

Title	D-BOUNDED DISTANCE-REGULAR GRAPHS
Author(s)	Weng, Chih-wen
Citation	数理解析研究所講究録 (1996), 962: 106-107
Issue Date	1996-08
URL	http://hdl.handle.net/2433/60539
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

D-BOUNDED DISTANCE-REGULAR GRAPHS

Chih-wen Weng*

Let $\Gamma = (X, R)$ denote a distance-regular graph with distance function δ and diameter $D \geq 3$. A (vertex) subgraph $\Delta \subseteq X$ is said to be **weak-geodetically closed** whenever for all vertices $x, y \in \Delta$ and for all $z \in X$,

$$\delta(x,z) + \delta(z,y) \le \delta(x,y) + 1 \longrightarrow z \in \Delta.$$

It turns out that if Δ is weak-geodetically closed and regular then Δ is distance-regular. For each integer i $(0 \le i \le D)$, Γ is said to be *i*-bounded whenever for all $x, y \in X$ at distance $\delta(x, y) \le i$, x, y are contained in a common regular weak-geodetically closed subgraph of Γ of diameter $\delta(x, y)$. In [3], we assume $c_2 > 1$, $a_1 \ne 0$, and characterize such Γ in terms of forbidden configurations.

Now assume Γ is D-bounded. Let $P(\Gamma)$ denote the poset whose elements are the weak-geodetically closed subgraphs of Γ , with partial order induced by reverse inclusion. Using $P(\Gamma)$, we obtain the following inequalities for the intersection numbers of Γ :

$$\frac{b_{D-i-1} - b_{D-i+1}}{b_{D-i-1} - b_{D-i}} \ge \frac{b_{D-i-2} - b_{D-i}}{b_{D-i-2} - b_{D-i-1}} \qquad (1 \le i \le D - 2).$$

We show equality is obtained in each of the above inequalities if and only if the intervals in $P(\Gamma)$ are modular. Moreover, we show this occurs if Γ has classical parameters and $D \geq 4$. This leads to our main result, which we now state.

Theorem A Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and $D \geq 4$. Suppose b < -1, and suppose the intersection numbers $a_1 \neq 0, c_2 > 1$. Then

$$\beta = \alpha \frac{1 + b^D}{1 - b}.$$

(See [1] for the definition of distance-regular graphs with classical parameters.)

We use Theorem A to obtain the following results, which we believe are of independent interest.

^{*} This work was done when the author was a Ph.D. student in Department of Mathematics, University of Wisconsin. Current address: Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Taiwan R.O.C.

Theorem B Let Γ denote a distance-regular graph with diameter $D \geq 4$ and intersection number $c_2 > 1$. Then the following (i)-(ii) are equivalent.

- (i) Γ has classical parameters (D, b, α, β) with $b = -a_1 1$.
- (ii) Γ is the dual polar graph ${}^{2}A_{2D-1}(-b)$.

Theorem C Let Γ denote a Q-polynomial distance-regular graph with diameter $D \geq 4$. Assume the intersection numbers $c_2 > 1$, $a_1 \neq 0$. Suppose Γ is a near polygon graph. Then Γ is a dual polar graph or a Hamming graph.

Theorem D Let Γ denote a distance-regular graph with diameter $D \geq 4$, and the intersection numbers $c_2 > 1$, $a_1 \neq 0$. Then the following (i)-(ii) are equivalent.

- (i) Γ has classical parameters (D, b, α, β) with $b = -a_1 2$.
- (ii) Γ is the Hermitian forms graph $Her_{-b}(D)$.

Using Hiroshi Suzuki's classification of D-bounded distance-regular graphs with $c_2 = 1$, $a_2 > a_1 > 1$ [2], we prove the following result.

Theorem E There is no distance-regular graph with classical parameters $(D, b, \alpha, \beta), D \ge 4, c_2 = 1, \text{ and } a_2 > a_1 > 1.$

We would like to note that it is not necessary to assume the graph Γ is D-bounded in each of Theorem A-Theorem E.

REFERENCES

- [1] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs, Springer Verlag, New Tork, 1989.
- [2] H. Suzuki. Strongly closed subgraphs of a distance-regular graph with geometric girth five. preprint.
- [3] C. Weng. Weak-geodetically closed subgraphs in distance-regular graphs. preprint.