

Title	A period-doubling bifurcation for the Duffing equation(Study of Partial Differential Equations by means of Functional Analysis)
Author(s)	Komatsu, Yukie
Citation	数理解析研究所講究録 (1996), 969: 94-102
Issue Date	1996-10
URL	http://hdl.handle.net/2433/60659
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

A period-doubling bifurcation for the Duffing equation

Yukie Komatsu (小松 幸惠) Department of mathematics, Osaka University

1 Introduction

In this paper, we briefly mention the results showed in [4]. We consider the periodic solutions of the Duffing equation which describes the nonlinear forced oscillation;

(1.1)
$$u''(t) + \mu u'(t) + \kappa u(t) + \alpha u^{3}(t) = f_{\lambda}(t), \quad t \in \mathbb{R}$$

where μ , α are positive constants and κ is a nonnegative constant, and $f_{\lambda}(t)$ is a given family of T-periodic external forces parameterized by λ which somehow represents the magnitude of f_{λ} (e.g., $f_{\lambda} = \lambda \sin(t)$). It is well-known that for any λ there exists at least one T-periodic solution of (1.1), and furthermore if the magnitude λ is suitably small, then its solution is unique and asymptotically stable. As λ increases, we can observe by numerical computations that the solution loses its stability and various bifurcation phenomena take place. In particular, the period-doubling bifurcations are observed as very important phenomena along the route toward a so called "Chaos". However, it is surprising that there have been no rigorous proofs of these bifurcation phenomena. Recently, Komatsu-Kano-Matsumura [3] tried to detect a bifurcation phenomenon around a "linear probe" $\{(\lambda, u_{\lambda})\}_{\lambda>0}$ inserted into the product space (λ, u) , which is defined by

(1.2)
$$\begin{cases} u_{\lambda}(t) := \lambda U(t), & U(t) : \text{given } T\text{-periodic function} \\ f_{\lambda}(t) := u_{\lambda}''(t) + \mu u_{\lambda}'(t) + \kappa u_{\lambda}(t) + \alpha u_{\lambda}^{3}(t). \end{cases}$$

Here we should note that $u = u_{\lambda}$ is a trivial solution of (1.1) corresponding to f_{λ} for any λ . Then, in the particular case $U(t) = \sin(2\pi t) (T = 1)$, studying the linearized equation of (1.1) at $u = u_{\lambda}$

(1.3)
$$v''(t) + \mu v'(t) + \kappa v(t) + 3\alpha \lambda^2 U^2(t)v(t) = 0$$

by the arguments of continued fractions, they showed that T-periodic solution bifurcates at least three points from the probe $\{u_{\lambda}\}_{\lambda>0}$ under some condition on μ . They also made a conjecture by numerical computations that there are infinitely many bifurcation points of T-periodic solution. However, they could not obtain any results on period-doubling bifurcations. On the other hand, numerical computations in the case $U(t) = \sin(2\pi t) + 0.5$, indicate that there might be infinitely many bifurcation points of both T-periodic and 2T-periodic solutions, and 2T-periodic solution bifurcates at first as λ increases. Tracing this first branch, we also observe that 2^nT -periodic solutions bifurcate and strange

attractor appears. In this paper, we show that for more general T-periodic functions U(t), only T-periodic and 2T-periodic solutions can bifurcate from $\{u_{\lambda}\}_{\lambda>0}$, and under some condition on μ there exist infinitely many bifurcation points of T-periodic solution, and also do exist infinitely many bifurcation points of 2T-periodic solution (period-doubling bifurcations) except some paticular cases. Furthermore, we show the asymptotic stability and unstability of the trivial solution $u_{\lambda}(t)$ alternates at each these bifurcation points. We also show that the case $U(t) = \sin(2\pi t)$ is really a particular one where only T-periodic solutions bifurcate from $\{u_{\lambda}\}_{\lambda>0}$. The precise conditions and main Theorem are stated in Section 2. In Section 3, we reformulate the problem in order to apply Crandall-Rabinowitz's Theorem [2] on bifurcation theory. In this process, eigenvalue problem of (1.3) plays an essential role. We relate it to the Lyapunov exponent in Section 4 and show the properties of the Lyapunov exponent, making use of the expansion theory by generalized eigen-functions established by Titschmarsh-Kodaira in Section 5. From these properties and asymptotic analysis with respect to λ , which details are stated in Section 7, we prove main Theorem in Section 6.

