’s, but not vice versa. Our bang ! is sometimes called Milner’s
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bang because it behaves like the one Milner introduced in [18] for his theory of $\pi$-calculus. It can
be shown that these two versions of bang ! are equivalent up to reachability and trace equivalence
defined later (in this section and in \S 4.1).

Listed below are some useful derived rules in $S$ .

(1)

$\frac{\frac{A,\Gamma\vdash}{\alpha,\alpha-\mathrm{o}A)\Gamma\vdash}}{\alpha,\alpha-\mathrm{o}A\ \beta-\mathrm{o}B,\Gamma\vdash}$ $\frac{\frac{B,\Gamma\vdash}{\beta,\beta-\mathrm{o}B,\Gamma\vdash}}{\beta,\alpha-\mathrm{o}A\ \beta-\circ B,\mathrm{r}\vdash}$

The process $\alpha-0$ A&\beta -o $B$ selects $A$ or $B$ depending on $\alpha$ or $\beta$ which the process receives.

(2)

$\frac{}{\vec{\alpha},!(\otimes\vec{\alpha}-\mathrm{O}\otimes\vec{\beta}),\Gamma,\vdash}\frac{\vec{\beta},!(\otimes\vec{\alpha}-0\otimes\vec{\beta}),\Gamma,\vdash}{\vec{\alpha},\otimes\vec{\alpha}-\circ\otimes\vec{\beta},!(\otimes\vec{\alpha}-0\otimes\vec{\beta}),\mathrm{r},\vdash}$

The process $!(\otimes\vec{\alpha}-0\otimes\vec{\beta})$ transforms tokens $\vec{\alpha}$ into $\vec{\beta}$, while the process itself remains unchanged.

(3)

$\frac{\frac{A,B,\Gamma\vdash}{\alpha,A,\alpha-\mathrm{o}B,\Gamma\vdash}}{\alpha\otimes A,\alpha-\mathrm{o}B,\mathrm{r}\vdash}$

The sender $\alpha\otimes A$ passes a message $\alpha$ to the receiver $\alpha-\mathrm{o}B$ . Note that this communication oc-
curs asynchronously in the sense that the sender can send a message without synchronizing with
the receiver. This is the most important difference from synchronous concurrent process calcului
such as $\mathrm{M}\mathrm{i}\mathrm{l}\mathrm{n}\mathrm{e}\mathrm{r}[16]’ \mathrm{S}$ CCS, $\mathrm{H}\mathrm{o}\mathrm{a}\mathrm{r}\mathrm{e}[8]’ \mathrm{s}$ CSP, and so on, and for this reason our $S$ is said to be an
asynchronous concurrent process calculus (also cf. $\mathrm{H}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{a}[9]$ ).

Example 1 Consider the detafolw diagram below;

Figure 1: A dataflow diagram

Here, $\alpha,\beta,$
$\gamma,$

$\delta,$
$\eta$ and $\lambda$ denote channels in the above dataflow network. Process $P_{1}$ is a process

to receive two messages (tokens) from the channel $\alpha$ and to produce two tokens to channel $\beta$ and
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one token to channel $\gamma$ concurrently. This is specified by $!(\alpha\otimes\alpha-0\beta\otimes\beta\otimes\gamma)$ in $S$ . We abbreviate
this as ! $(\alpha^{2}-0\beta^{2} \copyright 7)$ . The bang (modality) ! means that this process can be repeated infinitely
many times. $P_{2}$ is waiting- for three tokens through channel $\beta$ then sending two tokens through
channel $\delta$ . $P_{2}$ is specified by $!(\beta^{32}-0\delta)$ . $P_{3}$ is waiting for two tokens through channel 7 then
sending one token through channel $\eta$ . $P_{3}$ is specified by $!(\gamma^{2}-0\eta)$ . $P_{4}$ receives two tokens from
channel $\delta$ and two from $\eta$ concurrently, then produces one output token through channel $\lambda$ . $P_{4}$ is
written as $!(\delta^{2}\otimes\eta^{2}-0\lambda)$ .

Then the whole network is described as $\Gamma$ , where

$\Gamma\equiv!(\alpha^{2}-\circ\beta 2\otimes\gamma),$ ! $(\beta^{3}-\mathrm{O}\delta 2),$ $!(\gamma-\circ 2\eta),$ $!(\delta^{2}\otimes\eta^{2}-0\lambda)$ .

Now consider an initial channel state $m$ , say $\alpha^{2},$ $\beta,$ $\gamma^{5}$ . This means that the network is started
with channel state $m$ , i.e., two tokens at channel $\alpha$ , one token at channel $\beta$ and five tokens at
channel $\gamma$ .

By using derived rule (2) above, we observe that the following is a derivation in $S$ ;

$\frac{\lambda,\gamma^{2},\Gamma\vdash}{\delta^{2},\eta^{2},\gamma^{2},\Gamma\vdash}$

$\frac{\delta^{2},\eta,\gamma^{4},\Gamma\vdash}{\delta^{2},\gamma^{6},\Gamma\vdash}$

$\frac{\beta^{3})\gamma^{6},\mathrm{r}\vdash}{\alpha^{2},\beta,\gamma^{5},\Gamma\vdash}$

Let us denote by $n(\equiv\lambda, \gamma^{2})$ the channel state in which there are one token at channel $\lambda$ and
two tokens at channel $\gamma$ . Then the above derivation expresses that channel state $n$ is reachable
from channel state $m$ under specification F. The channel state $\lambda,$

$\eta$ is also reachable from $m$ under
$\Gamma$ , but the state $\lambda^{2}$ is not. $\blacksquare$

Example 2 If we incorporate such an infinitary expression $\mathrm{a}s\ _{i\in I}A_{i}$ , where $I$ denotes an arbi-
trary index set, into the language, and add an inference rule

$\frac{A_{j},\Gamma\vdash}{\ _{i\in I}Ai\Gamma\vdash},$

,

where $j\in I$ , then we can express value passing between two processes in this extended system.
Assume that $\mathcal{P}$ includes propositional variables of the form $\alpha_{i}$ where $i$ is a natural number. Let
us write $\alpha(i)$ to denote $a_{i}$ . Nonatomic formulas are treated as if they were first-order formulas;
we write $A(i)$ to indicate some occurrences of subscript $i$ attached to propositional variables in $A$ .
We abbreviate a $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\ _{i\in N}\alpha(i)-\mathrm{O}B(i)$ where $N$ is the set of natural numbers by $\alpha(x)-\mathrm{O}B(X)$ .
Then we see

$\frac{A,B(n),\Gamma\vdash}{\alpha(n),A,\alpha(n)-\mathrm{o}B(n),\mathrm{r}\vdash}$

$\frac{\alpha(n),A,\alpha(X)-\circ B(X),\mathrm{r}\vdash}{\alpha(n)\otimes A\alpha()X)-\circ B(_{X)\Gamma\vdash}\rangle}$

is a derivation in this extended system. This expresses that the sender $\alpha(n)\otimes A$ passes value $n$ to
the receiver $\alpha(x)-\mathrm{O}B(X)$ through channel $\alpha$ .

All results shown in this paper would still hold by this extension. Later we shall introduce this
infinitary&formally in \S 4.1. $\blacksquare$

If

$\frac{\Gamma_{2}\vdash}{\Gamma_{1}\vdash}$
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is an instance of an inference rule of $S$ , then the pair of $\Gamma_{1}$ and $\Gamma_{2}$ is called a transition (and we
denote the transition relation by $\Gamma_{1}arrow\Gamma_{2}$ ). A (finite or infinite) sequence $\mathrm{r}_{0},$ $\Gamma_{1},$

$\ldots,$
$\Gamma i,$

$\ldots$ of
process configurations is a transition sequence if for each $i$ a transition relation $\Gamma_{i-1}arrow\Gamma_{i}$ holds.
The transitive reflexive closure $\mathrm{o}\mathrm{f}arrow \mathrm{i}\mathrm{s}$ written $\mathrm{a}\mathrm{s}arrow^{*}$ . Hence $\Gammaarrow^{*}\Gamma’$ means that there exists
a finite transition sequence from $\Gamma$ to $\Gamma’$ .

Let $\vec{\alpha}$ be $\alpha_{1},$
$\ldots,$

$\alpha_{m}(m\geq 0),\check{\beta}$ be $\beta_{1},$
$\ldots$ , $\beta_{n}(n\geq 0)$ and $\Gamma$ be a process configuration, i.e. a

sequence of formulas of $\mathcal{L}(S)$ . Then we say $\vec{\beta}$ is reachable from $\vec{\alpha}$ under $\Gamma$ if $\vec{\alpha},$
$\Gammaarrow^{*}\tilde{\beta},$ $!\Sigma$ for some

sequence $!\Sigma$ of modal formulas.

Proposition 1 The following are equivalent,$\cdot$

(1) $\vec{\beta}$ is reachable from $\vec{\alpha}$ under $\Gamma$ ;
(2) $\vec{\alpha},$

$\Gamma\vdash\otimes\vec{\beta}$ is provable in classical full linear logic;
(3) $\vec{\alpha},$

$\Gamma\vdash\otimes\tilde{\beta}$ is provable in intuitionistic full linear logic.
(See $Girardl\theta f$ for the precise definition of classical and intuitionistic linear logic.)

Proof. Consider the following subsystem $S’$ of linear logic;

Axiom: $\vec{\alpha}\vdash\otimes\vec{\alpha}$

Inference rules:
$\underline{A,B,\Gamma\vdash\otimes\vec{\beta}}\otimes$

$\frac{\vec{\alpha}\vdash\otimes\vec{\alpha}A,\mathrm{r}\vdash\otimes\tilde{\beta}}{\vec{\alpha},\otimes\vec{\alpha}-\mathrm{O}A,\mathrm{r}\vdash\otimes\vec{\beta}}-0$

$A\otimes B,$ $\Gamma\vdash\otimes\tilde{\beta}$

$\frac{A,\Gamma\vdash\otimes\vec{\beta}}{A\ B,\Gamma\vdash\otimes\vec{\beta}}$ & $\frac{B,\Gamma\vdash\otimes\vec{\beta}}{A\ B,\Gamma\vdash\otimes\vec{\beta}}$ & $\frac{\Gamma\vdash\otimes\vec{\beta}}{1,\Gamma\vdash\otimes\vec{\beta}}1$

$\frac{\Gamma\vdash\otimes\vec{\beta}}{!A,\Gamma\vdash\otimes\vec{\beta}}!W$ $\frac{!A,!A,\Gamma\vdash\otimes\vec{\beta}}{!A,\Gamma\vdash\otimes\vec{\beta}}!C$ $\frac{A,\Gamma\vdash\otimes\vec{\beta}}{!A,\Gamma\vdash\otimes\vec{\beta}}!D$

As $\mathrm{e}\mathrm{a}s$ily shown, a sequent of the form $\Gamma\vdash\otimes\vec{\beta}$ , where $\Gamma$ is a process configuration of $S$ , is prov-
able in $S’$ iff it is provable in classical full linear logic iff it is provable in intuitionistic full linear
logic. We can $\mathrm{e}\mathrm{a}s$ ily transform a finite transition sequence of $S$ into a proof in $S’$ , and vice versa. $\blacksquare$

The above Proposition shows that the logical notion of provability characterizes reachability.

