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A period-doubling bifurcation
for the Duffing equation

Yukie Komatsu ( Mg %% )
Department of mathematics, Osaka University

1 Introduction

In this paper, we briefly mention the results showed in [4]. We consider the periodic
solutions of the Duffing equation which describes the nonlinear forced oscillation;

(1.1) w'"(t) + pu'(t) + ku(t) + au®(t) = fa(t), t€R

where p,a are positive constants and « is a nonnegative constant, and f(t) is a given
family of T-periodic external forces parameterized by A which somehow represents the
magnitude of fy (e.g., fx = Asin(t) ). It is well-known that for any A there exists at least
one T-periodic solution of (1.1), and furthermore if the magnitude X is suitably small,
then its solution is unique and asymptotically stable. As A increases, we can observe
by numerical computations that the solution loses its stability and various bifurcation
phenomena take place. In particular, the period-doubling bifurcations are observed as
very important phenomena along the route toward a so called ”Chaos”. However, it
is surprising that there have been no rigorous proofs of these bifurcation phenomena.
Recently, Komatsu-Kano-Matsumura [3] tried to detect a bifurcation phenomenon around
a "linear probe” {(\,ux)}r>o inserted into the product space (A, u), which is defined by

(1.2) { ux(t) := AU(t), U(t): given T-periodic fucntion

Fa(t) := ul (1) + pu\(2) + cur(t) + o (t).

Here we should note that v = u) is a trivial solution of (1.1) corresponding to f for any
A. Then, in the particular case U(t) = sin(27t) (T = 1) , studying the linearized equation
of (1.1) at u = uy

(1.3) " () + po' () + ko(t) + 3a XU (t)v(t) = 0

by the arguments of continued fractions, they showed that T-periodic solution bifurcates
at least three points from the probe {uy}x>o under some condition on p. They also made
a conjecture by numerical computations that there are infinitely many bifurcation points
of T-periodic solution. However, they could not obtain any results on period-doubling
bifurcations. On the other hand, numerical computations in the case U(t) = sin(27t) 4
0.5, indicate that there might be infinitely many bifurcation points of both T-periodic
and 2T -periodic solutions, and 27T-periodic solution bifurcates at first as A increases.
Tracing this first branch, we also observe that 2" T-periodic solutions bifurcate and strange
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attractor appears. In this paper,we show that for more general T-periodic functions U (% (),
only T-periodic and 2T-periodic solutions can bifurcate from {uxr}r>0, and under some
condition on y there exist infinitely many bifurcation points of T-periodic solution, and
also do exist infinitely many bifurcation points of 2T-periodic solution ( period- doublmg
bifurcations ) except some paticular cases. Furthermore, we show the asymptotic stability
and unstability of the trivial solution u(t) alternates at each these bifurcation points.
We also show that the case U(t) = sin(2nt) is really a particular one where only T-
periodic solutions bifurcate from {u)}xs¢. The precise conditions and main Theorem are
stated in Section 2. In Section 3, we reformulate the problem in order to apply Crandall-
Rabinowitz’s Theorem [2] on bifurcation theory. In this process, eigenvalue problem of
(1.3) plays an essential role. We relate it to the Lyapunov exponent in Section 4 and
show the properties of the Lyapunov exponent, making use of the expansion theory by
generalized eigen-functions established by Titschmarsh-Kodaira in Section 5. From these
properties and asymptotic analysis with respect to A, which details are stated in Section
7, we prove main Theorem in Section 6.

2 Main Theorem

To state the main Theorem precisely, we assume that
(2.1) UZ(t) has N + 1 zero points {t;}X of n-th order on [to, to + 71,

where tg < t; < -+ <ty =ty+T. We define v = %H and also define S; = ft U(s)|ds.

Theorem 2.1 Suppose (2.1) and

(2.2) log(cot ),

N
T 2

MI‘:

then it holds the followings.

