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Some Homotopy Equivalences for Sporadic Groups
Satoshi Yoshiara 吉荒聡

Division of Mathematical Sciences
Osaka Kyoiku University

Kashiwara, Osaka 582, JAPAN

Abstract

This is a report of my recent joint work with Stephen D. Smith, in which some
sporadic geometries are shown to be homotopy equivalent to the nontrivial p-subgroup
complexes.

1. Motivation.

The last few years have seen particularly vigorous development of mod-p cohomology
of sporadic simple groups. As far as I know, structures of mod -p cohomology rings are
(almost) determined for the following groups:

For $p=2,$ $M_{11},$ $J_{1}[\mathrm{A}\mathrm{M}94\mathrm{a}],$ $M_{22}$ [AM95], $M_{23}$ [Mi193], $M_{24}$ [Mi195],
$McL[\mathrm{A}\mathrm{M}94\mathrm{b}],$ $O’N[\mathrm{A}\mathrm{M}94_{\mathrm{C}}],$ $Co3$ [Ben94], $M_{12}$ [BW95], $M_{12},$ $J_{2},$ $Ru$ [Mag95];
For $p$ odd and the sporadic groups with a Sylow p–subgroup isomorphic to the
extraspecial group of order $p^{3}$ [TY95].

Before determining the ring structure of group cohomology, it is often required to find
its additive structure as a graded module. The alternating-sum formula provides many
informations to obtain the additional structure from those for smaller subgroups. Here is a
version of the theorem on the alternating-sum formula by [Web87, Thm $\mathrm{A}$ ]

Theorem 1 $[Web\mathit{8}7_{J}ThmA]$ Let $G$ denote a finite group acting on a simplicial complex $\triangle$

admissibly ($i.e.$ , if $g\in G$ fixes a simplex $\sigma\in\Delta$ then $g$ fixes each vertex in $\sigma$), and let $p$ be a
prime dividing the order $|G|$ . Assume that

$(*)$ : For each $z$ of order $p$ in $G_{f}$ the fixed subcomplex $\Delta^{z}:=\{\sigma\in\Delta|\sigma^{z}=\sigma\}$

is contractible.

Then we have the following expression of the mod-p cohomology of $G$ as an alternating sum
over the orbit complex $\triangle/G$ of the cohomology of the stabilizers:

$H^{*}(G)_{p}= \sum_{\sigma\in\Delta/G}H^{*}(G\sigma)_{p}$
.
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The contractibility condition $(*)$ above was investigated for the sporadic geometries (cer-
tain simplicial complexes admitting sporadic groups) in my eariler joint paper [RSY90] with
Alex Ryba and Stephen D. Smith, although the expected applications of [RSY90] were in
modular representation theory, as the title may suggest: we obtained projective modules
via Webb’s result [Web87, Thm $\mathrm{A}’$ ] by verifying $(*)$ . But the results of [RSY90] can also
be applied to obtain the alternating-sum decomposition above, and this was in fact done in
a number of cases–notably the work of Adem and Milgram on $M_{22}$ [AM95, end of Intro.]
[ $\mathrm{A}\mathrm{M}94\mathrm{a}$ , p. 269] and on $McL[\mathrm{A}\mathrm{M}94\mathrm{b}, 1.6]$ .

Indeed it seems that alternating sums over $p$-local geometries (typically smaller than the
standard complex $A_{p}(G)$ of all elementary $p$-groups) arise one way or another in virtually
all of the recent work on sporadic cohomology; sometimes under hypotheses different from
Webb’s, notably in the papers of of Benson-Wilkerson on $M_{12}$ [BW95, 3.1], Benson on $Co3$

[Ben94, 3. $3\mathrm{f}\mathrm{f}$], and Maginnis on $M_{12},$ $J_{2},$ $Ru$ [Mag95, Thms 2,3; Ex 2,3].
Motivated mainly by these observations Smith and I started the last year to work with

a somewhat unexpected continuation of [RSY90] and had a manuscript forcussing on the
alternating-sum decompositions [SY1]. While completing it, we realzed similarity of our
arguments to those of Quillen [Qui78, Secs 2,4]. This was furthermore investigated, and
we finially realized that in many cases we actually proved homotopy equivalences which are
much stronger than just verifying the contractibility condition $(*)$ .