2 Main Theorem

To state the main Theorem precisely, we assume that

(2.1)
$$U^{2}(t)$$
 has $N+1$ zero points $\{t_{i}\}_{i=0}^{N}$ of *n*-th order on $[t_{0}, t_{0}+T]$,

where $t_0 < t_1 < \cdots < t_N = t_0 + T$. We define $\nu = \frac{1}{n+2}$ and also define $S_i = \int_{t_{i-1}}^{t_i} |U(s)| ds$.

Theorem 2.1 Suppose (2.1) and

$$\frac{\mu}{2} < \frac{N}{T} \log(\cot \frac{\nu \pi}{2}),$$

then it holds the followings.

(1) The case N=1:

There exist λ^* and $\{\lambda_i\}_{i=0}^{\infty} (\lambda^* < \lambda_0 < \lambda_1 \cdots \to \infty)$ such that the sequence of bifurcation points for $\lambda > \lambda^*$ is coincident with $\{\lambda_i\}_{i=0}^{\infty}$, where $\{\lambda_{4m}\}, \{\lambda_{4m+1}\}$ are T-periodic bifurcation points and $\{\lambda_{4m+2}\}, \{\lambda_{4m+3}\}$ are 2T-periodic bifurcation points. Moreover, it holds that if $\lambda \in (\lambda_{2m+1}, \lambda_{2m})$, then u_{λ} is asymptotically stable, if $\lambda \in (\lambda_{2m}, \lambda_{2m+1})$, then u_{λ} is unstable.

(2) The case N=2:

There exist infinitely many T-periodic bifurcation points, and also exist infinitely many 2T-periodic bifurcation points except for the following cases.

(i) When $S_1 = S_2$, there does not exist 2T-periodic bifurcation point for large λ .

(ii) When $\frac{\hat{S}_1}{S_2} = \frac{2p+1}{2q+1}$ $(p, q \in \mathbb{N}, S_1 \neq S_2)$, we assume

(2.3)
$$\frac{\mu}{2} < \frac{1}{T} \log(\frac{|\tilde{\Delta}| + \sqrt{|\tilde{\Delta}|^2 - 4}}{2}),$$

where

$$\tilde{\Delta} = \inf_{\lambda} \frac{2\{\cos(S_1 + S_2)\lambda + \cos(S_1 - S_2)\lambda\cos^2\nu\pi\}}{\sin^2\nu\pi}$$

instead of (2.2), then there also exist infinitely many 2T-periodic bifurcation points. The stability of u_{λ} changes at any above bifurcation points.

(3) The case $N \geq 3$

There exist infinitely many T-periodic bifurcation points. Furthermore, if $\{S_i\}_{i=1}^N$ are irrationaly independent, there also exist infinitely many 2T-periodic bifurcation points. The stability of u_{λ} changes at any these bifurcation points.

Remark 1 If $\frac{S_1}{S_2} \neq \frac{2p+1}{2q+1} (p, q \in N)$, it holds that $\tilde{\Delta} = \frac{-2(1+\cos^2 \nu \pi)}{\sin^2 \nu \pi}$. Then we have

$$\log(\frac{|\tilde{\Delta}| + \sqrt{|\tilde{\Delta}|^2 - 4}}{2}) = 2\log(\cot\frac{\nu\pi}{2}),$$

which is consistent to the condition (2.2).

Example 1 In the case $U(t) = \sin 2\pi t \pm 1$, $U^2(t)$ has two zero points of forth order. Applying Theorem, if $\frac{\mu}{2} < \frac{1}{2} \log(\frac{2+\sqrt{3}}{2-\sqrt{3}})$, there exist infinitely many 1-periodic bifurcation points and infinitely many 2-periodic bifurcation points.