\S 3 Naive Phase Semantics Characterizing Reachability
\S 3.1 Preliminary Remark on Intuitionistic Phase Semantics
This subsection is devoted to a brief introduction to intuitionistic phase semantics, as a preliminary
to the next subsection.

Phase semantics, originally introduced by $\mathrm{G}\mathrm{i}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{d}[5]$ , is a standard model-theoretic semantics
for (classical) linear logic. After the publication of [5], its intuitionistic versions are investigated by
several authors, $\mathrm{e}\mathrm{g}$ . $\mathrm{A}\mathrm{b}\mathrm{r}\mathrm{u}\mathrm{s}\mathrm{c}\mathrm{i}[1],$ $\mathrm{o}\mathrm{k}\mathrm{a}\mathrm{d}\mathrm{a}[22],$ $\mathrm{s}_{\mathrm{a}}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{n}[27]$ , with slight differences in their definitions.
Here we introduce a version of intuitionistic phase semantics, following $\mathrm{O}\mathrm{k}\mathrm{a}\mathrm{d}\mathrm{a}[22]$ . As proved in
[22], the semantics completely characterizes provability in intuitionistic linear logic. In the light
of Proposition 1 in \S 2, which says that provability in intuitionistic linear logic characterizes reach-
ability in $\mathrm{S}$ , it is immediate that satisfiability in intuitionistic phase semantics also characterize
reachability in S. However, intuitionistic phase semantics usually requires a certain closure op-
erator to interprete formulas, which causes difficulty in understanding the intuitive meaning of
formulas via the semantics.

We shall introduce naive phase semantics, i.e., phase semantics without any closure condition,
in \S 3.2. That is obtained by modifying intuitionistic phase semantics defined below. A variant of
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intuitionistic phase semantics is also used for the canonical model construction for completeness
of the trace models in \S 4.4.

Definition 2 An intuitionistic phase space $(M, D, \perp)$ consists of a commutative monoid $M$ , a
subset $D$ (called the facts) of the powersets of $M\mathrm{a}\mathrm{n}\mathrm{d}\perp\in D$ that satisfies
(P1) $D$ is closed under arbitrary $\cap$ ; in particular $M\in D$ ,

(P2) If $X\subseteq M$ and $Y\in D$ , then $X-\mathrm{o}Y\in D$

where $-arrow$ is defined by $X-\triangleleft Y=\{y|\forall x\in Xxy\in Y\}$ for any $X,$ $Y\subseteq M$ . We also define $XY$ as
$\{xy|x\in X, y\in Y\}$ and $X^{C}\mathrm{a}\mathrm{s}\cap\{Y\in D|X\subseteq Y\}$ (the smallest fact that includes $X$ ).

Then, we can define $1=\{1\}^{C}$ (1 stands for the unit element of $M$ ), $\mathrm{T}=M,$ $0=0^{C}$ , and for
any facts $X,$ $Y$ ,

$\bullet X\otimes Y=(xY)^{C}$ ,

$\bullet$ $X\ Y=X\cap Y$,. $X\oplus Y=(X\cup Y)^{c}$ ,

$\bullet X^{\perp}=X-\circ\perp$ .

Among the basic properties of intuitionistic phase spaces, we see the following;
$\bullet$ For any facts $X,$ $Y$ and $Z,$ $X\otimes Y=Y\otimes X,$ $X\otimes(Y\otimes Z)=(X\otimes Y)\otimes Z,$ $1\otimes X=X$ ,

$\bullet$ $X\otimes Y\subseteq Z$ iff $Y\subseteq X-\mathrm{o}Z$ ;. $X-\circ(Y-\circ Z)=Y-\circ(X-\circ Z),$ $1-0X=X$ ;

$\bullet$ $X\otimes(Y\oplus Z)=(X\otimes Y)\oplus(X\otimes Z),$ $X-0$ $Y\ Z=$ ($X-0$ Y)&(X-o $Z$ ) $)$

$\bullet$ X\otimes (Y&Z)(X\otimes Y)&(X\otimes Z), but the reverse does not hold in general.
Associativity $\mathrm{o}\mathrm{f}\otimes \mathrm{i}\mathrm{s}$ nontrivial, but follows from the observation that $x^{c_{Y^{C}}}\subseteq(XY)c$ for any
$X,$ $Y\subseteq M$ . Note that $(D, \ , \oplus, 0, -0, \otimes, 1)$ forms an IL-algebra in the sense of $\mathrm{T}\mathrm{r}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}[28]$.

A classical phase space is a special intuitionic phase space in which $D$ consists of all $X’ \mathrm{s}$ such
that $X=X^{\perp\perp}$ .

The following definition is analogous to that of enriched (classical) phase spaces in $\mathrm{L}\mathrm{a}\mathrm{f}_{\mathrm{o}\mathrm{n}}\mathrm{t}[13]$

(cf. also $\mathrm{G}\mathrm{i}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{d}[6]$ ). If $M$ is an intuitionistic phase space, then $J(M)=\{x\in 1|x\in\{xx\}C\}$ is
a submonoid of $M$ . An enriched intuitionistic phase space is an intuitionistic phase space $M$

endowed with a submonoid $K$ of $J(M)$ (not necessary to be a fact).
For any fact $X$ of enriched intuitionistic phase space, define
$\bullet!X=(X\cap K)c$ .

The following are some basic properties of modality ! (cf. $\mathrm{G}\mathrm{i}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{d}[5][6],$ $\mathrm{L}\mathrm{a}\mathrm{f}_{\mathrm{o}\mathrm{n}}\mathrm{t}[13]$);. For any facts $X$ and $Y,$ $!X\subseteq X,$ $!X\otimes!X=!X,$ $!X\subset 1$ ; if $!Y\subseteq X$ , then $!Y\subseteq!X$ ;. !(X&Y) $=!X\otimes!Y$ .
An intuitionistic phase model is given by an (enriched) intuitionistic phase space and an inter-

pretation which maps each atom $\alpha$ to a fact $\alpha^{*}$ of $M$ . Then any formula $A$ is interpreted by a fact
$A^{*}$ along the above definitions, and $\Gamma\equiv A_{1},$

$\ldots,$
$A_{n}$ is interpreted by $\Gamma^{*}=A_{1}^{*}\otimes\cdots\otimes A_{n}^{*}$ . We say

that $A$ is satisfied in $M$ if $1\in A^{*}$ , and that $\Gamma\vdash C$ is satisfied in $M$ if $\Gamma^{*}\subseteq C^{*}$ .
Theorem 1 Let $\Gamma\vdash C$ be a sequent in intuitionistic linear logic. Then $\Gamma\vdash C$ is provable in
intuitionistic linear logic if and only if it is satisfied in every intuitionistic phase model.

Proof. See $\mathrm{O}\mathrm{k}\mathrm{a}\mathrm{d}\mathrm{a}[22]$ . $\blacksquare$

Combined with Proposition 1 in \S 2, we obtain;

Corollary 1 Let $\Gamma$ be a process configuration of S. Then $\vec{\beta}$ is reachable from $\vec{\alpha}$ under $\Gamma$ if and
only if $\vec{\alpha},$

$\Gamma\vdash\otimes\vec{\beta}$ is satisfied in every intuitionistic phase model.
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\S 3.2 Naive Phase Semantics
As mentioned in the previous subsection, reachability in $S$ is characterized by satisfiability in
intuitionistic phase semantics (Corollary 1). But it would be a shortcoming of phase semantics
that phase semantics heavily relies on some closure condition in order to be complete for its
corresoponding syntax; for example, $X\otimes Y$ should be interpreted by $(XY)\perp\perp$ in classical phase
spaces and by $(XY)c$ in intuitionistic phase spaces. However, from the viewpoint of practical
applications of linear logic such as logic programming, process calculus and formal linguistics, one
could hardly catch any intuitive meaning of these closure conditions. Hence it would be preferable
to dispense with any closure condition. Such a phase semantics without closure condition is
sometimes called a naive phase semantics.

Naive phase semantics is sound for full intuitionistic linear logic, but fails to be complete for
the following obvious reasons;

1. The distributive law between&and\oplus holds for every naive phase model, but it cannot be
proved in linear logic.

2. Phase semantics requires that 1 be interpreted by the smallest fact including 1, the monoid
unit. In a naive phase model, however, such a fact would be {1}, that is too poor to be an
interpretation of 1; any formula of the form !A would collapse into 1 or $0$ , since !A must be
interpreted by a subset of the interpretation of 1.

Hence it is an interesting question to what extent of subsystems of linear logic one can obtain
the completeness with respect to naive phase semantics.

There are several completeness results on the naive phase semantics for certain very restricted
subsystems of linear logic, especially for Lambek $\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{C}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{S}[14]$ , which is essentially $(\otimes, -0)$-fragment
of noncommutative intuitionistic linear logic, and its related systems. $\mathrm{B}\mathrm{u}\mathrm{s}\mathrm{Z}\mathrm{k}_{0}\mathrm{w}\mathrm{S}\mathrm{k}\mathrm{i}[4]$ proved that
Lambek Calculus and some systems related to it are complete with respect to the naive phase
models (the generalized standard models or $GS$-models, in his terminology). $\mathrm{P}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathfrak{U}}\mathrm{s}[26]$ proved
that the naive phase models based on free semigroups, called the language $model_{\mathit{8}}$ , are sufficient to
be complete for Lambek Calculus. Okada&Terui[23] showed that the finite naive phase models are
sufficient to be complete for Lambek Calculus and some related systems, hence that these systems
have the finite model property with respect to the naive phase models.

In this subsection, we shall introduce the system $S_{1}$ by restricting $S$ in such a way that 1 does
not occur and ! only occurs as an outermost connective. Then we prove that reachability in $S_{1}$ is
characterized by the completeness with respect to the naive phase models (Theorem 2 below). $S_{1}$

has enough expressive power to represent a wide range of message-passing based communication
networks, hence our result in this Section would be useful in practical applications.

Definition 3 The language $\mathcal{L}(S_{1})$ is defined as follows;. If $A$ is a formula in $L(S)$ that contains neither 1 nor !, then $A$ and !A are formulas in $L(S_{1})$ .

The inference rules of $S_{1}$ is the same as $S$ (but restricted to $\mathcal{L}(S_{1})$).

In this Section, we write a process configuration in the form $!\Gamma,$ $\Delta$ , where all modal formulas
in the sequent are indicated by $!\Gamma$ .

Definition 4 A naive phase model $M$ is an intuitionistic phase model (not enriched) in which the
facts $D$ consist of all subsets of $M$ .