(1) The case N=1 :

There ezist A* and {\;}2, (A" < Xg < Ay -+ — 00) such that the sequence of bifurca-
tion points for A > A* s coincident with {X\;}2,, where {Aam}, {Aamy1} are T-periodic
bifurcation points and {Aam+2},{Aamys} are 2T-periodic bifurcation points. Moreover, it
holds that if A € (A2ma1, Aam), then uy is asymptotically stable, if X € (Agm, A2m+1), then
uy 28 unstable. '

(2) The case N=2 :

There exist infinitely many T-periodic bzfurcatzon points, and also exist znﬁmtely many
2T-periodic bifurcation points ezcept for the following cases. -

(i) When S1 = Sy, there does not exist 27T- periodic bifurcation point for large .
(11) When % =22t (p g € N, 51 # S3), we assume

2q+1
1. A+ /IAP -4

< _f lOg( 2 )a

(2.3)

VRS

where

2{c05(51 + So)A + cos(51 S2)A cos? v}

Sll’l2 VT

A:if




instead of (2.2), then there also exist infinitely many 2T- perzodzc bzfurcatzon pomts The
stability of u changes at any above bzfurcatzon ‘points.

(3) The case N > §

- There exist infinitely many T-periodic bzfurcatzon points. Furthermore, if {S Y, are
irrationaly independent, there also exist infinitely many 2T-periodic bifurcation poznts
The stability of uy changes at any these bifurcation poznts

Remark 1. If §: +£ 2+l 2q+1 (p,q € N), it holds that A = L:;:C%?"—Vﬂ Then we have

Al +/IA]2 — 4
2

log( )= 2log(cot ——)

which ‘is consistent to the condition (2.2) .

Example 1 In the case U(t) = sin2rt £ 1, U?(t) has two zero points of forth order.
Applying Theorem, if £ < %log(%), there exist infinitely many 1-periodic bifurcation
points and infinitely many 2-periodic bifurcation points.

Example 2 In the case U(t) = sin2nt + 0.5, U?(¢) has three zero points of second
order. So, if § < %-log(gi_-\%), there exist infinitely many 1-periodic bifurcation points
and infinitely many 2-periodic bifurcation points. '
Remark 2 When U(t) = sin2nt, there does not exist 2-periodic bifurcation points.
Because the period of U(t) is 1 but the period of U2(t) is 1/2, the period of any bifurcation
points is 1 or 1/2.

3 Reformulation of the problem

To prove the Theorem, we make use of a following bifurcation Theorem proved by
Crandall-Rabinowitz [2].

Theorem 3.1 (Crandall and Rabinowitz) Let X, Y be Banach spaces, V a neighbor-
hood of 0 in X and
F:(0,00)xV =Y

have the properties for a Ag >0
(a) F(X,0) =0 for A € (0,00),
(b) The partial derivatives Fy, Fy and Fy, exist and are continuous,
(¢) N(Fa(%0,0)) and Y/R(Fs(ho,0)) are one dimensional.
(d) Fra(Do,0)z0 & R(Fa(Xo,0)), where N(Fz(Ao,0)) = span{zo}.
If Z is any éomplement of N(F;(Xo,0)) in X, then there is a neighborhood U of (Ao ,0)

in R x X, an interval (-a, a), and continuous functions ¢ : (—a,a) — R, p(—a,a) = Z
such that ©(0) = Ao, ¥(0) =0 and
(3.1) F10)NU = {p(e), exo + eb(e) : le| < a}U{(1,0) :(1,0)€U}.

If Fy, 1s also continuous, the function ¢ and ¢ are once continuously differentiable.

96
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We first note that any periodic solution of (1.1) should have the period T = mT for a
m € N. So, for a fixed m, we look for the periodic solution of (1.1) in the form:

(3:2) u(t) = ur(®) + Mo(t),

where v(t) is a T-periodic function. Then v(t) satisfies

. {v%ntmmo+nwﬂ+Aaﬂmww+an%ﬂ+%wa»=o
v(t+T)=v(t), t€R,

where A = 3a\?.
We define Banach spaces X and Y by

X = {u € C}(R);u(t) = u(t+ T),t € R}

Y = {u € C(R);u(t) = u(t + T),t € R}

with norm

|lullx = max_|u"(t)] + max_|u'(t)| + max_|u(t)]

0<t<T 0<t<T 0<t<T
and
lully = max_[u(?)]
0<t<T

and define F': (0,00) x V — Y by
(3.4) F(A,v) =v" + wv' + kv + AU?v 4+ Uv? + l1)3).

3
Then the following holds.

Lemma 3.2 The hypotheses (a) - (d) of Theorem($.1) are equivalent to the following
three conditions.

(1) There ezist Ay and a nontrivial solution vy which satisfies the linearized problem of

(3.3) at v = 0:

(3.5) { 0" (t) + ' (t) + ro(t) + AU (t)v(t) = 0
| w(t+T)=o(t), teR

(ii) span{ve}is one dimensional.