To explain this more precisely, let me recall some important results established in [Qui78].

Lemma 2 $([Qui7\mathit{8}])$ For a finite group $G$ and a prime $p$ dividing $|G|$ , the simplicial complex
$|A_{p}(G)|$ for the poset $A_{p}(G)$ of non-trivial elementary abelian $p$ -subgroups of $G$ s.atisfies the
condition $(*)$ .

With Webb’s result above, this implies that if we found a small simplicial complex $\Delta$

admitting an admissible action of a finite group $G$ , and (G-).homotopic to $A_{p}(G)$ , then we
can easily obtained the additional structure of the mod $p$ cohomology of $G$ . Typical example
of such a nice simplicial complex $\triangle$ is given by a building for a group $G$ of Lie type:

Lemma 3 $([Qui7\mathit{8}])$ If $G$ is a finite group of Lie type defined over a field of characteristic
$p$ , the simplicial complex $|A_{p}(G)|$ is homotopy equivalenet to the building $\Delta$ associated with
$G$ .

Three questions naturally arise: For which triples $(G, \Delta,p)$ of sporadic groups $G$ , sim-
plicial complexes $\triangle$ admitting $G$ (known as sporadic geometries) and a prime $p$ dividing $|G|$

we have

(0) the alternating-sum decomposition of cohomology as in Webb’s theorem,
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(1) the contractibility consdition $(*)$ holds, or

(2) the homotopy equivalence of $\Delta$ with $A_{p}(G)$ holds.

Clearly the affirmative answer for Question (2) implies those for (1) and then those for
(0).

As I already mentioned, Qestion (0) has an affirmative answer for many sporadic geome-
tries. Indeed there are lots of activities concerning this question-notably the current works
by Dwyer [Dw96], but I will not discuss on that in this report. Question (1) was analyzed
for many sporadic geometries in [RSY90] and [SY1].

In this report I mainly introduce the results on Question (2). The key notion to establish
this stronger results is a seemingly-new “closed set” (see Section 3), for use in a standard
equivalence method of Quillen, which in most cases we can use to demonstrate the expected
homotopy equivalence. The examples of applications of this notion are given both in [SY2]
and [Y], and so in this report I did not

$\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}.\mathrm{t}$ to repeat them again but just tried to
describe the stream of our thoughts.

2. Some (Older) Obsevations.

This section is not related to the latter sections so you may skip to Section 3. Here Ijust
quote some part of the introduction of [SY1] for the readers who we are interested in what
we observed at the time we wrote that paper.

The “unexpected” aspect has to do with the precise notion of p–local geometry to be
analyzed. The original work of [RSY90] aimed at being comprehensive, in the sense of either
proving or disproving Webb’s hypothesis for all the then-known p–local geometries of group-
theoretic interest. But the recent cohomological applications suggest it may be more natural
to expand slightly the original notion of $p$-local geometry, since this leads to further examples
seemingly of cohomological interest. For example in case $p=2$ , the $\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{I}^{\cdot}.\mathrm{a}\mathrm{d}\mathrm{i}_{\mathrm{C}}$ examples in
[RSY90] satisfying Webb’s hypothesis were:

$M_{22},$ $M_{24},$ $M_{C}L,$ $J_{3}$ .

But this time, we will also allow certain geometries where one stabilizer might not be a local
subgroup; and certain rank-2 geometries (which in general were too numerous to consider
before); and we get the following further sporadic examples of Webb’s hypothesis:

$M_{11},$ $M_{23},$ $J_{1},$ $J4,$ $Co2$ , Th.

(The cohomology of the first three of these was in fact already known).
For odd $p$ , we also regard it as likely that future work on sporadic-group cohomology will

lead to further examples of geometries with Webb’s hypothesis, beyond those in [RSY90]; but
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we will not attempt any “comprehensive” analysis this time round. However, we will at least
indicate in this paper how the alternating-sum method could be applied as an alternative
approach to some of the groups with extra-special Sylow group of order $p^{3}$ considered recently
by Tezuka and Yagita [TY95].