A naive phase model does not need the closure operation $c_{;}X\otimes Y$ is simply interpreted by
$XY$ and each atomic formula is interpreted by any subset of $M$ . Since $D$ plays no role and $\perp$

does not have to be specified (because our language does not $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\perp$ ), we can say that a naive
phase model is simply a commutative monoid $M$ with an $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}*\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$ maps each atomic
formula $\alpha$ to a subset $\alpha^{*}$ of $M$ . Bang $!(\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y})$ cannot be interpreted directly in a naive phase
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model for the reason discussed above. Thus we do not require a naive phase model to be enriched,
rather, we interprete modal formulas as if they were axioms.

By a $\Gamma$ -model we mean a naive phase model in which $1\in A^{*}$ holds for each $A$ occuring in $\Gamma$ ,
namely a naive phase model in which $\Gamma$ is true.

Proposition 2 (Soundness) Let $!\Gamma,$ $\Delta$ be a process configuration of $S_{1}$ . If $\vec{\beta}$ is reachable from
$\vec{\alpha}$ under $!\Gamma,$ $\Delta$ , then $(\vec{\alpha}, \Delta)^{*}\subseteq(\otimes\vec{\beta})^{*}$ in every F-model.

Proof. If $\vec{\beta}$ is reachable from $\vec{\alpha}$ under $!\Gamma,$ $\Delta$ , then there is a transition sequence
$\vec{\alpha},$ $!\Gamma,$ $\triangle\equiv!\Gamma,$ $\Sigma_{0}arrow!\Gamma,$ $\Sigma_{1}arrow’\cdotsarrow!\Gamma,$ $\Sigma_{n}\equiv\vec{\beta},$ $!\Gamma$ .

(Note that the total amount of modal formulas does not change through transitions, by our re-
striction on $\mathcal{L}(S_{1}).)$ Then it is easily shown that $\Sigma_{i-1}^{*}\subseteq\Sigma_{i}^{*}$ for each $1\leq i\leq n$ in every $\Gamma- \mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}.\blacksquare$

\S 3.3 Completeness of Naive Phase Semantics
To show the reverse of Proposition 2, namely, completeness, we exploit the completeness proof
method investigated by Okada&Terui[23].

First let us give some ideas informally. Given a process configuration $!\alpha-0\beta\otimes\gamma,$ $\alpha$ , we have
the following transition sequence (derivation);

:
$!\alpha-0\beta\otimes\gamma,$ $\beta,$ $\gamma\vdash$

$\frac{\overline{!\alpha-\mathrm{O}\beta\otimes\gamma,\beta\otimes\gamma\vdash}}{\frac{!\alpha-0\beta\otimes\gamma,\alpha-0\beta\otimes\gamma,\alpha\vdash}{!\alpha-\circ\beta\otimes\gamma,\alpha\vdash}}$

We would like to give a concrete model to this transition sequence and to give a concrete in-
terpretation in the model to each formula occurring in the transition sequence. It is natural to
construct a model based on preconditions of processes. What we mean by the term precondition
is illustrated in the following transition sequence, where each formula $B$ is labelled like $a:B$ with
$a$ expressing a precondition of $B$ ,

$\frac{\frac{\frac{!\alpha-0\beta\otimes\gamma,.\sqrt{\alpha}l.\beta,\sqrt[\Gamma]{\alpha}.\gamma\vdash}{!\alpha-0\beta\otimes.\gamma,\alpha\cdot\beta.\otimes\gamma\vdash}}{!\alpha-0\beta\otimes\gamma,1\alpha-\mathrm{O}\beta\otimes\gamma,\alpha\cdot\alpha\vdash}}{!\alpha-0\beta\otimes\gamma,\alpha\cdot\alpha\vdash}..\cdot.\cdot..$

.

. $\alpha$ occurs in the initial process configuration, hence $\alpha$ itself is a precondition of $\alpha$ .
$\bullet$ We do not consider preconditions for modal formulas.. $\alpha-\circ\beta\otimes\gamma$ has the empty precondition denoted by 1 above because this can be produced

freely by Bang action.. $\beta\otimes\gamma$ emerges from two processes $\alpha-0\beta\otimes\gamma$ and $\alpha$ , which have preconditions 1 and $\alpha$ ,
respectively. Hence $1\alpha\equiv\alpha$ is a precondition of $\beta\otimes\gamma$ .. $\beta\otimes\gamma$ splits into $\beta$ and $\gamma$ . Let us consider $\sqrt[\iota]{\alpha}$ (the lefl-half of $\alpha$ ) to be a precondition of $\beta$ ,
and $\sqrt[\Gamma]{\alpha}$ (the right-half of $\alpha$ ) to be a precondition of $\gamma$ .

The labels express the preconditions which have a natural monoid-structure, thus, $1\alpha\equiv\alpha$

and $\sqrt[\iota]{\alpha}\cdot\sqrt[r]{\alpha}=\alpha$. We can construct a naive phase model from the labels occuring in the above
transition sequence, in which
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if $a:B$ occurs in the transition sequence, then $a\in B^{*}$ .

Hence this model can be seen as a direct representation of the above transition sequence. This
model is indeed a $(\alpha-0\beta \copyright \gamma)$ -model, because 1 : $\alpha-0\beta\otimes\gamma$ occurs in the sequence, hence
$1\in(\alpha-0\beta\otimes\gamma)*$ .

By a construction like the above, we can obtain a countermodel for the completeness proof.
Suppose that $\vec{\beta}$ is not reachable from $\vec{\alpha}$ under $!\Gamma,$ $\Delta$ . Then we can construct a naive phase model
in which $\vec{\alpha}\Delta\in(\vec{\alpha}, \Delta)^{*}$ and $\vec{\alpha}\Delta\not\in\otimes\vec{\beta}^{*}$ . The resulting phase model is indeed a $\Gamma$-model, hence we
obtain the completeness.

Let us begin the proof by giving the precise definition of the labels. Our labels are obtained
by modifying the terms of the system ND introduced by $\mathrm{B}\mathrm{u}\mathrm{s}\mathrm{z}\mathrm{k}_{0}\mathrm{w}\mathrm{S}\mathrm{k}\mathrm{i}[4]$ , which was used in his
proof of completeness for Lambek Calculus with respect to $\mathrm{G}\mathrm{S}$ -models. See also $\mathrm{P}\mathrm{a}\mathrm{n}\mathrm{k}\mathrm{r}\mathrm{a}\mathrm{t}’ \mathrm{e}\mathrm{V}[24]$

for another use of the system $\mathrm{N}\mathrm{D}$ . We modify $\mathrm{N}\mathrm{D}$-terms by adding the unit label 1 with convention
$a1\equiv 1a\equiv a$ , and by imposing commutativity $ab\equiv ba$ on the labels.

Definition 5 The labels $L$ and the simple labels $\overline{L}\subset L$ are defined as follows;

1. 1 is a simple label.

2. Each formula in $\mathcal{L}(S_{1})$ is a simple label.

3. if $a$ is a label and $A$ is a formula of the form $B\otimes C$ , then $\sqrt[1]{a}A$ and $\sqrt[\prime]{a}A$ are simple labels.

4. if $a$ and $b$ are labels, then $ab$ is a label.

As a convention, we identify $a_{1}a_{2}\cdots a_{n}$ with any of its permutations. Moreover, we assume
that $a1\equiv$ la $\equiv a$ for any label $a$ . For example, $b\sqrt[l]{a1}A\equiv b\sqrt[\iota]{a}A\equiv\sqrt[l]{a}Ab$.

Now we define a reduction relation on the labels.

Definition 6 For any labels $a,$ $a’,$ $b$ and any formula $A$ , if $a$ contains as sublabel $\sqrt[l]{b}A\sqrt[r]{b}A$ and
$a’$ results from $a$ by replacing one occurrence of $\sqrt[\mathrm{i}]{b}A\sqrt[r]{b}A$ by $b$ , then we say that a reduces to $a’$ ,
denoted by $a-\prime a’$ . We denote the reflexive, transitive closure of the $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}-\succ \mathrm{b}\mathrm{y}\mapsto^{*}$.

Lemma 1 The relation ト\rightarrow *on $L_{1}$ is confluent and terminating.

Proof. This was essentially due to $\mathrm{B}\mathrm{u}\mathrm{s}\mathrm{Z}\mathrm{k}_{0}\mathrm{w}\mathrm{S}\mathrm{k}\mathrm{i}[4]$ . See also $\mathrm{P}\mathrm{a}\mathrm{n}\mathrm{k}\mathrm{r}\mathrm{a}\mathrm{t}’ \mathrm{e}\mathrm{V}[24]$ . $\blacksquare$

As a corollary, each label $a$ has a unique normal form denoted by $a$ . Write $a\cdot b$ to denote
(ab). Then we can easily derive associativity of . from the above lemma.

A labelled formula is a formula equipped with a label in normal form (write $a:$ $A$ for a label $a$

and a formula $A$ ). A labelled process configuration is of the form $!B_{1},$
$\ldots$ , $!B_{m},$ $a_{11}$: $A,$ $\ldots$ , $a_{n}$ : $A_{n}$ ,

where each non-modal formula $A_{i}$ is labelled by a label $a_{i}$ , whereas each modal formula $!B_{j}$ is not
labelled. If $\Delta\equiv A_{1},$

$\ldots,$
$A_{n}$ , then $a_{1}$ : $A_{1},$

$\ldots,$ $a_{nn}$: $A$ is sometimes abbreviated by $a_{1}\cdots\cdot\cdot a_{n}$ : $\Delta$ ,
$\mathrm{e}\mathrm{g}.$ , if $\sqrt[l]{b}c:$ $A$ and $\sqrt[r]{b}c:B$ , then $\sqrt[l]{b}C:A,$ $\sqrt[r]{b}c:B$ is abbreviated by $b:A,$ $B$ .

The inference rules of $S_{1}$ are extended to those for labelled sequents, as follows;

$\frac{!\Gamma,\sqrt[l]{a}A\otimes B\cdot.A,\sqrt[r]{a}A\otimes B\cdot B,C.\triangle\vdash}{!\Gamma,a.A\otimes B,C.\Delta\vdash}..\cdot$

.
$.. \frac{!\Gamma.a_{1}\cdot.\cdots\cdot a_{n}\cdot b.B)C.\Delta\vdash}{!\Gamma,a_{1}\cdot\alpha_{1},..,an\cdot n\alpha,b\cdot\alpha_{1}\otimes\cdots\alpha_{n}-\mathrm{o}B,C.\Delta\vdash}.,\cdot$.

$\frac{!\Gamma,.a.A,c.\Delta..\vdash}{!\Gamma,a.A\ B,c\Delta\vdash}.$

.
$\frac{!\Gamma,..a.B,c\cdot\Delta\vdash}{!\Gamma,aA\ B,C.\Delta\vdash}..$. $\frac{!\Gamma,!A,1.A.’ c.\Delta\vdash}{!\Gamma,!A,c.\Delta\vdash}.$

.