Example 2 In the case $U(t) = \sin 2\pi t + 0.5$, $U^2(t)$ has three zero points of second order. So, if $\frac{\mu}{2} < \frac{1}{2} \log(\frac{2+\sqrt{2}}{2-\sqrt{2}})$, there exist infinitely many 1-periodic bifurcation points and infinitely many 2-periodic bifurcation points.

Remark 2 When $U(t) = \sin 2\pi t$, there does not exist 2-periodic bifurcation points. Because the period of U(t) is 1 but the period of $U^2(t)$ is 1/2, the period of any bifurcation points is 1 or 1/2.

3 Reformulation of the problem

To prove the Theorem, we make use of a following bifurcation Theorem proved by Crandall-Rabinowitz [2].

Theorem 3.1 (Crandall and Rabinowitz) Let X, Y be Banach spaces, V a neighborhood of 0 in X and

$$F:(0,\infty) imes V o Y$$

have the properties for a $\lambda_0 > 0$

- (a) $F(\lambda, 0) = 0$ for $\lambda \in (0, \infty)$,
- (b) The partial derivatives F_{λ} , F_{x} and $F_{\lambda x}$ exist and are continuous,
- (c) $N(F_x(\lambda_0,0))$ and $Y/R(F_x(\lambda_0,0))$ are one dimensional.
- (d) $F_{\lambda x}(\lambda_0, 0)x_0 \notin R(F_x(\lambda_0, 0)), \text{ where } N(F_x(\lambda_0, 0)) = span\{x_0\}.$

If Z is any complement of $N(F_x(\lambda_0,0))$ in X, then there is a neighborhood U of $(\lambda_0,0)$ in $R \times X$, an interval (-a, a), and continuous functions $\varphi : (-a,a) \to R$, $\psi(-a,a) \to Z$ such that $\varphi(0) = \lambda_0$, $\psi(0) = 0$ and

$$(3.1) F^{-1}(0) \cap U = \{ \varphi(\epsilon), \, \epsilon x_0 + \epsilon \psi(\epsilon) : |\epsilon| < a \} \cup \{ (\lambda, 0) : (\lambda, 0) \in U \}.$$

If F_{xx} is also continuous, the function φ and ψ are once continuously differentiable.

We first note that any periodic solution of (1.1) should have the period $\widetilde{T} = mT$ for a $m \in \mathbb{N}$. So, for a fixed m, we look for the periodic solution of (1.1) in the form:

(3.2)
$$u(t) = u_{\lambda}(t) + \lambda v(t),$$

where v(t) is a \widetilde{T} -periodic function. Then v(t) satisfies

(3.3)
$$\begin{cases} v''(t) + \mu v'(t) + \kappa v(t) + \Lambda(U^2(t)v(t) + U(t)v^2(t) + \frac{1}{3}v^3(t)) = 0\\ v(t + \widetilde{T}) = v(t), \quad t \in R, \end{cases}$$

where $\Lambda = 3\alpha\lambda^2$.

We define Banach spaces X and Y by

$$X = \{u \in C^2(R); u(t) = u(t+\widetilde{T}), t \in R\}$$

$$Y = \{u \in C(R); u(t) = u(t+\widetilde{T}), t \in R\}$$

with norm

$$||u||_X = \max_{0 \le t \le \widetilde{T}} |u''(t)| + \max_{0 \le t \le \widetilde{T}} |u'(t)| + \max_{0 \le t \le \widetilde{T}} |u(t)|$$

and

$$||u||_Y = \max_{0 \le t \le \widetilde{T}} |u(t)|$$

and define $F:(0,\infty)\times V\to Y$ by

(3.4)
$$F(\Lambda, v) = v'' + \mu v' + \kappa v + \Lambda (U^2 v + U v^2 + \frac{1}{3} v^3).$$

Then the following holds.

Lemma 3.2 The hypotheses (a) - (d) of Theorem(3.1) are equivalent to the following three conditions.