By way of additional motivation, we mention here certain coincidences that have emerged
from this new work, which suggest that in place of our case-by-case considerations there may
be a more uniform geometric approach to sporadic cohomology than is known so far:

Observation la. The list for $p=2$ as extended above agrees almost exactly with the list
of sporadic groups satisfyingth-e $1_{\mathrm{o}\mathrm{C}\mathrm{a}}1-\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$-theoretic property of characteristic-2 type (in-
volution centralizers are 2-constrained, i.e. have no normal odd-order or quasisimple normal
subgroups). The actual Lie-type groups in characteristic 2 an alternating-sum decomposition
over the Tits building in view of Quillen’s standard result [Qui78, Thm 3.1]; and the groups
$U_{4}(3)$ and $G_{2}(3)$ in [RSY90] also have characteristic 2-type. So the form of the conclusion
with our extended notion of geometries suggests that there might be a common approach to
these results which uses characteristic-2 type as its hypothesis.

Observation $lb$ . The reader may detect, as the authors have concluded, that the con-
tractibility proofs also seem to follow a common outline. The arguments are to some ex-
tent reminiscent of those in the classical work of Quillen [Qui78, Secs 2,4] on the full ele-
mentary poset $A_{p}(G)$ ; however in the generally-smaller $p$-local geometries considered here,
contractibility proofs usually seem to require more than the two steps used in conical-
contractibility (e.g. [Qui78, 4.4]) arguments. In fact there seems to be a relation with
the previous Observation la about characteristic-2 type: the geometries appear to satisfy a
strong analogue of the Borel-Tits theorem for Lie-type groups–so that the contractibility
arguments have some of the flavor of the well-known proof (first due to Bouc?) that in Lie-
type groups, the unipotent radicals are precisely the p–group which are the largest normal
p–subgroups of their normalizers.

Observation $\mathit{2}a$ . In a number of cases we deal with subgroups $G_{1}\subseteq G_{2}$ where the corre-
sponding p-local geometries $\triangle_{1},$ $\triangle_{2}$ appear to be related, but rather weakly–in particular,
not embedded and definitely not homomopy equivalent; however we find they have the same
reduced Lefschetz module: $\tilde{L}(\triangle_{1})=\tilde{L}(\triangle_{2})$ . That is, any differences in effect cancel out
in the alternating sum. It seems desirable to understand these coincidences as instances of
some more general result.

Observation $\mathit{2}b$ . A different interrelation of geometries can arise, now with respect to a
single group $G$ , from one way in which we are now extending the viewpoint of [RSY90]. In
that earlier work, stabilizer $G_{v}$ of vertices $v$ were ordinarily not just maximal as subgroups
of $G$ , but also maximal as p–local subgroups. In the present work we find cases (again see
discussion of $M_{11}$ ) where we can define one geometry $\triangle$ with a vertex stabilizer $G_{v}$ which
is a maximal plocal but not a maximal subgroup; and another geometry $\triangle’$ where the
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corresponding vertex stabilizer is an actual maximal subgroup $G_{v’}$ above $G_{v}$ , but which is of
course no longer $p$-local. Here we typically find that the geometries and even their reduced
Lefschetz modules are different–but nonetheless we may find that both $\tilde{L}(\triangle)$ and $\tilde{L}(\triangle’)$ are
projective; so that for the purpose of alternating sums, we could work over either. Again, it
would be good to know a general explanation of insensitivity to this distinction.

3. The Results.

Here I give the homotopy equivalences we verified as well as some observations (compare
with those in \S 2), by quting $[\mathrm{S}\mathrm{Y}2, \S 2]$ .

The results we obtained can be summarized as the table in the next page, wherewe will
continue certain notational conventions from [RSY90]. For each row, $G$ will denote a finite
group, acting on a geometry (simplicial complex) $\Delta$ ( $[\mathrm{S}\mathrm{Y}2]$ for the details of each geometry).
A particular prime $p$ is also indicated: we take coefficients in the $p$-adic integers $\mathrm{Z}_{p}$ , and
we establish the projectivity of the p–modular representation given by the reduced Lefschetz
module $\tilde{L}(\triangle)$ of $\triangle$ (namely, the alternating sum of the chain groups). The Table indicates
only the corresponding dimension, given by the reduced Euler characteristic $\tilde{\chi}(\triangle)$ ; it is
standard that projectivity forces the rpart $|G|_{p}$ of the group order to divide that dimension.
In the fourth column, we indicate that in most cases we are able to verify the stronger result
of homotopy equivalence of $\Delta$ with the Quillen elementary complex $A_{p}(G)$ . In contrast to
[RSY90], we do not attempt to decompose the new modules in projective covers of individual
irreducibles; but in some cases indicate other relevant remarks. (A $+\mathrm{i}\mathrm{n}$ the first column
indicates a new geometry beyond [RSY90]; in the cases for old geometries, all equivalence
proofs are new).