Note that if
$!\Gamma,$ $b:\Delta_{2}\vdash$

$!\Gamma,$ $a:\Delta_{1}\vdash$
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is an instance of one of the above inference rules, then $b$ is identical with $a$ .
Let $\Delta$ be $A_{1},$

$\ldots,$
$A_{n}$ . A proof search tree $\mathcal{T}(!\Gamma, \Delta)$ is a rooted tree where a labelled process

configuration of $S_{1}$ is assigned to each node, constructed as follows;

(1) Process configuration $!\Gamma,$ $A_{1}$ : $A_{1},$
$\ldots$ , $A_{n}$ : $A_{n}$ ( $A_{i}$ is labelled by $A_{i}$ itself) is assigned to the

root;

(2) When $!\Gamma,$ $a:\triangle$ ’ is assigned to a node,

(i) if there is no $!\Gamma,$ $a:\Sigma$ such that $!\Gamma,$ $a:\Delta^{\prime_{arrow!}}\Gamma,$ $a:\Sigma$ , then this node is a leaf of $\mathcal{T}(!\Gamma, \Delta)$ ;

(ii) otherwise, all sequents of the form $!\Gamma,$ $a$ ; $\Sigma$ such that $!\Gamma,$ $a$ : $\Delta’arrow!\Gamma,$ $a:\Sigma$ , are the
assignments of the children nodes of this node (with assignment $!\Gamma,$ $a:\triangle^{J}$ ).

Note that $T(!\Gamma, \Delta)$ includes all transition sequences starting from $!\Gamma,$ $A_{1}$ : $A_{1},$
$\ldots$ , $A_{n}$ : $A_{n}$ as

the assignments. Let

$\mathcal{T}^{*}(!\mathrm{r}, \triangle)=$ { $b:\Sigma|!\Gamma,$ $b:\Sigma,$ $c$ : II is a node of $\mathcal{T}(!\Gamma,$ $\Delta)$ for some $c:\Pi$ }.

We say that a label $b$ occurs in $T^{*}(!\Gamma, \Delta)$ if $b:\Sigma\in \mathcal{T}^{*}(!\Gamma, \Delta)$ for some $\Sigma$ .
The basic properties of labelled proof search trees are expressed in Lemma 2 and Corollary 2,

which play key roles in Lemma 3 and Lemma 4 below. To show Lemma 2, we need two Sublemmas
(Sublemma 1 and Sublemma 2), which we state without proofs.

For each label $a$ , we define a sequence $O(a)$ of labelled formulas as follows;

1. $O(1)=\phi$ (the empty sequence);

2. $O(A)=A:$ $A$ if $A$ is a formula;

3. $O(\sqrt[l]{b}B\otimes c)=\sqrt[l]{b}B\otimes c:B,$ $O(\sqrt[r]{b}B\otimes C)=\sqrt[\prime]{b}B\otimes c:c$ ;

4. $O(p1\ldots p_{n})=O(p_{1}),$ $\ldots$ , $O(p_{n})$ where each $p_{i}$ is a simple label.

Sublemma 1 Let $b_{1}$ : $\Sigma_{1},$
$\ldots$ , $b_{n}$ : $\Sigma_{n}\in \mathcal{T}^{*}(!\Gamma, \Delta)$ . Then

(i) $o(b_{1}),$
$\ldots,$

$\mathit{0}_{(b_{n}})\in \mathcal{T}^{*}(!\mathrm{r}, \Delta)$;
(ii) $!\Gamma,$ $O(b_{i})arrow^{*}!\Gamma,$ $b_{i}$ : $\Sigma_{i}$ for each $i$ .

Sublemma 2 Let $b_{1},$
$\ldots,$

$b_{n}$ be labels occurring in $\mathcal{T}^{*}(!\Gamma, \Delta)$ . If $O(b_{1^{\bullet}}\cdots\cdot b)n\in T^{*}(!\Gamma, \Delta)$ then
$!\Gamma,$ $O(b_{1}\cdots\cdot\cdot bn)arrow*!\mathrm{r},$ $O(b_{1}),$

$\ldots$ , $O(b_{n})$ .

Lemma 2 If $b_{i}$ : $\Sigma_{i}\in \mathcal{T}^{*}(!\Gamma, \Delta)$ for each $1\leq i\leq n$ and $b_{1}\bullet$ .. . $\bullet b_{n}$ : II $\in \mathcal{T}^{*}(!\Gamma, \triangle)$ , then
$b_{1}$ : $\Sigma_{1},$

$\cdots,$
$b_{n}$ : $\Sigma_{n}\in T^{*}(!\mathrm{r}, \triangle)$ .

Proof. By Sublemma $1(\mathrm{i}),$ $O(b_{1n}\ldots..b)\in \mathcal{T}^{*}(!\Gamma, \triangle)$ , hence $O(b_{1}),$
$\ldots$ , $O(b_{n})\in \mathcal{T}^{*}(!\mathrm{r}, \Delta)$ by

Sublemma 2. Since $O(b_{i})arrow*bi:\Sigma_{i}$ by Sublemma 1(ii), it easily follows that $b_{11)n}$: $\Sigma\cdots,$ $b$ : $\Sigma_{n}\in$

$\mathcal{T}^{*}(!\mathrm{r}, \Delta)$ . $\blacksquare$

Corollary 2 If each of a, $b,$ $c$ and $a\cdot b\cdot c$ occur in $\mathcal{T}^{*}(!\mathrm{r}, \Delta)$ , then $a\cdot b,$ $b\cdot c$ and $a\cdot c$ also occur
in $\mathcal{T}^{*}(!\mathrm{r}, \triangle)$ .

Proof. By definition $a:\Sigma_{1}\in \mathcal{T}^{*}(!\mathrm{r}, \Delta),$ $b:\Sigma_{2}\in \mathcal{T}^{*}(!\mathrm{r}, \Delta),$ $c:\Sigma_{3}\in T^{*}(!\Gamma, \triangle)$ and $a\cdot b\cdot c:\Gamma \mathrm{I}\in$

$\mathcal{T}^{*}(!\Gamma, \triangle)$ for some $\Sigma_{1},$ $\Sigma_{2},$ $\Sigma_{3}$ and II. Hence by Lemma 2 $a:\Sigma_{1},$ $b:\Sigma_{2},$ $c:\Sigma_{3}\in T^{*}(!\Gamma, \triangle)$ . Then
Corollary 2 follows by definition. $\blacksquare$

Given a proof search tree $\mathcal{T}(!\Gamma, \Delta)$ defined above, we construct a naive phase model $\mathcal{M}\equiv$

$\mathcal{M}(!\Gamma, \Delta)$ . In the sequel, $\mathcal{T}$ stands for $\mathcal{T}(!\Gamma, \Delta)$ and $\mathcal{T}^{*}$ stands for $\mathcal{T}^{*}(!\Gamma, \Delta)$ .
$\mathcal{M}$ consists of a commutative monoid (also denoted by M) and an $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}_{\mathrm{P}^{\mathrm{r}}}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}*\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}$ as

follows;
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$\bullet \mathcal{M}=$ { $a\in L|a$ occurs in $\mathcal{T}^{*}$ } $\cup\{\sqrt\}$ , where $\sqrt \mathrm{i}\mathrm{s}$ a distinguished propositional variable not
occuring in $\mathcal{T}^{*}$ .

We assume that 1 is always in $\mathcal{M}$ . Note that every $a\in \mathcal{M}$ is a label in normal form.

$\bullet$ For $a,$ $b\in \mathcal{M},$ $a\cdot b=\{$ $ab\sqrt$
. if $a\cdot b$ occurs in $\mathcal{T}^{*};$

otherwise.

In particular, $a\cdot\sqrt=\sqrt \mathrm{f}\mathrm{o}\mathrm{r}$ any $a\in \mathcal{M}$ .. For each $\alpha,$ $\alpha^{*}=\{b|b:\alpha\in \mathcal{T}^{*}\}\cup\{\sqrt\}$

Lemma 3 $(\mathcal{M}, \cdot, 1)$ is actually a commutative monoid.

Proof. Almost immediate. Only nontrivial is associativity $(a\cdot b)\cdot c=a\cdot(b\cdot c)$ . If $a$
$\mathrm{o}b\cdot c$ occurs in

$\mathcal{T}^{*}$ , then by Corollary 2, $a\cdot b$ and $b\cdot c$ occur in $\mathcal{T}^{*}$ . Hence $(a\cdot b)\cdot c=(a\cdot b)\mathrm{o}c=a\cdot(b\cdot c)=a\cdot(b\cdot c)$ .
If $a$ . $b\cdot c$ does not occur in $\tau*$ , then $(a\cdot b)\cdot c=\sqrt=a\cdot(b\cdot c)$ . $\blacksquare$

Lemma 4 For any formula $B,$ $(i)$ if $b:B\in \mathcal{T}^{*}$ , then $b\in B^{*}$ , and $(ii)\sqrt\in B^{*}$ .

Proof. (ii) is obvious. Here we only prove (i) by induction on the complexity of $B$ .

(Case 1) $B$ is an atomic formula. Immediate by definition.
(Case 2) $B\equiv C\otimes D$ .
Assume $b$ : $C\otimes D\in\tau*$ . Then $\sqrt[\iota]{b}C\otimes D$ : $c,$ $\sqrt[r]{b}C\otimes D$ : $D\in\tau*$ . By induction hypothesis,

$\sqrt[\iota]{b}C\otimes D\in C^{*}$ and $\sqrt[r]{b}C\otimes D\in D^{*}$ . Hence $b=\sqrt[\mathrm{t}]{b}C\otimes D$ $\sqrt[r]{b}C\otimes D\in C^{*}\otimes D^{*}$ .
(Case 3) $B\equiv\otimes\vec{\alpha}-\mathrm{o}D$ , where $\vec{\alpha}=\alpha_{1},$

$\ldots$ , $\alpha_{n}$ .
Assume $b:C-\triangleleft D\in \mathcal{T}^{*}$ . It suffices to show that for any $c\in\otimes\vec{\alpha}^{*},$ $c\cdot b\in D^{*}$ . If $c\cdot b=\sqrt$ , then

by induction hypothesis $(\mathrm{i}\mathrm{i})\sqrt\in D^{*}$ . Hence we may assume that $c\cdot b$ occurs in $\mathcal{T}^{*}$ . By definition,
$c\in\otimes\vec{\alpha}^{*}$ means that there are labels $c_{1},$ $\ldots$ , $c_{n}$ such that $c_{1}\cdots\cdot\cdot c_{n}\equiv c$ and $c_{i}$ : $\alpha_{i}\in\tau*$ for each
$c_{i}$ . Hence by Lemma 2, $!\Gamma_{0},$ $c_{11}$: $\alpha,$ $\ldots$ , $c_{n}$ : $\alpha_{n},$

$b:\otimes\vec{\alpha}-\mathrm{o}D,$ $d:\Sigma\vdash \mathrm{i}\mathrm{s}$ an assignment of a node of 7
for some $d:\Sigma$ . Hence,

$\frac{!\mathrm{r}_{0},c\bullet.b.D,d.\Sigma\vdash}{!\Gamma_{0,1\cdot 1\cdot\cdot,n}c\cdot\alpha,.C.\alpha,b.\Theta\vec{\alpha}-n\mathrm{o}D,d.\Sigma\vdash}..\cdot$.