(i) There exist Λ_0 and a nontrivial solution v_0 which satisfies the linearized problem of (3.3) at v=0:

(3.5)
$$\begin{cases} v''(t) + \mu v'(t) + \kappa v(t) + \Lambda_0 U^2(t) v(t) = 0 \\ v(t + \widetilde{T}) = v(t), \quad t \in R \end{cases}$$

- (ii) $span\{v_0\}$ is one dimensional.
- (iii) $\int_0^{\widetilde{T}} v_0(t)v_0^*(t)U^2(t)dt \neq 0$, where $v_0^*(t)$ is a nontrivial solution of the adjoint equation for (3.5)

(3.6)
$$\begin{cases} v''(t) - \mu v'(t) + \kappa v(t) + \Lambda_0 U^2(t) v(t) = 0, \\ v(t + \widetilde{T}) = v(t), \quad t \in R \end{cases}$$

4 Eigenvalue problem of the linearized equation

We study the linearized equation:

(4.1)
$$v''(t) + \mu v'(t) + \kappa v(t) + \Lambda U^{2}(t)v(t) = 0.$$

We put $v(t) = e^{-\mu t/2}w(t)$, then (4.1) becomes

(4.2)
$$w''(t) - \frac{\mu^2}{4}w(t) + \kappa w(t) + \Lambda U^2(t)w(t) = 0$$

We seek the solution in the form $e^{\mu t/2}\tilde{w}(t)$, where \tilde{w} is periodic of period $\tilde{T}=mT$. Let $\Phi_{\Lambda}(t)$ be a fundamental matrix for (4.2):

$$\Phi_{\Lambda}(t) = egin{pmatrix} \phi_1(t,\Lambda) & \phi_2(t,\Lambda) \ \phi_1'(t,\Lambda) & \phi_2'(t,\Lambda) \end{pmatrix}$$

From the Froquet's Theory, if characteristic root of $\Phi_{\Lambda}(T)$ has a form $e^{\mu T/2}\omega_m$, where ω_m is the primitive m-th root of 1, then (4.1) has mT-periodic solution. Here, the characteristic roots of $\Phi_{\Lambda}(T)$ are given by the roots of

(4.3)
$$\sigma^2 - \Delta(\Lambda)\sigma + 1 = 0,$$

where $\Delta(\Lambda) = \phi_1(T, \Lambda) + \phi_2'(T, \Lambda)$. is a trace of $\Phi_{\Lambda}(T)$

If $|\Delta(\Lambda)| \leq 2$, then the roots of (4.3) are complex conjugates of magnitude 1 or ± 1 . Therefore, there does not exist the root of the form $e^{\mu T/2}\omega_m$. If $|\Delta(\Lambda)| > 2$, then the roots of (4.3) are real and one root is always larger than 1 in magnitude and the other less than 1. Therefore the following result can be proved.

Lemma 4.1 For the eigenvalue problem of the linearized equation, it holds that

- (i) (4.1) has T-periodic solution at Λ_0 if and only if $\Delta(\Lambda_0) = e^{\mu T/2} + e^{-\mu T/2}$.
- (ii) (4.1) has 2T-periodic solution at Λ_0 if and only if $\Delta(\Lambda_0) = -(e^{\mu T/2} + e^{-\mu T/2})$,
- (iii) (4.1) does not have $mT(m \geq 3)$ periodic solution,
- (iv) The dimension of eigenspace of T or 2T periodic solution is 1.

5 Lyapunov exponent

As stated in the previous section, the existence or the nonexistence of the eigenvalue of (4.1) are determined by $\Delta(\Lambda)$. In this section, we investigate $\Delta(\Lambda)$ in detail. We define

$$\Sigma = {\Lambda > 0, \quad |\Delta(\Lambda)| \le 2}.$$

Then for $\Lambda \notin \Sigma$, we can well define

(5.1)
$$z(\Lambda) = \frac{1}{T} \cosh^{-1} \frac{\Delta(\Lambda)}{2},$$

such that $Rez(\Lambda) > 0$. We note that $Imz(\Lambda)$ is equal 0 if $\Delta(\Lambda) > 2$, and equals $i\pi$ if $\Delta(\Lambda) < -2$. $Rez(\Lambda)$ is so called Lyapunov exponent. Concerning $z(\Lambda)$, the following Lemma holds.