(i) fOT vo()vg(t)U2(t)dt # 0, where v3(t) is a nontrivial solution of the adjoint equation
for (8.5)

(3.6) { v"(t) — pv'(t) + so(t) + AU?(t)v(t) = 0,

v(t+T)=v(t), teR
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4 Eigenvalue problem of the linearized equation

We study the linearized equation:
(4.1) v"(t) 4+ po'(t) + ko(t) + AU (t)v(t) = 0.
We put v(t) = e #/2w(t),then (4.1) becomes

(4.2) w'(t) — %—Zw(t) + kw(t) + AU (Hw(t) =0

We seek the solution in the form e**/24(t), where o is periodic of period T = mT. Let
®,(t) be a fundamental matrix for (4.2):

¢1 ta A) ¢2 taA)
2alt) = (¢a§t, A) ¢;§t,A)>

From the Froquet’s Theory, if characteristic root of ®,(T') has a form e!T/20,,, where
Wm is the primitive m-th root of 1, then (4.1) has mT-periodic solution. Here, the
characteristic roots of ®,(T') are given by the roots of

(4.3) l - AA)o+1=0,

where A(A) = ¢1(T, A) + ¢5(T, A). is a trace of @4(T')

If |A(A)| < 2, then the roots of (4.3) are complex conjugates of magnitude 1 or +£1.
Therefore, there does not exist the root of the form e*T/%w,,. If |A(A)| > 2, then the
roots of (4.3) are real and one root is always larger than 1 in magnitude and the other-
less than 1. Therefore the following result can be proved.

Lemma 4.1 For the eigenvalue problem of the linearized equation, it holds that

(i) (4.1) has T-periodic solution at Ao if and only if A(Ao) = e*T/% 4 e~ #T/2,

(ii) (4.1) has 2T-periodic solution at Ag if and only if A(Ag) = —(e#T/? 4 e#T/2),
(111) (4.1) does not have mT(m > 3) periodic solution,

(iv) The dimension of eigenspace of T or 2T periodic solution s 1.

5 Lyapunov exponent

As stated in the previous section, the existence or the nonexistence of the eigenvalue of
(4.1) are determined by A(A). In this section, we investigate A(A) in detail. We define

S={A>0, |AA)<2}.
Then for A ¢ X, we can well define

(5.1) z(A) = %cosh"1 #,
such that Rez(A) > 0. We note that Imz(A) is equal 0 if A(A) > 2, and equals i
if A(A) < —2. Rez(A) is so called Lyapunov exponent. Concerning z(A), the following

Lemma holds.
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Lemma 5.1 z(A) can be represented in the form

A T .
(5.2) -‘ j—A - -51,. /0 Ga(r, 1)U (r)dr.

Here Green’s function GA(t,s) is given by

w(Hw(s)
[, w~]

Ga(t,s) = Ga(s,t) = t>s

) — ?

where wt stands for a solution of (4.2) in L?,(0,00), w™ stands for a solution of (4.2)
in L?:(—00,0), and [w*,w™] is the Wronskian.

Remark 3 L%]z denotes the function space L? weighted U? i.e.
Lia(B) = (h(0); [ 1h(s)PU)ds < o0)
R

Let the operator L = %(—% + (ffl—z — &)), then L is a self adjoint operator in L}, and

GA(t, ) is a integral kernel of the resolvent (L — AI)™!. .
According to the expansion theory by generalized eigen-functions established by Titschmarsh-

Kodaira, G4 (s,t) has the following representation;

(53) (o, = [ PrsiswbiloOn0oyd),

where {0;;} is a matrix valued stiltjes measure which is nonnegative definite. Substituting
this to (5.2), we have the following Lemma.

Lemma 5.2 For any A € ¥, it holds that

&z o(d¢)
(54) | anz =T /5@ E- A2

where o(df) is a nonnegative stiltjes measure. That is %i—zz <0 for any A € X.

Lemma 5.3
dz T
(5.5) L (0) 0 = /0 vo(t)E(H)U2(t)dt £ 0

Proof. Put vg(t) = e #/2wy(t), then wy(t) satisfies (4.2). So, wo(t) is equal to
e P2~ (t) except for constant factor. In the same way, vi(t) is equal to e/2w*(¢)
up to constant. Therefore

T T
(5.6) /0 vo(t)vg (1)U (t)dt # 0 <= /0 wt(w™ (HU%(t)dt # 0

Thus,from Lemma 5.1, the proof is completed. (I
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6 Proof of Theorem

From the previous arguments and the following results concerning the asymptotic behavior
of A(A) as A — oo, we can prove Theorem 2.1.