Therefore $c\cdot b:D\in \mathcal{T}^{*}$ , and by induction hypothesis, $c\cdot b\in D^{*}$ .
(Case 4) B\equiv C&D. Obvious. $\blacksquare$

Finally we obtain;

Theorem 2 Let $!\Gamma_{0},$ $\Delta_{0}$ be a process configuration of $S_{1}$ . Then $\vec{\beta}$ is reachable from $\vec{\alpha}$ under
$!\Gamma_{0},$ $\Delta_{0}$ if and only if $(\vec{\alpha}, \Delta_{0})^{*}\subseteq(\otimes\vec{\beta})^{*}$ in every $\Gamma_{0}$ -model.

Proof. The only-if part is Proposition 2. To show the. reverse, $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{J}$
) $\mathrm{O}\mathrm{S}\mathrm{e}$ that $\vec{\beta}$ is not reachable

from $\vec{\alpha}$ under $!\Gamma_{0},$ $\Delta_{0}$ . Let $!\Gamma_{0}\equiv!G_{1},$
$\ldots,$

$!G_{k},$ $\Delta_{0}\equiv D_{1},$
$\ldots,$

$D_{l}$ and $\beta\equiv\beta_{1},$
$\ldots$ , $\beta_{m}$ .

By the above construction we get a proof search tree $\mathcal{T}_{0}\equiv \mathcal{T}(!\Gamma_{0},\vec{\alpha}, \Delta 0)$ and a naive phase
model $\mathcal{M}_{0}\equiv \mathcal{M}(!\Gamma_{0},\vec{\alpha}, \Delta 0)$ . We claim the following;

(1) $\mathcal{M}_{0}$ constructed above is a $\Gamma_{0}$-model.

(2) In $\mathcal{M}_{0}$ , label $D_{1}D_{2}\cdots D_{l}$ is in $(\vec{\alpha}, \Delta_{0})^{*}$ .

(3) In $\mathcal{M}_{0}$ , label $D_{1}D_{2}\cdots D_{l}$ is not $\mathrm{i}\mathrm{n}\otimes\vec{\beta}^{*}$ .

As for (1), 1 : $G_{i}\in \mathcal{T}^{*}0$ for each $!G_{i}$ in $!\Gamma_{0}$ . Hence by Lemma 4, $1\in G_{i}^{*}$ . (2) also follows
from Lemma 4. As for (3), by assumption $!\Gamma_{0},$ $a$ : $\vec{\beta}\not\in T_{0}$ , where $a\equiv D_{1}\cdots D_{l}$ . Hence, it
easily follows by Lemma 2 that there are no labels $a_{1)}\ldots$ , $a_{n}$ such that $a_{i}\in\beta_{i}^{*}$ for each $i$ and
$a_{1}\cdots\cdot\cdot a_{n}\equiv D_{1}D_{2}\cdots D_{l}$ . $\blacksquare$
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\S 4 Algebraic Semantics Characterizing Trace Equivalence

\S 4.1 Trace Equivalence
In this Section we introduce the notion of trace equivalence $(\mathrm{H}_{0}\mathrm{a}\mathrm{r}\mathrm{e}[7])$ in our system of process
calculus, and give the characterization of the equivalence by means of model-theoretic semantics.

We introduce the system $S_{2}$ in which implications are restrictied to the ones of the form $\alpha-\mathrm{o}B$

and two inference rules that express observable actions are added. These observable actions are
not inference rules of linear logic, but it enables us to estimate observable effects of processes in a
precise manner. Then we define the notion of trace and trace equivalence on processes (or process
configurations) in system $S_{2}$ in terms of these observable actions.

We also introduce the system $\overline{S_{2}}$ which has the infinitary&expressions. $\overline{S_{2}}$ can express, for
example, value passing between processes (See Example 2 in \S 2).

Trace equivalence is a simple and intuitive notion, but has certain shortcomings. Among them,
it is often pointed out (cf. van Glabbeek [29], $\mathrm{M}\mathrm{i}\mathrm{l}\mathrm{n}\mathrm{e}\mathrm{r}[17]$ ) that it identifies too many processes,
in particular it possibly identifies a deadlocking process with one that does not deadlock. We
shall briefly mention this point in Example 3(2). Nevertheless, trace equivalence deserves careful
analysis, because it can be seen as the basis for other equivalences finer than this equivalence.

A relationship between the notion of trace and that of reachability is established in Proposi-
tion 3.

Definition 7 The language $\mathcal{L}(s_{2})$ of $S_{2}$ is obtained by restricting $\mathcal{L}(S)$ so that if a formula in
$\mathcal{L}(s_{2})$ contains $A-\mathrm{o}B$ as subformula, then $A$ is a propositional variable a.

$S_{2}$ has the following two actions in addition. These are called observable actions, while the
actions described in \S 2 is called silent $acti_{on}\mathit{8}$ , since those actions are completely taken inside the
system, and an external observer outside the system cannot observe them.

$\bullet$ Input Action $(\alpha)$

$P\Gamma\vdash$–,
$\alpha$

$\alpha-\mathrm{o}P,$ $\Gamma\vdash$

(Input action $\alpha$ gets a token $\alpha$ from the outside of the system. This action is understood to
be always possible no matter what the environment is.). Output Action $(\overline{\alpha})$

$\Gamma\vdash$

$-\overline{\alpha}$

$\alpha,$
$\Gamma\vdash$

(Output action $\overline{\alpha}$ throws away a token $\alpha$ to the outside of the environment.)

Of course, observable actions are not logical inference rules at all. The point of introducing
these actions is that it enables us to $ob_{\mathit{8}}erve$ process behavior from the outside of the system, and
by means of these actions we can define the notion of trace eqivalence.

We also introduce system $\overline{S_{2}}$ , which extends $S_{2}$ with infinitary&described in \S 2 Example 2.

Definition 8 The language $\mathcal{L}(\overline{S_{2}})$ is defined as follows;

1. if $\alpha\in \mathcal{P}$ , then $\alpha\in \mathcal{L}(\overline{S_{2}}))$

2. if $A_{i}\in \mathcal{L}(s_{2})$ , (i.e., $A_{i}$ contains $\mathrm{n}\mathrm{o}\ _{j\in J}$ ) for each $i\in I$ , where $I$ denotes an arbitrary index
set, $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\ _{i\in I}A_{i}\in \mathcal{L}(\overline{S_{2}})$;

3. if $\alpha\in \mathcal{P},$ $A,$ $B\in \mathcal{L}(\overline{S_{2}})$ , then $\alpha-\mathrm{o}A,$ $A\otimes B$ , A&B and !A are in $\mathcal{L}(\overline{S_{2}})$ .

$\overline{S_{2}}$ has the following inference rule in addition to those of $S_{2}$ ;

$\frac{A_{j},\Gamma\vdash}{\ _{i\in I}Ai,\Gamma\vdash}$

,
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where $j\in I$ .

It is clear that $\overline{s_{2}}$ is a conservative extension of $S_{2}$ . All results stated below hold both for $S_{2}$ and
$\mathrm{f}_{\mathrm{o}\mathrm{r}}\overline{S_{2}}$.

Let Act be $\{\alpha|\alpha\in \mathcal{P}\}\cup\{\overline{\alpha}|\alpha\in \mathcal{P}\}$ and $Act^{*}$ be the set of all finite sequences over Act. In
particular, the empty sequence is in $Act^{*}$ and denoted by 1. For $t\equiv p_{1}\ldots p_{n}\in Act^{*}$ , we define
$len(t)=n$ . In the sequel, $s,$ $t,$ $u,$ $\ldots$ range over Act*.

Now the transition relation $arrow$ , defined in \S 2, is reformulated for the labelled transition relation
as follows;

Definition 9
$\bullet$

$\Gammaarrow\triangle p$ if
$\frac{\Delta\vdash}{\Gamma\vdash}p$

is an instance of an inference rule of $S_{2}$ with $p$ indicating the action name corresponding to
the inference.. $\Gammaarrow^{*}\Delta$ if $\Gammaarrow p_{1}$ . . . $arrow\Delta p_{m}$ (possibly $m=0$) where each $p_{i}$ is a silent action.

For each $t\in Act^{*}$ , we define a binary $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\Rightarrow^{t}$ on process configurations by induction on
$len(t))$ as follows;

$\bullet$ If $len(t)=0$ then $t\equiv 1$ . We define $\Gamma\Rightarrow^{1}\Delta$ by $\Gammaarrow^{*}\Delta$ ;

$\bullet$ If $t$ is of the form $pt’$ , where $p\in Act,$ then $\Gamma\Rightarrow^{t}\Delta$ holds whenever there is a $\Gamma’$ such that
$\Gammaarrow^{*}arrowarrow^{*}\Gamma’pt’\Rightarrow\Delta$.

Let $\Gamma$ be a process configuration of $S_{2}$ . If $\Gamma\Rightarrow^{t}\Gamma’$ for some $\Gamma’$ , we say that $t\in Act^{*}$ is a trace
of $\Gamma$ and write $\Gamma\Rightarrow^{t}$ . Define $tr(\Gamma)=\{t|\Gamma\Rightarrow^{t}\}$ . Then $\Gamma$ and $\Delta$ are said to be trace equivalent if
$tr(\Gamma)=tr(\Delta)$ .

Example 3 Consider the processes below,

(1) $\alpha-0$ \beta &\alpha -01 $\Rightarrow\Rightarrow$

$\beta 0$

$\Rightarrow\overline{\beta}$

$\emptyset$

$tr(\alpha-\circ$ \beta &\alpha -01 $)=\{1, \alpha, \alpha\overline{\beta}\}=tr(\alpha-0\beta)$ . Hence $\alpha-0$ \beta &a-ol is trace equivalent to a-o $\beta$ .

(2) (!\alpha )&\alpha $\overline{\Rightarrow}\Rightarrow\overline{\alpha}$

$!\alpha\emptyset$

$\Rightarrow\overline{\alpha}$ $!\alpha\Rightarrow\overline{\alpha}\ldots$

This process is trace equivalent to $!\alpha$ . This exemplifies a drawback of trace equivalence; (!a)&\alpha
may deadlock whereas $!\alpha$ never deadlock, but they are taken to be the same if we adopt trace
equivalence.

(3)

tr(\alpha \otimes (\beta &7)) $=$ $\{1, \overline{\alpha},\overline{\alpha}\overline{\beta},\overline{\alpha\gamma},\overline{\beta},\overline{\beta}\overline{\alpha},\overline{\gamma})\overline{\gamma\alpha}\}$

$=$ tr(\alpha \otimes \beta &\alpha \otimes 7).