We mention the intersection of these results with other work known to us: For the odd-p
cases $Ru,$ $J_{4}$ , Th and ON$(p=7)$ , the group cohomology has been described in Tezuka-Yagita
[TY95, $4.1$ ]–though those authors did not require the use of projectivity. The homotopy
equivalence for $M_{24}$ was first established in unpublished work of Ronan (mid-1980s).

We conclude with a striking feature of the above Table: First recall Quillen’s result
[Qui78, Thm 3.1] that the Tits building of a Lie-type group $G$ in characteristic $p$ is homo-
topy equivalent to $A_{p}(G)$ ; so the corresponding reduced Lefschetz module is projective by
[Qui78, Cor 4.3]. Thus it is natural to adjoin the Lie-type groups in characteristic 2 to the
$p=2$ sublist of the above Table of groups with projective modules; the result then agrees
almost exactly with the list of simple groups satisfying the local group-theoretic property of
characteristic-2 type (that is, Involution centralizers are 2-constrained, i.e. have no odd-order
or quasisimple normal subgroups). So we wonder if there might be a common approach to
these results which actually uses characteristic-2 type as the basic hypothesis.
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new? $G$ $p$ $\sim A_{p}$ ? $\tilde{\chi}(\triangle)$

$A_{7}$ 2 No $2^{3}7$

$A_{7}$ 2 No $2^{6}$

$p$ $\sim A_{p}$ ? $\tilde{\chi}(\triangle)$

$2$ No $2^{3}7$

$2$ No $2^{6}$

$U_{4}(3)$ 2 $\sim$ $2^{7}31$

$G_{2}(3)$ 2 No $2^{7}85$

$G_{2}(3)$ 2 $2^{6}181$

$+$ $M_{11}$ 2 $=$ $2^{4}31$ $=\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of $\tilde{L}$ from $M_{12}$

$+$ $M_{11}$ 2 No $2^{6}5$

$M_{22}$ 2 $\sim$ $2^{8}7$

$+$ $M_{23}$ 2 $\sim$ $2^{7}421$

$+$ $M_{23}$ 2 No $2^{10}21$ $=\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of $\tilde{L}$ from $M_{24}$

$M_{24}$ 2 $\sim$ $2^{10}21$

$McL$ 2 No $2^{8}521$

$McL$ 2 $\sim$ $2^{7}7483$

$+$ $J_{1}$ 2 $\sim$ $2^{3}601$ abelian Sylow-2
$J_{3}$ 2 $2^{8}511$ $=Z_{2}(G)$

$+$ $J_{4}$ 2 ?Yes? $2^{21}2520315$

$+$ $Co2$ 2 ?Yes? $2^{19}77$

$+$ Th 2 $\sim$ $2^{18}28729$

$L_{3}(4)$ 3 No $3^{2}25$

$U_{5}(.2)$ 3 $\sim$ $3^{6}7$

$M_{11}$ 3 No $3^{2}5$

$+$ $Ru$ 3 $=$ $3^{3}36281363$

$+$ $J_{4}$ 3 $=$ $3^{3}27892486\mathrm{o}\mathrm{o}\mathrm{o}17427$

$+$ ON 3 $3^{4}1755889$ $=B_{3}(G)$

$McL$ 3 No $3^{6}106$

$McL$ 3 $\sim$ $3^{6}169$

$+$ $Ly$ 3 $\sim$ $3^{8}80967584$

$Ly$ 5 No $5^{6}7065863$

$Ly$ 5 $\sim$ $5^{6}1769293$

$+$

.
Th 5 $=$ $5^{3}241989183701$

ON 7 No $7^{3}162487$

Projective modules $\tilde{L}(\triangle)$ , extended from Table I of [RSY90]

4. Main Methods.

In this section, I quote $[\mathrm{S}\mathrm{Y}2, \S 3]$ , where we provide the details for our homotopy equiva-
lence method, with further discussion of the development from the original projective-module
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methods of [RSY90]. For the readers who need more accounts or explicit examples, I also
refer to my article [Y] written in Japanese.