Proposition 6.1 Suppose U(t) satisfies the hypotheses of Theorem 2.1.. Then it holds
the followings.
(1) The case N=1 :

_2 cos( Sy \/./_\)

sin vmr

(6.1) A(A) (I1+0(1)) asA— oo

(2) The case N=2 :

(6.2)
A(A) = 2{cos((S1 + S2)VA) ‘|S‘iIClcz)s£§r51 — S2)V/A) cos? 1/7r}(1_+ o(1)) as A — oo
(8) The case N > 3:
- (6.3) HII\n—»Solip A(A) > siﬁ]i — {(1 + cosvm)N + (1 — cos VW)N}

and if {S;}, are irrationaly indepedent, then

(6.4) liminf A(A) < = Nl {(1 + cosvm)N + (1 — cosvr)N}
_ A—oo , s’ vw

We only show the rough sketch of the proof of (1). For details, see [4].
We define p(t) = UZ%(t). Then there exists 8 > 1 such that

(6.5) p(t) = C1t"(1 + Cot? + O(t*?)) ast — 0

We want to decide {¢;}i=1,2 on [ 0, T ], but p(t) has two zero points on [ 0, T ]. So we
define {¢;}i=1,2 as the fundamental solutions for p(t) = p(T — t), we get

66) AN =435 () +AFHEG) +HGIR () +HEIRG),

First we consider {¢,-(%)},-=1,2. Changing the following variable and function:

(6.7) variable : z = /0 v p(s)ds,
(6.8) function :  g(z) = p(t)/*w(t),

then (4.2)is rewritten
(6.9) 9"(2) + (A - Q(2))g() = 0,

where Q(c) = (12/4 — K)p=1(t) — p=3/4(8)(p~1 /4 ())".
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From (6.5), it holds that
83(B* —1)Cy |
n(n+4)(n+28+2)

where Qo(z) = —n(n +4)v*z~2/4 and v = +2

Putting ®;(z) = p*/4(t)¢1(t) and ®2(z) = p!/4(t)$2(t), then ¥;(z), <I>2(m) sat1sfy (6 9)
we should note that ®;(z), ®,(z) also satisfy ‘

(6.10) Q(z) = Qo(=){1 - Cr*P(2v) 72 P2™P + 0(a*F)},

(6.11)
®,(z) = A~

1 T . ‘~
—= | (VR B(VEe) ~ (4(VEa)B(VE) G281 ()ds,
3y(z) :A_lj%—ziB(\/Km)—l—% / (A(\/KS)B(\/Km)—(A(\/Kx)B(\/Ks)‘)Q(“s)fp;(s)ds.

Here Q(a:) Q(z) — Qo(z) , A(y) = An\/yJ_,(y) and B(y) = Bn+/yJ,(y), where J, is a

v-th Bessel function and
. . 1 . . v
Ap = —=T(1 = v)(n + 2)™/2C"/?,
V2
(6.12) |
nv v/2
B, = _ﬂm +v)(n+2)™/2c/?,

Using successive approximations with fb(o)(m) = A"

Az) and
(™ ( - = / (A(VE$)B(VAz) — (A(vA2)B(vAs)D(s)8" ™ (s)ds,

there follows

(6.13) 11 (2) —

= o(A_%) A — oo,

for any fixed x.
In the same way,

(6.14) 1B,(z) — A~ B(VAz)| = oA~ 55) A — oo,

for any fixed x. From the fact:

Aly) = An\/—%cos(y - ! _42V7r)(1 +0(1)), y — oo,

(6.15)
B(y) = Bn\/gcos(y 1 —22V7r)(1 +0(1)), y— oo,

it holds that

o5y = ot a2 el [ VA
T T 1 1420 2 7 I

¢2('2‘) = P(E)_ZA_J;_B” T COS(/O p)dyVA

)1+ o(1))
(6.16)

T2V N1+ 0(1))



as A — oo. In the same way, we have estimate of {&(%},’:1,2. From (6.6), we have

2 cos(Sy \/K)

sinvw

(6.17) A(A) = (140(1)) as A — oo

The proof is completed.
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