Hence, \alpha \otimes (\beta &7) is trace equivalent to \alpha \otimes \beta &\alpha \otimes 7. $\blacksquare$

Given $t\in Act^{*}$ , let $Inp(t)$ be the multiset { $\alpha|\alpha\in t$ and a is an input action} and let Out $(t)$

be the multiset { $\alpha|\overline{\alpha}\in t$ and $\overline{\alpha}$ is an output action}. The following Proposition shows the rela-
tionship between the notion of reachability and that of trace;

Proposition 3 If $\Gamma\Rightarrow^{i}!_{-}^{-}-$ where $!_{-}^{-}-$ consists of modal formulas, then out$(t)$ is reachable from
$Inp(t)$ under $\Gamma$ . Conversely, if $\vec{\beta}$ is reachable from $\vec{\alpha}$ under $\Gamma$ , then there are $t\in Act^{*}$ and $!_{-}^{-}-$ ,
such that $\Gamma\Rightarrow^{t}!_{-}^{-}-,$ $Inp(t)=\vec{\alpha}$ and $o_{u}t(t)=\vec{\beta}$.
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\S 4.2 Trace Models
Our next purpose is to characterize trace equivalence by means of model-theoretic semantics.
To this end, we introduce an algebraic model, called a trace model, and show soundness and
completeness for trace equivalence with respect to the trace models.

Definition 10 A trace algebra $<D,$ $\wedge,$ $1,$ $\otimes,$ $-0,A>\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{s}$ of the following;. $A\subseteq D$. $<D,$ $\wedge,$ $1>$ is a complete meet semilattice with maximal element 1. We define a partial
order $\leq \mathrm{o}\mathrm{n}D$ by $p\leq q^{d}g_{p}^{e}\wedge q=p$ .

$\bullet<D,$ $\otimes,$ $1>\mathrm{i}\mathrm{s}$ a commutative monoid.

$\bullet$ $-0$ : $A\cross Darrow D$ . We write $a-\mathrm{o}p$ to $\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}-\mathrm{o}(a,p)$ (in the sequel we assume that $a\in A$

when we write $a-\mathrm{o}p$).. $a\otimes(a-\mathrm{o}p)\leq p,$ $p\otimes(a-\circ q)\leq a-\mathrm{O}(p\otimes q)$ .

$\bullet$ $\otimes distributesover\wedge$ , i.e., $\bigwedge_{i\in I}q\otimes p_{i}=q\otimes\bigwedge_{i\in I}p_{i}$ .
$\bullet$ $\infty$ distributes $over\wedge$ , i.e., $\bigwedge_{i\in I}a-\mathrm{o}p_{i}=a-0\bigwedge_{i\in I}p_{i}$. The expansion law (cf. $\mathrm{M}\mathrm{i}\mathrm{l}\mathrm{n}\mathrm{e}\mathrm{r}[16][17]$) holds, i.e., $(a-\mathrm{o}p)\otimes(b-\mathrm{o}q)=a-\infty(p\otimes(b-\mathrm{o}q))$ A

$b-\triangleleft((a-\circ p)\otimes q)$ .

In a trace algebra bang operator ! is defined by $!p= \bigwedge_{i\in N}p^{i}$ , where $N$ is the set of natural
numbers and $p^{i}$ denotes $-p\otimes\cdots\otimes p$

.
$i$ times

The following are easily derived in a trace algebra.. If $p\leq q$ then $r\otimes p\leq r\otimes q$ and $a-\mathrm{o}p\leq a-\mathrm{o}q$ .

$\bullet p\otimes q\leq p$ .

$\bullet!p\leq p,$ $!p\otimes!p=!p$ . If $!p\leq q$ then $!p\leq!q$ .. $!(p\wedge q)=!p\otimes!q$ .

Definition 11 A trace model is a trace algebra with an $interpretation\mathrm{w}\mathrm{h}*\mathrm{i}_{\mathrm{C}\mathrm{h}}$ maps a $\in \mathcal{P}$ into
$\alpha^{*}\in A(\subseteq D)$ . In a trace model, nonatomic formulas and process configurations are interpreted
as follows;

$\bullet(A\otimes B)^{*}=A^{*}\otimes B^{*};$

$\bullet(\alpha-\circ B)^{*}=\alpha^{*}-\mathrm{o}B^{*})$.

$\bullet$ (A&B)* $=A^{*}\wedge B^{*};$ $( \ _{i\in I}A_{i})^{*}=\bigwedge_{i\in I}A_{i}^{*};$

$\bullet(!A)^{*}=!(A^{*})$ ;. $(A_{1}, \ldots, A_{n})^{*}=A_{1}\otimes\cdots\otimes A_{n}$ , in particular the empty process configuration is interpreted
by 1.

Remark that !A has the same interpretation $\mathrm{a}s\ _{i\in N}A^{i}$ . This reflects the syntactic observation
that $tr(!A)=tr(\ _{i\in N}A^{i})$ (cf. Lemma 6).

The trace models characterize trace equivalence, in the form of completeness theorem below;

Theorem 3 $tr(A)=tr(B)$ if and only if $A^{*}=B^{*}$ in every trace model.

We prove the “only-if” part (soundness) in \S 4.3 (Corollary 3) and the “if” part (completeness)
in \S 4.4 (Corollary 4).
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\S 4.3 Soundness of Trace Models
Through this subsection we fix a trace model $D=<D,$ $\wedge,$ $1,$ $\otimes,$ $-0,$ $A>$ . We cannot use the usual
induction on the length of proof to show the soundness of trace models, since we deal with possibly
infinite proof constructions that do not reach any axiom. Instead, the proof below proceeds as
follows;

1. Assign $[t]\in D$ to each $t\in Act^{*};$

2. Define the observation value of $A$ by $\bigwedge_{A\Rightarrow}t[t]$ ;

3. Show that $[A]=A^{*}$ for any $A\in \mathcal{L}(s_{2})$ .

Soundness easily follows from 3. It should be noted that $A^{*}$ above is the interpretation of $A$

inductively defined along Definition 11, while $[A]$ is completely determined by the traces of $A$ ; to
determine $[A]$ , one does not have to know what $A$ exactly is. It is sufficient to know its observable
behavior, i.e., its traces.

First we inductively define a ternary $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}_{-}}\triangleleft-^{\mathrm{O}}-\subseteq Act^{*}\mathrm{x}Act^{*}\mathrm{x}Act^{*}$ as follows;

$\bullet 1\triangleleft 101$ .. If $u\triangleleft s\circ t$ , then $\alpha u\triangleleft\alpha s\mathrm{o}t,$ $\alpha u\triangleleft s\circ\alpha t,$ $u\triangleleft\alpha s\mathrm{o}\overline{\alpha}t$ , and $u\triangleleft\overline{\alpha}s\mathrm{o}\alpha t$ for any $\alpha$ .

Then we define $F(s, t)\subseteq Act^{*}$ by $F(s, t)=\{u\in Act^{*}|u\triangleleft s\mathrm{o}t\}$ .

Lemma 5 $\Gamma,$
$\Delta\Rightarrow u$ if and only if $u\in F(s, t),$

$\Gamma\Rightarrow^{S}$ and $\Delta\Rightarrow^{t}$ for some $s,$ $t$ .

Proof. (
$‘ \mathrm{I}\mathrm{f}$

” part: By induction on the generation of $u\triangleleft s\mathrm{o}t$ . We treat only the case when
$u’\triangleleft\overline{\alpha}s’\mathrm{o}\alpha t^{J}$ is derived from $u’\triangleleft S^{;_{\mathrm{o}t}\prime},$

$\Gamma\Rightarrow\overline{\alpha}s’$ and $\Delta\alpha t’\Rightarrow$ . Then there are some $\Gamma’$ and $\Delta’$ such
that $\Gamma,$ $\Deltaarrow^{*}\Gamma J,$ $\Delta’$ and $\Gamma’\Rightarrow S^{J}$ and $\Delta’\Rightarrow t’$ hold. By induction hypothesis, $\mathrm{r}^{J},$

$\Delta’\Rightarrow u^{J}$ holds, therefore
$\Gamma,$ $\Deltaarrow^{*}\Gamma’,$

$\Delta’\Rightarrow u’$ holds.
$(‘ \mathrm{O}\mathrm{n}\mathrm{l}\mathrm{y}-\mathrm{i}\mathrm{f})$

’ part: $\Gamma,$ $\Delta*$ means that there is a finite transition sequence

$\Gamma,$ $\Delta\equiv \mathrm{r}_{0},$ $\Delta 0arrow\Gamma_{1},$$\Delta \mathrm{p}_{1}1arrow p_{2}$ . $..arrow\Gamma_{n},$$\Delta_{n}p_{n}$

and $\Gamma_{0},$ $\Delta_{0}*\Gamma_{nn},$$\Delta$ holds, where for each $1\leq i\leq n$ one of the following holds;
(1) $\Gamma_{i-1}arrow\Gamma_{i}p$ and $\triangle_{i-1}\equiv\Delta_{i;}$

(2) $\Gamma_{i-1}\equiv\Gamma_{i}$ and $\Delta_{i-1}arrow\Delta_{i;}p_{l}$

(3) $\Gamma_{i-1}\not\equiv\Gamma_{i}$ and $\triangle_{i-1}\not\equiv\Delta_{i}$ .

We define $s_{i}\in Act^{*}$ and $t_{i}\in Act^{*}$ by induction on $i$ . If $i=0$ , then $s_{i}\equiv t_{i}\equiv 1$ .
When (1) holds for $i\geq 1$ , then $t_{i}\equiv t_{i-1}$ . If $p_{i}$ is an observable action, then $s_{i}\equiv S_{i-1p_{i};}$

otherwise $s_{i}\equiv s_{i-1}$ .
When (2) holds for $i\geq 1$ , similar to the previous case.
When (3) holds for $i\geq 1$ , then $p_{i}$ must be a receiving action, and either

(3a) $\Gamma_{i-1}arrow\Gamma_{i}\alpha$ and $\Delta_{i-1}arrow\triangle\overline{\alpha}$ holds for some $\alpha$ , or
(3b) $\Gamma_{i-1}arrow\Gamma_{i}\overline{\alpha}$ and $\Delta_{i-1}arrow\triangle\alpha$ holds for some $\alpha$ .
If (3a) is the case, then $s_{i}\equiv s_{i-1}\alpha$ and $t_{i}\equiv t_{i-1}\overline{\alpha}$ . If (3b) is the case, then $s_{i}\equiv s_{i-1}\overline{\alpha}$ and
$t_{i}\equiv t_{i-1}\alpha$ .

By the above construction, we see that $u\in F(s_{n}, t_{n}),$
$\Gamma\Rightarrow s$ and $\Delta\Rightarrow t$ . $\blacksquare$

Lemma 6 $!A\Rightarrow u$ if and only if $A^{n}\Rightarrow u$ for some $n\in N$ .