As above, we always consider a finite group $G$ , acting on geometry (i.e. simplicial com-
plex) $\triangle$ ; and consider the reduced Lefschetz module $\tilde{L}(\Delta)$ defined by the alternating sum of
the chain spaces of $\triangle$–with coefficients taken in the p–adic integers $\mathrm{Z}_{p}$ for some fixed prime
$p$ .

To establish in most cases the homology equivalence, we will recall Quillen’s technique
of “closed sets in products”, as specialized to our present notation. We consider the Carte-
sian product $A_{p}(G)\cross\triangle$ of posets, and say a subset $\mathcal{R}$ is closed (or an order-ideal, in the
combinatorial literature) if: whenever $(P, \sigma)\in \mathcal{R}$ with $Q\subseteq P$ and $\tau\subseteq\sigma$ , we must also have
$(Q, \tau)\in \mathcal{R}$ . We also define the fibers of the two projections, namely

$\mathcal{R}_{P}$ $=\{\sigma\in\triangle:(P, \sigma)\in \mathcal{R}\}$

$\mathcal{R}_{\sigma}$ $=\{P\in A_{p}(G):(P, \sigma)\in \mathcal{R}\}$

Then our special case of the result takes the form:

Theorem 4 (Cor 1.8 in Quillen [Qui78])
Suppose $\mathcal{R}$ is closed, and all $\mathcal{R}_{P}$ and $\mathcal{R}_{\sigma}$ are contractible.
Then $A_{p}(G)$ and $\triangle$ are homotopy equivalent.

In fact, it seems that in most applications of this result in the literature, the subset $\mathcal{R}$ has
the specific structure of “stabilizing pairs”: define $S=\{(P, \sigma) : P\subseteq G_{\sigma}\}$ . This definition
guarantees the property of closure, since in the condition above we see that $Q\subseteq P\subseteq G_{\sigma}\subseteq$

$G_{\tau}$ , so that also $(Q, \tau)\in S.$ (The final containment assumes that action of $G$ on $\triangle$ is
admissible, namely that $G_{\sigma}$ stabilizes all faces of $\sigma$ . It is standard that we can always obtain
this by passing to a barycentric subdivision.) Notice furthermore that for $S$ the fibers have
a very natural interpretation: namely, $S_{P}$ is the fixed subcomplex $\triangle^{P}$ , and $S_{\sigma}$ is the poset
$A_{p}(G_{\sigma})$ . At this point, we observe that the bulk of the geometries in our list are fully p-local,
in the sense that for all simplices $\sigma$ we have a non-trivial normal $p$-subgroup: $O_{p}(G_{\sigma})\neq 1$ ; so
in these cases we get contractibility of $S_{\sigma}=A_{p}(G_{\sigma})$ by Quillen’s standard result [Qui78, Prop
2.4]. On the other hand, our arguments verifying $(*)$ only check contractibility of $S_{P}=\triangle^{P}$

for those $P$ which have order exactly $P$ . Now any larger-order $Q\in A_{p}(G)$ certainly contains
such a $P$ , and contractibility has the consequence that $\Delta^{P}$ is mod-p acyclic; so a standard
application of the P. A. Smith theorem (just as in Webb [Web87, p.148]) guarantees that
$\triangle^{Q}$ is also mod-p acyclic. So for our fully $p$-local cases, if we replace “contractible” by
“mod-p acyclic” we get the hypotheses of the natural analogue of Quillen’s result: where the
conlusion “homotopy equivalent” is replaced by “homology equivalent”. So in these cases,
we know at least that $\triangle$ has the same mod-p homology as $A_{p}(G)$ . And this can be regarded
as evidence that the full homotopy equivalence should very probably hold.
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Subsequently we realized that the stronger result of homotopy equivalence could be es-
tablished via Quillen’s technique 4, using a (seemingly new) closed set $\mathcal{I}-\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{C}\mathrm{h}$ had been
implicit in our original contractibility proofs for various $\triangle^{P}$ . Those proofs almost always
took the form of a series of applications of a standard homological lemma, which we had
stated as [RSY90, Lemma 2.1]: if the link (or residue) of a vertex is contractible, then re-
moval of that vertex is a homotopy equivalence. This allowed us to reduce the original $\triangle^{P}$