Lemma 5.1 $z(\Lambda)$ can be represented in the form

(5.2)
$$\frac{dz}{d\Lambda} = -\frac{1}{T} \int_0^T G_{\Lambda}(\tau, \tau) U^2(\tau) d\tau.$$

Here Green's function $G_{\Lambda}(t,s)$ is given by

$$G_{\Lambda}(t,s) = G_{\Lambda}(s,t) = \frac{w^{+}(t)w^{-}(s)}{[w^{+},w^{-}]} \quad ; \quad t \geq s,$$

where w^+ stands for a solution of (4.2) in $L^2_{U^2}(0,\infty)$, w^- stands for a solution of (4.2) in $L^2_{U^2}(-\infty,0)$, and $[w^+,w^-]$ is the Wronskian.

Remark 3 $L^2_{U^2}$ denotes the function space L^2 weighted U^2 i.e.

$$L^2_{U^2}(R) = \{h(t); \int_R |h(s)|^2 U^2(s) ds < \infty\}$$

Let the operator $L = \frac{1}{U^2}(-\frac{d^2}{dt^2} + (\frac{\mu^2}{4} - \kappa))$, then L is a self adjoint operator in $L^2_{U^2}$ and $G_{\Lambda}(t,s)$ is a integral kernel of the resolvent $(L-\Lambda I)^{-1}$.

According to the expansion theory by generalized eigen-functions established by Titschmarsh-Kodaira, $G_{\Lambda}(s,t)$ has the following representation;

(5.3)
$$G_{\Lambda}(s,t) = \int_{R} \frac{\sum_{1 \leq i,j \leq 2} \phi_{1}(s,\xi) \phi_{2}(t,\xi) \sigma_{ij}(d\xi)}{\xi - \Lambda},$$

where $\{\sigma_{ij}\}$ is a matrix valued stiltjes measure which is nonnegative definite. Substituting this to (5.2), we have the following Lemma.

Lemma 5.2 For any $\Lambda \not\in \Sigma$, it holds that

(5.4)
$$\frac{d^2z}{d\Lambda^2} = -\int_{\xi \in \Sigma} \frac{\sigma(d\xi)}{(\xi - \Lambda)^2},$$

where $\sigma(d\xi)$ is a nonnegative stillies measure. That is $\frac{d^2z}{d\Lambda^2} < 0$ for any $\Lambda \not\in \Sigma$.

Lemma 5.3

(5.5)
$$\frac{dz}{d\Lambda}(\Lambda_0) \neq 0 \iff \int_0^T v_0(t)v_0^*(t)U^2(t)dt \neq 0$$

Proof. Put $v_0(t) = e^{-\mu t/2}w_0(t)$, then $w_0(t)$ satisfies (4.2). So, $v_0(t)$ is equal to $e^{-\mu t/2}w^-(t)$ except for constant factor. In the same way, $v_0^*(t)$ is equal to $e^{\mu t/2}w^+(t)$ up to constant. Therefore

(5.6)
$$\int_0^T v_0(t)v_0^*(t)U^2(t)dt \neq 0 \iff \int_0^T w^+(t)w^-(t)U^2(t)dt \neq 0$$

Thus, from Lemma 5.1, the proof is completed.

6 Proof of Theorem

From the previous arguments and the following results concerning the asymptotic behavior of $\Delta(\Lambda)$ as $\Lambda \to \infty$, we can prove Theorem 2.1.

Proposition 6.1 Suppose U(t) satisfies the hypotheses of Theorem 2.1. Then it holds the followings.