Proof. Obvious. $\blacksquare$

Remark: This lemma shows that, in $\overline{S_{2}}$ , our bang !A is equivalent $\mathrm{t}\mathrm{o}\ _{i\in N}A^{n}$ up to traces.
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Definition 12 For $t\in Act^{*}$ , we define $[t]\in D$ as follows;

$\bullet[1]=1(\in D)$ ;

$\bullet[\overline{\alpha}t]=\alpha^{*}\otimes[t]$ ;

$\bullet[\alpha t]=\alpha^{*}-0[t]$ .

The observation value of $A$ is defined by. $[A]= \bigwedge_{A\Rightarrow}t[t]$ .

Lemma 7 $\bigwedge_{u\in F()}s,t[u]=[s]\otimes[t]$ .

Proof. By induction on $len(s)+len(t)$ . Since other cases are similar, we only treat the case
when $s$ is of the form $\alpha s’$ and $t$ is of the form $\overline{\alpha}t’$ .

$u \in F(\alpha S\bigwedge_{\prime J\overline{\alpha}t)},[u]$

$=$
$u’ \in F(S’’\overline{\alpha}t)\wedge,[\alpha u^{J}]\wedge\wedge[\overline{\alpha}u’]\wedge\bigwedge_{uu^{l}\in F(\alpha s^{l},t)\in F(S^{l}t^{l})},[u’]J$

’

$=$

$u’\in F$ (
$\wedge,\alpha-\circ[u]’\wedge\bigwedge_{)S\overline{\alpha}tJJ)u\in;F(\alpha St\prime,\prime}\alpha\otimes[u’]$

A
$u’\in F(S)\wedge[u’tJl$

)

$]$

$=$ $\alpha-\mathrm{O}$

$\bigwedge_{\prime,u’\in F(s\overline{\alpha}t\prime)},[u]J\alpha\wedge\otimes\bigwedge_{)}[u]’\wedge$$\bigwedge_{\prime,u\prime\in F(\alpha S\prime t\prime)u’\in F(stl)},[u’]$

$=$ $\alpha-\mathrm{o}([S]’[\otimes\overline{\alpha}t]’)\wedge\alpha\otimes([\alpha s’]\otimes[t’])\wedge([s’]\otimes[tl])$

$=$ $\alpha\infty([_{S’}]\otimes(\alpha\otimes[t’]))\wedge\alpha\otimes((\alpha-0[S’])\otimes[t^{J}])\wedge([s’]\otimes[t’])$

$=$ $\alpha\otimes((\alpha-\mathrm{O}[s]’)\otimes[t’])$

$=$ $[\alpha s’]\otimes[\overline{\alpha}t^{J}]$ .

The expansion law is needed in the case when $s$ is of the form $\alpha s’$ and $t$ is of the form $\beta t’$ . $\blacksquare$

Lemma 8 $[P^{n}]=[P]^{n}$ .

Proof. Obvious. $\blacksquare$

Now we obtain the main proposition with the help of the above Lemmas.

Proposition 4 In every trace model, $[A]=A^{*}$ .

Proof. By induction on the complexity of $A$ .
Case 1) $A$ is a propositional variable. Obvious.
Case 2) $A$ is of the form $B\otimes C$ .

$[B\otimes C]$ $=$ $\bigwedge_{B\otimes c\Rightarrow}u[u]=\bigwedge_{B,C\Rightarrow}\mathrm{u}[u]=\bigwedge_{B\Rightarrow}s\bigwedge_{C\Rightarrow}t\bigwedge_{u\in F(,)}St[u]$ (by Lemma 5)
$=$ $\bigwedge_{B\Rightarrow^{\mathit{5}}}\bigwedge_{C\Rightarrow}2[\mathit{8}]\otimes[t]$ (by Lemma 7)
$=$ $\bigwedge_{B\Rightarrow^{S}}[s]\otimes\wedge c^{t}\Rightarrow[t]$

$=$ $[B]\otimes[C]=B^{*}\otimes C^{*}$ (by induction hypothesis)

Case 3) $A$ is of the form $!B$ . By Lemma 6 and Lemma 8.
Case 4) $A$ is of the form B&r $C$ . Obvious. $\blacksquare$

Soundness is almost immediate if we take into consideration that the observation value of a
formula is completely determined by its traces.

Corollary 3 (Soundness) If $tr(A)=tr(B)$ then $A^{*}=B^{*}$ in every trace model.
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\S 4.4 Completeness of Trace Models
The proof of completeness employs the usual canonical model construction for (phase semantic)
completeness proof (cf. $\mathrm{O}\mathrm{k}\mathrm{a}\mathrm{d}\mathrm{a}[22]$ ). We construct a syntactic (canonical) model of $\overline{S_{2}}$ in which
$\Gamma\in A^{*}$ implies $tr(\Gamma)\supseteq tr(A)$ (Proposition 5). Then the completeness (Corollary 4) directly
follows. It is trivial that for any formulas $A$ in $\mathcal{L}(S_{2}),$ $tr(A)$ in system $S_{2}$ is equivalent to $tr(A)$ in
$\mathrm{s}\mathrm{y}_{\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{m}}\overline{S_{2}}$ , hence we have the completeness for $S_{2}$ at the same time.

For each $t\in Act^{*}$ , we define $t\in\sim \mathcal{L}(\overline{S_{2}})$ as follows;

$\bullet\sim 1=1(\in L(\overline{S_{2}}))$ ;

$\bullet\overline{\overline{\alpha}t}=\alpha\otimes t\sim.$,

$\bullet\overline{\alpha t}=\alpha-\mathrm{o}t\sim$.

We define a phase space-like structure $\mathcal{M}$ as follows;. Let $\mathcal{M}$ be the free commutative monoid generated by all formulas in $\mathcal{L}(\overline{S_{2}})$ .

$\bullet$ For each $t\in Act^{*}$ , define $\mathrm{I}^{t}\mathrm{I}=\{\Gamma|\Gamma\Rightarrow\}t$ , and for each $A\in \mathcal{L}(\overline{S_{2}}),$
$[A \mathrm{J}=\bigcap_{A\Rightarrow}2[t\mathrm{J}$ .

$\bullet$ $D$ is defined in such a way that $X\in D$ if and only if $X$ is of the form $\bigcap_{i\in\Lambda}\mathrm{I}t_{i}\mathrm{I}$ where
$t_{i}\in Act^{*}$ for each $i\in\Lambda$ . Then clearly [$A\mathrm{I}\in D$ for any $A\in \mathcal{L}(\overline{S_{2}})$ .

$\bullet A=\{[\alpha \mathrm{J}|\alpha\in \mathcal{P}\}$ .

It is easily seen that [$A\mathrm{J}=\{\Gamma|tr(\mathrm{r})\supseteq tr(A)\}$ and $\mathrm{M}t=[t\mathrm{J}$ . Moreover, we observe that

$(\#)$ for any $X\in D$ , if $\Gamma\in X$ and $tr(\Delta)\supseteq tr(\Gamma)$ then $\triangle\in X$ .

On this structure, we can define phase-semantic operations &and $\otimes \mathrm{a}\mathrm{s}$ in \S 3.1; let $X\subseteq \mathcal{M}$ ,
$Y\subseteq \mathcal{M}$ , then

$\bullet$ $X \ Y=X\cap Y;\ _{i\in I}X_{i}= \bigcap_{i\in I}x_{i;}$

$\bullet$ $X\otimes Y=(XY)c=\cap\{[t\mathrm{I}|XY\subseteq \mathbb{I}^{t}\mathrm{I}\}$ , where $XY=\{\Gamma, \triangle|\Gamma\in X, \Delta\in Y\}$ .

The interpretation of-o is modified; let $X\in A$ and $Y\subseteq \mathcal{M}$ , then $X$ is of the form [$\alpha \mathrm{J}$ (such an
$\alpha$ is uniquely determined), and we define. $[\alpha \mathrm{I}\infty Y=\cap\{[\alpha t\mathrm{I}|Y\subseteq[t\mathrm{I}\}$ .

$!X$ is defined by $\bigcap_{i\in N}X^{i}$ for each $X\subseteq \mathcal{M}$ . $1=[1\mathrm{J}=\{\Gamma|\Gamma\xi\}=$ M. Finally we define an
$\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{b}*\mathrm{y}\alpha*=[\alpha \mathrm{J}$ for each $a$ $\in \mathcal{P}$ . It is obvious that $A^{*}\in D$ for each $A\in \mathcal{L}(\overline{S_{2}})$ .

Then we show the following;

Proposition 5 (i) $D\equiv<D,$ $\cap,$ $1,$ $\otimes,$ $-0,A>and$ *defined above form a trace model.
(ii) For every formula $A\in \mathcal{L}(\overline{S_{2}}),$ $A\in A^{*}\subseteq \mathbb{I}^{A}\mathrm{I}$ .

From this, the completeness easily follows;

Corollary 4 (Completeness) If $A^{*}=B^{*}$ in every trace model, then $tr(A)=tr(B)$ .

Proof of Completeness. By Proposition $5(\mathrm{i}),$ $A^{*}=B^{*}$ holds in $D$ defined above. By Proposi-
tion $5(\mathrm{i}\mathrm{i}),$ $A\in A^{*}$ , hence $A\in B^{*}$ , which in turn implies $A\in[B\mathrm{J}$ by Proposition $5(\mathrm{i}\mathrm{i})$ , that means
$tr(A)\supseteq tr(B)$ . $tr(A)\subseteq tr(B)$ is shown similarly. $\blacksquare$

Proof of Proposition 5. First we show (ii) by induction on the complexity of $A$ .
(Case 1) $A$ is a propositional vairable. By definition.
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(Case 2) $A$ is of the form a-o $B$ . First we prove that $a-\mathrm{o}B\in(\alpha-\circ B)^{*}=[a\mathrm{J}-\mathrm{o}B^{*}=$

$\cap\{[\alpha t\mathrm{I}|B^{*}\subseteq[t\mathrm{I}\}$ . It suffices to show that $\alpha \mathrm{r}B\in[\alpha t\mathrm{J}$ for each $t$ such that $B^{*}\subseteq[t\mathrm{I}\cdot$ Since
$B\in B^{*}$ by induction hypothesis, $B\in \mathrm{I}^{t}\mathrm{I}$ , that means $B\Rightarrow t$ . Hence a $-\mathrm{o}B\Rightarrow\alpha t$ . Therefore
$\alpha-\mathrm{o}B\in[\alpha t\mathrm{I}\cdot$

To prove $(\alpha-\mathrm{o}B)^{*}\subseteq \mathbb{I}\alpha-\mathrm{o}B\mathrm{I}$ , assume $\Gamma\in(a-\mathrm{o}B)*$ . Then $\Gamma\in \mathbb{I}\alpha t\mathrm{J}$ for any $\mathbb{I}t\mathrm{I}\supseteq B^{*}$ . In par-
ticular, $\Gamma\in[\alpha t\mathrm{J}$ for any $\mathbb{I}t\mathrm{I}\supseteq \mathbb{I}B\mathrm{I}$ , since $B^{*}\subseteq \mathbb{I}B\mathrm{I}$ by induction hypothesis. Therefore, $\Gamma\in \mathrm{I}at\mathrm{J}$

for any $B\Rightarrow^{t}$ . Then it follows that $\Gamma\in[\alpha-\mathrm{o}B\mathrm{I}$ because $\mathrm{I}\alpha-\mathrm{o}B\mathrm{I}=\mathrm{n}_{\alpha-\mathrm{o}B^{u}}\mathbb{I}\Rightarrow u\mathrm{I}=\bigcap_{B\Rightarrow}p[\alpha t\mathrm{I}\cdot$

(Case 3) $A$ is of the form $B\otimes C$ . By induction hypothesis, $B\in B^{*}$ and $C\in C^{*}$ . Hence
$B,$ $C\in B^{*}C^{*}$ . It is immediate that $B\otimes C\in(B^{*}C^{*})c=B^{*}\otimes C^{*}$ by $tr(B, C)=tr(B\otimes C)$ and
$(\#)$ .