to the (full) subcomplex on vertices which we called “ ${\rm Res}$-fixed” in [RSY90]: namely those
vertices $v$ for which we have not just $P\subseteq G_{v}$ , but in fact $P\subseteq K_{v}$–where $Kv$ is the kernel of
the action of $G_{v}$ on the residue of $v$ . Motivated by this observation, we $.\mathrm{n}$ow go on to define
for each simplex $\sigma\in\triangle$ the intersection of vertex kernels by:

$I_{\sigma}=\cap I\mathrm{f}_{v}$ over vertices $v\in\sigma$ ,
and a corresponding subset of the Cartesian product by:

$\mathcal{I}=\{(P, \sigma) : P\subseteq I\sigma\}$ .
Notice that $\mathcal{I}$ is automatically closed, but for a different reason that $S$ was: we have
$Q\subseteq P\subseteq I_{\sigma}\subseteq$ $I_{\tau}$–since the latter intersection is over a subset of the vertices of $\sigma$ ; giving
$(Q, \tau)$ also in $\mathcal{I}$ . And again the fibers of the projections take on appropriate meanings: we
have $\mathcal{I}_{\sigma}=A_{p}(I_{\sigma})$ , while $\mathcal{I}_{P}$ is just the full subcomplex on vertices ${\rm Res}$-fixed by $P$ , which
had been prominent in our earlier proofs. As in our earlier discussion of the usual closed set
$S$ , the $p$-local nature of the geometries will typically give $O_{p}(I_{\sigma})>1$ , hence contractibility
by [Qui78, Prop 2.4]. So via 4 we obtain a sufficient condition for equivalence:

Proposition 5 If all $O_{p}(I_{\sigma})>1$ , and all $\mathcal{I}_{P}$ are $contraCtible_{f}$

then $A_{p}(G)$ and $\triangle$ are homotopy equivalent.

We will use this technique in preference to the methods of [RSY90], whenever it applies (i.e.,
most of the time). :

We make a few general remarks about the application of 5. We can start our proofs at the
${\rm Res}$-fixed subcomplex $\mathcal{I}_{P}$ , in contrast to $[\mathrm{R}\mathrm{S}\mathrm{Y}90]$–where we had to reduce from $\Delta^{P}$ down
to it. This represents a very considerable saving of casework. Furthermore our earlier proofs
then included the contractibility of this subcomplex, at least for those $P$ of order exactly $p$ .
Partly offsetting the above saving, we do now have the requirement of considering arbitrarily
large elementary $Q$ in place of $P$ . However, any such $Q$ contains such a $P$ , and we know
immediately that $\mathcal{I}_{Q}$ is contained in $\mathcal{I}_{P}$–of known, contractible structure; $|_{\mathrm{a}\mathrm{n}\mathrm{d}}$ typically it is
straightforward to get contractibility of the subcomplex $\mathcal{I}_{Q}$ . (Unfortunately it need not be
exactly the fixed subcomplex $(\mathcal{I}_{P})^{Q}$ , so that P. A. Smith-type approaches are not available).

Finally some caveats: $\mathcal{I}$ as defined seems to be very effective for many sporadic groups;
however there is some flexibility in the method–and occasionally it will turn out to be
natural to vary the method somewhat, for example by using subgroups still smaller than the
kernels $I\mathrm{t}_{v}^{\nearrow}$ . Also note that every elementary $Q$ should be contained in some $K_{v}$ , otherwise
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we could get $\mathcal{I}_{Q}$ empty, hence not contractible. Ordinarily we will check this containment at
the start of our proofs; or if it fails, possibly replace $A_{p}(G)$ by some larger equivalent poset
for which we can check the necessary containment.
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