(1) The case N=1:

(6.1)
$$\Delta(\Lambda) = \frac{2\cos(S_1\sqrt{\Lambda})}{\sin\nu\pi}(1+o(1)) \quad as \ \Lambda \to \infty$$

(2) The case N=2:

(6.2) $\Delta(\Lambda) = \frac{2\{\cos((S_1 + S_2)\sqrt{\Lambda}) + \cos((S_1 - S_2)\sqrt{\Lambda})\cos^2\nu\pi\}}{\sin^2\nu\pi} (1 + o(1)) \quad as \ \Lambda \to \infty$

(3) The case $N \geq 3$:

(6.3)
$$\limsup_{\Lambda \to \infty} \Delta(\Lambda) \ge \frac{1}{\sin^N \nu \pi} \{ (1 + \cos \nu \pi)^N + (1 - \cos \nu \pi)^N \}$$

and if $\{S_i\}_{i=1}^N$ are irrationally independent, then

(6.4)
$$\liminf_{\Lambda \to \infty} \Delta(\Lambda) \le \frac{-1}{\sin^N \nu \pi} \{ (1 + \cos \nu \pi)^N + (1 - \cos \nu \pi)^N \}$$

We only show the rough sketch of the proof of (1). For details, see [4]. We define $\rho(t) = U^2(t)$. Then there exists $\beta \geq 1$ such that

(6.5)
$$\rho(t) = C_1 t^n (1 + C_2 t^{\beta} + O(t^{2\beta})) \quad as \ t \to 0$$

We want to decide $\{\phi_i\}_{i=1,2}$ on [0, T], but $\rho(t)$ has two zero points on [0, T]. So we define $\{\widehat{\phi}_i\}_{i=1,2}$ as the fundamental solutions for $\widehat{\rho}(t) = \rho(T-t)$, we get

$$(6.6) \qquad \Delta(\Lambda) = \phi_1(\frac{T}{2})\widehat{\phi_2}'(\frac{T}{2}) + \phi_1'(\frac{T}{2})\widehat{\phi_2}(\frac{T}{2}) + \phi_2(\frac{T}{2})\widehat{\phi_1}'(\frac{T}{2}) + \phi_2'(\frac{T}{2})\widehat{\phi_1}(\frac{T}{2}),$$

First we consider $\{\phi_i(\frac{T}{2})\}_{i=1,2}$. Changing the following variable and function:

(6.7)
$$variable: x = \int_0^t \sqrt{\rho(s)} ds,$$

(6.8)
$$function: g(x) = \rho(t)^{1/4}w(t),$$

then (4.2) is rewritten

(6.9)
$$g''(x) + (\Lambda - Q(x))g(x) = 0,$$

where
$$Q(x) = (\mu^2/4 - \kappa)\rho^{-1}(t) - \rho^{-3/4}(t)(\rho^{-1/4}(t))''$$
.

From (6.5), it holds that

(6.10)
$$Q(x) = Q_0(x) \left\{ 1 - \frac{8\beta(\beta^2 - 1)C_2}{n(n+4)(n+2\beta+2)} C_1^{-\nu\beta} (2\nu)^{-2\nu\beta} x^{2\nu\beta} + 0(x^{4\nu\beta}) \right\},$$

where $Q_0(x) = -n(n+4)\nu^2 x^{-2}/4$ and $\nu = \frac{1}{n+2}$.

Putting $\Phi_1(x) = \rho^1/4(t)\phi_1(t)$ and $\Phi_2(x) = \rho^1/4(t)\phi_2(t)$, then $\Phi_1(x), \Phi_2(x)$ satisfy (6.9), we should note that $\Phi_1(x), \Phi_2(x)$ also satisfy

$$\begin{cases} \Phi_1(x) = \Lambda^{-\frac{1-2\nu}{4}} A(\sqrt{\Lambda}x) + \frac{1}{\sqrt{\Lambda}} \int_0^x (A(\sqrt{\Lambda}s)B(\sqrt{\Lambda}x) - (A(\sqrt{\Lambda}x)B(\sqrt{\Lambda}s))\widetilde{Q}(s)\Phi_1(s)ds, \\ \Phi_2(x) = \Lambda^{-\frac{1+2\nu}{4}} B(\sqrt{\Lambda}x) + \frac{1}{\sqrt{\Lambda}} \int_0^x (A(\sqrt{\Lambda}s)B(\sqrt{\Lambda}x) - (A(\sqrt{\Lambda}x)B(\sqrt{\Lambda}s))\widetilde{Q}(s)\Phi_2(s)ds. \end{cases}$$