On the other hand, $B^{*}C^{*}\subseteq \mathbb{I}B\mathrm{J}$ [CI, since $B^{*}\subseteq[B\mathrm{J}$ and $C^{*}\subseteq[C\mathrm{I}$ by induction hypothesis.
[$B\mathrm{I}[c\mathrm{I}\subseteq \mathrm{I}B\otimes C\mathrm{J}$ is shown by the observation that if $tr(\Gamma)\supseteq tr(B)$ and $tr(\Delta)\supseteq tr(C)$ , then
$tr(\Gamma, \Delta)\supseteq tr(B, C)=tr(B\otimes C)$ . Finally we infer $B^{*}\otimes C^{*}\subseteq \mathbb{I}^{B}\otimes C\mathrm{J}$ from $B^{*}C^{*}\subseteq[B\otimes C\mathrm{J}$ .

(Case 4) $A$ is of the form B&C. This is a special case of (Case 6) below.
(Case 5) $A$ is of the form $!B$ . By induction hypothesis, $B\in B^{*}$ . Since $tr(!B)\supseteq tr(B),$ $!B\in B^{*}$ .

Hence we see that
$!B,$

$\ldots,$
$!B\in B^{*}\otimes\cdots\otimes B^{*}$

$arrow$ –
$n$ times $n$ times

for each $n\in N$ . On the other hand, it can be easily shown that $tr(!B)=tr$ . Therefore,

$n$ times
by $(\#),$ $!B\in(B^{*})^{n}$ for each $n$ , thus $!B\in!B^{*}$ .

To show $!B^{*}= \bigcap_{n\in N}B^{*n}\subseteq[!B\mathrm{J}=\bigcap_{1B\Rightarrow}t[t\mathrm{J}$ , suppose $\Gamma\in\bigcap_{n\epsilon N}B^{*n}$ and $!B\Rightarrow t$ . Then, using
induction hypothesis, we can prove that $\Gamma\in \mathbb{I}^{B^{n}}$ I for each $n$ . On the other hand, by Lemma 6,
$!B\Rightarrow^{t}$ if and only if $B^{n}\Rightarrow t$ for some $n\in N$ . Hence $\Gamma\in \mathrm{I}^{t}\mathrm{I}$ and we conclude $!B^{*}\subseteq[!B\mathrm{J}$ .

(Case 6) $A$ is of the form $\ _{i\in I}B_{i}$ . By induction hypothesis, $B_{i}\in B_{i}^{*}$ for each $i\in I$ . Since
$tr(\ _{i\in I}B_{i})\supseteq tr(B_{i})$ , we see by $(\#)\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\ _{i\in I}B_{i}\in B_{i}^{*}$ for each $i\in I$ . Therefore, $\ _{i\in I}B_{i}\in\bigcap_{i\in I}B_{i}*$ .

$\ _{i\in I}B_{i}^{*}\subseteq \mathrm{I}\ _{i\in I}B_{i}\mathrm{I}$ is almost immediate from induction hypothesis.

Now let us show (i). First note that we can obtain more strong result than (i); $A^{*}=[A\mathrm{I}$ holds
for each $A\in \mathcal{L}(\overline{S_{2}})$ . Suppose $\Gamma\in[A\mathrm{J}$ , then $tr(\Gamma)\supseteq tr(A)$ . By (i) and $(\#)$ we obtain that $\Gamma\in A^{*}$ .

Here we only show the expansion law and the distribution law $\mathrm{b}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{e}\mathrm{e}\mathrm{n}\otimes \mathrm{a}\mathrm{n}\mathrm{d}\cap$. The other
laws are shown similary. Note that each element in $A$ is of the form [$\alpha \mathrm{J}$ and each element in $D$ is
of the form $\bigcap_{i\in I}[t_{i}\mathrm{I}=\bigcap_{i\in I}[t_{i}\sim \mathrm{I}\cdot$ The expansion law is proved as follows;

$([ \alpha \mathrm{I}-\mathrm{o}\mathrm{n}i\in I[ti\mathrm{I})\otimes([\beta \mathrm{I}-\mathrm{O}\bigcap_{jj}\in \mathrm{I}Sj\mathrm{I})=[(a-0\ _{i} \in It\sim i)\otimes(\beta-\mathrm{O}\ i \in Jsj)\sim \mathrm{I}$

$=[\alpha-\mathrm{o}(\ _{i\epsilon Ii}t\otimes(\sim\sim\beta\infty\ _{j}S)\in Ji\sim)\ \beta-\mathrm{o}((\alpha-\mathrm{O}\ _{i}t_{i}\epsilon I)\otimes\ _{j}Js\epsilon j)\sim \mathrm{I}$ $(*)$

$=\mathrm{I}\alpha \mathrm{J}-\circ(\cap i\in I\mathbb{I}ti\mathrm{I}\otimes([\beta \mathrm{J}-0\cap j\epsilon J[Sj\mathrm{I}))\cap[\beta \mathrm{I}-\mathrm{o}(([\alpha \mathrm{I}-\mathrm{o}\mathrm{n}i\in I\mathbb{I}^{t}i\mathrm{I})\otimes\cap j\in j[\mathit{8}j\mathrm{I})$

In the above, $(^{*})$ is due to the observation that
$tr((\alpha-\circ B)\otimes(\beta-\circ C))=tr$( $\alpha-\mathrm{o}(B\otimes(\beta-0$ C))&\beta -o $((\alpha-\mathrm{o}B)\otimes C)$ ).

The distribution law is shown as follows;

$\bigcap_{k\in K}(\bigcap_{\in iI}[ti\mathrm{J}\otimes\bigcap_{j\epsilon j}[Skj\mathrm{I})$

$=$
$k\in K\mathrm{n}([\ i\epsilon Iti\otimes\ _{ij}\in J^{\overline{S_{k}}}\mathrm{I})\sim$

$=$ $[\ _{i\in I}t_{i}\otimes\ k,)\in K\mathrm{x}J\overline{s_{kj}}\sim(j$I $(**)$

$=$
$\bigcap_{i\in I}[t_{i}\mathrm{I}\otimes\cap k\in Kj\in\cap[sJkj$ I

For $(^{**})$ , observe that
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$\bigcup_{k\in K}tr(\ i \in It_{i}\otimes\ j \in j\overline{S_{kj}}\sim)=tr(\ i \in It_{i}\otimes\ \sim(k,j)\in K\mathrm{x}J\overline{s_{kj}})$.

This completes the proof of Proposition 5. $\blacksquare$

\S 5 Conclusion and Future Works
So far we have seen how traditional logical analyses, especially model-theoretic semantics, con-
tribute to characterize new notions from the discipline of process calculi.

We have obtained a simple semantics characterizing the reachability. One interesting point
can be found in the completeness proof of naive phase semantics in \S 3.3. Our naive phase model
construction for the completeness proof gives each process configuration $\Gamma$ a naive phase model
$\mathcal{M}(\Gamma)$ that directly represents the precondition structure in the computation starting from $\Gamma$ ; in
$\mathcal{M}(\Gamma),$ $a\in A^{*}$ holds whenever $a$ is a precondition of $A$ . We also considered splitted preconditions
of the form $\sqrt[l]{b}B$ , which represents a half of precondition $b$ of $B$ . It is the use of these splitted
preconditions that allows us to drop the closure condition and obtain the completeness with respect
to the naive phase models. This model construction suggests that our naive phase models provide
solnewhat direct interpretation of processes. A further study is needed to clarify this point.

The second part of this paper is an attempt to apply the traditional model-theoretic tech-
nique to characterization of the new equivalence notions of processes that come from the theory
of process calculi. Trace equivalence, which we have characterized by trace models in \S 4, is
so coarse that it would be of little use in practice. Nevertheless, it is important as the basis
for further study on equivalences on $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{S}\mathrm{s}\mathrm{e}\mathrm{s}/\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{s}$; the notion of trace equivalence well-
captures a primitive intuition that $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{S}\mathrm{s}\mathrm{e}\mathrm{s}/\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}s$ should be identified on the ground of their
observable behavior. There is a wide range of equivalence notions naturally defined in terms
of process behavior, among which trace equivalence is not only the coarsest, but also the most
general in the sense that each equivalence can be seen as a refinement of trace equivalence (cf.
van $\mathrm{G}\mathrm{l}\mathrm{a}\mathrm{b}\mathrm{b}\mathrm{e}\mathrm{e}\mathrm{k}[29],$ $\mathrm{M}\mathrm{i}\mathrm{l}\mathrm{n}\mathrm{e}\mathrm{r}[17])$ . Therefore, it is expected, on the basis of our result in \S 4, to
obtain model-theoretic characterizations for finer equivalences than trace equivalence, such as fail-
ure equivalence (Brookes, $\mathrm{H}\mathrm{o}\mathrm{a}\Gamma \mathrm{e}\ \mathrm{R}\mathrm{o}\mathrm{S}\mathrm{c}\mathrm{o}\mathrm{e}[3]$ ), simulation equivalence (cf. $\mathrm{P}\mathrm{a}\mathrm{r}\mathrm{k}[\mathit{2}5]$ ) and bisimulation
equivalence $(\mathrm{M}\mathrm{i}\mathrm{l}\mathrm{n}\mathrm{e}\mathrm{r}[15])$ .

Our system is too restricted to develop a full theory of process calculus. An important mech-
anism which our system lacks is the guarding. By guarding a process (or a process configuration)
with respect to some messages $\vec{\alpha}$ , we can inhibit communications of $\vec{\alpha}$ between the outside of the
scope of guarding operator and the inside of the scope. This, roughly, corresponds to the existen-
tial quantifier in terms of logic. However, incorporation of guarding mechanism will undoubtedly
complicate the situation around the notion of observation and observable actions. Hence it still
remains uncertain whether our results hold for richer fragments that include a kind of guarding
operator in syntax.

Besides, the first author introduced in [20] the mobile linear logic to express mobile $mes\mathit{8}age$

passing in a linear logic-based process calculus, corresponding to Milner’s extension of CCS to $\pi-$

$\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{C}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{s}[19]$, a mobile version and higher order mobile version of CCS. We leave these invesigation
on extended systems to future works.
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