Here $\widetilde{Q}(x)=Q(x)-Q_0(x)$, $A(y)=A_n\sqrt{y}J_{-\nu}(y)$ and $B(y)=B_n\sqrt{y}J_{\nu}(y)$, where J_{ν} is a ν -th Bessel function and

(6.12)
$$A_n = \frac{1}{\sqrt{2}}\Gamma(1-\nu)(n+2)^{n\nu/2}C_1^{\nu/2},$$

$$B_n = \frac{1}{\sqrt{2}}\Gamma(1+\nu)(n+2)^{n\nu/2}C_1^{\nu/2}.$$

Using successive approximations with $\Phi_1^{(0)}(x) = \Lambda^{-\frac{1-2\nu}{4}} A(\sqrt{\Lambda}x)$ and

$$\Phi_1^{(n)}(x) = \frac{1}{\sqrt{\Lambda}} \int_0^x (A(\sqrt{\Lambda}s)B(\sqrt{\Lambda}x) - (A(\sqrt{\Lambda}x)B(\sqrt{\Lambda}s))\widetilde{Q}(s)\Phi_1^{(n-1)}(s)ds,$$

there follows

(6.13)
$$|\Phi_1(x) - \Lambda^{-\frac{1-2\nu}{4}} A(\sqrt{\Lambda}x)| = o(\Lambda^{-\frac{1-2\nu}{4}}) \quad \Lambda \to \infty,$$

for any fixed x.

In the same way,

$$(6.14) |\Phi_2(x) - \Lambda^{-\frac{1+2\nu}{4}} B(\sqrt{\Lambda}x)| = o(\Lambda^{-\frac{1+2\nu}{4}}) \quad \Lambda \to \infty,$$

for any fixed x. From the fact:

(6.15)
$$A(y) = A_n \sqrt{\frac{2}{\pi}} \cos(y - \frac{1 - 2\nu}{4}\pi)(1 + o(1)), \quad y \to \infty,$$
$$B(y) = B_n \sqrt{\frac{2}{\pi}} \cos(y - \frac{1 + 2\nu}{4}\pi)(1 + o(1)), \quad y \to \infty,$$

it holds that

$$(6.16) \phi_{1}(\frac{T}{2}) = \rho(\frac{T}{2})^{-\frac{1}{4}}\Lambda^{-\frac{1-2\nu}{4}}A_{n}\sqrt{\frac{2}{\pi}}\cos(\int_{0}^{\frac{T}{2}}\sqrt{\rho(y)}dy\sqrt{\Lambda} - \frac{1-2\nu}{4}\pi)(1+o(1))$$

$$\phi_{2}(\frac{T}{2}) = \rho(\frac{T}{2})^{-\frac{1}{4}}\Lambda^{-\frac{1+2\nu}{4}}B_{n}\sqrt{\frac{2}{\pi}}\cos(\int_{0}^{\frac{T}{2}}\sqrt{\rho(y)}dy\sqrt{\Lambda} - \frac{1+2\nu}{4}\pi)(1+o(1))$$

as $\Lambda \to \infty$. In the same way, we have estimate of $\{\widehat{\phi}_i(\frac{T}{2})\}_{i=1,2}$. From (6.6), we have

(6.17)
$$\Delta(\Lambda) = \frac{2\cos(S_1\sqrt{\Lambda})}{\sin\nu\pi} (1 + o(1)) \quad as \ \Lambda \to \infty$$

The proof is completed.

References

- [1] E.Coddington and N.Levinson, Theory of Ordinary Differential Equations. New York: McGraw-Hill 1955
- [2] H.G.Crandall, P.H.Rabinowitz, Bifurcation from simple eigenvalues, Jour. Func. Anal. 8 (1971) 321-340.
- [3] Y.Komatsu, T.kano and A.matsumura, A Bifurcation phenomenon for the periodic solution of the Duffing equation, to appear
- [4] Y.Komatsu, S.Kotani and A.matsumura, A Period-doubling Bifurcation for the Duffing equation, preprint
- [5] Yoshisuke Ueda, The Road to Chaos Aerial Press, Inc.