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SPECIALIZATIONS OF ENDOMORPHISM RINGS

OF ABELIAN VARIETIES

D.W. Masser

( Basef LRGVersﬁj)

Over the field C of complex numbers, it is well-known, and
easy to prove, that "almost all" abelian varieties are simple,
and even that they have trivial endomorphism rings consisting
only of multiplications by the ring Z of rational integers. For
example, this may be interpreted in measure-theoretical terms on
some appropriate moduli space. Alternatively one can use notions
of algebraic independence; such a point of view was considerably
developed by Shimura in an important paper [Sh] (see in
particular his section 4).

Over the field Q of algebraic numbers, or over a fixed
number field, one may expect a similar situation, although it is
not so easy even to interpret the sense of "almost all" in this
case. In the present note we describe precise versions of such:
statements, in somewhat generalized form, and we give a number of
illustrations. One of these, for instance, shows that the recent
counterexamples to a conjecture of Coleman, constructed by de
Jong and Noot [JN], are "rather sparse". We have already in [M2]
applied our results to the study of "large period matrices";

these are of interest in connexion with recent work of Dawvid [D]
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on a conjecture of Lang.

Our viewpoint will be similar to that taken in a previous
paper [M1] on specializations of Mordell-Weil groups. Namely, let
k be a subfield of C, let V be a variety defined over k, and let
A be an abelian variety defined over the function field k(V). We
may also think of this as a family of abelian varieties
parametrized by points of V. More precisely, after replacing V by
a non-empty open subset if necessary, we may suppose that for
each v in V(C) the corresponding specialization from k(V) to k(v)
provides an abelian variety Ay, defined over k(v) in C.

The standard example is the family of Legendre elliptic
curves defined by

y2 = x(x-1)(x-v) (1)
for all v # 0,1 in affine space V = A.

We now have a "generic" endomorphism ring End A consisting
of all endomorphisms of A. These might be defined over a finite
extension of k(V), rather than over k(V) itself. For greater
generality we do not assume that this endomorphism ring is
trivial. Also for each v in V(C) we have the "special"
endomorphism ring End Ay consisting of all endomorphisms defined
over C. We shall say that v in V(C) is exceptional if the rings
End A, and End A are not isomorphic.

For example, the exceptional v in (1) are those for which
the corresponding elliptic curve has complex multiplication.

As implied above, our interest lies mainly in the number
field case, so from now on we shall assume that k is a number
field with algebraic closure k embedded in C. We wish to prove
that the exceptional points of V(k) are scarce. We measure this

as in [M1] by fixing an affine embedding of V over k and then
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using the corresponding (absolute logarithmic) Weil height
function; For example, if v in (1) has the form r/s for coprime
rational integers r and s, then- .
h(v) = 1log max {|r]|,]|s]|}.

We now get an arithmetic filtration of the exceptional points in
V(k). Namely, for real numbers dzl, hzl we define Vgy(d,h) =
Vex(k;d,h) to be the set of exceptional points v with

[k(v):Q] =4, h(v) = h. (2)
Elementary height considerations show this to be finite.
Accordingly for any finite subset S of V(C) we write w(s) = wy(s)
for: the least degree of any polynomial that vanishes on S but not

identically on V. Our main result can now be stated as follows.

Theorem. Let k,V,A be as above, and suppose A has dimension n=1..
Then there exists C, depending only on V and A, and there exists
A, depending only on n, such that

W(Veg(d,h)) = C(max{d,h})A

for all d=1 and h=>1.

By way of comparison, note that if we consider the full set
V(d;h) of elements.v of V(k) satisfying (2), then Scholium 1
(p.414) of [M1] implies that

w(v(d,h)) > exp(ch) ‘ (3)
for suitable d and some c¢c>0 independent of h:; in fact it suffices
to take d as the degree of V in the given embedding. Thus the
exceptional sets Vgyx(d,h) grow "logarithmically slowly" compared
to the full sets V(d,h), at least with respect to the height
parameter h.

Let us mention here two examples for our Theorem.
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Firstly, it was the curves of genus 4 defined by -
y? = x(x-1)(x-v)
that were considered by de Jong and-Noot [JN]; they proved for
the Jacobians A, that there are actually infinitely many
exceptional points. Our Theorem implies, for example, that for
any H=3 there are most c(log H)A non-negative integers v =< H such
that End Ay, is not the ring of integers of Q(exp(2mi/5)y).

Second, for v = (ag,...,a5) let Ay be the Jacobian of the
"universal hyperelliptic'curve of genus 2" defined by

y2 = agx’® + ... + ag.
Our result implies similarly that for each Hz3 there is a non-
zero polynomial P(Xg,...,X5), of degree at most c(log H)A, such
that P(ag,...,a5) = 0 for all non-negative integers ag,...,as = H
such that End Ay is not Z. It follows from a simple counting
argument that this happens fbr at most cH5(log H)l such elements
v = (ag,...,a5), compared with at least H6 altogether.

It is interesting to compare our Theorem with a result of
André [A] (p.201). On the one hand he places more restrictions on
the family A; thus n=3 should be odd, V should be a curve, A
should be simple, and there is an additional hypothesis of
multiplicative reduction which implies that the tensor product
Q ® End A embeds into the ring Mp(Q) of square matrices of order
n with entries in the field Q of rational numbers. On the other
hand, now defining the (possibly smaller) exceptional set
Vexex @s the set of v for which Q ® End Ay has no such embedding,
he is able to prove that the cardinality of Vggex(d,h) remains
bounded as h»». This looks like a special case of our Theorem
"without h", and it raises the question of whether our Theorem

itself might still be true in complete generality without h. If
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so, it must lie rather deep, because we could apply it to the
Legendre elliptic curves (1) to deduce that the class number of
complex quadratic fields goes to infinity as fast as a (small)
positive power of the discriminant; and furthermore the implied
constants would be effectively computable. Such a result is still
unknown today.

Actually, as André himself pointed out to me, his results
can be combined with ours. When his resuit applies, it yields the
inequality (see [A] p.202)

h(v) =< cdf (4)

for all v in his exceptional set Vgyex(d,h), again for c
independent of 4 and h, and K depending only n. Using our
Theorem, we conclude (when V is a curve) that Vexex(d,h) contains
at most cdH points, independently of h, for U = A max{l,K}; such
an estimate does not follow from (4) alone, since the height is
logarithmic. An example is provided by the Jacobians A;, of the
curves of genus 3 defined by

y2 = x(x—l)(x—v)(x—vz)(x-v4)(x—v5)(x—v8).
Thus for any d=1 there are at most cd!l algebraic numbers v of
degree at most 4 for which Ay is of simple CM type. But now it is
not so easy to verify that André's hypotheses are satisfiéd]

The results of André are proved using the method of G-
functions in the general context of transcendence theory. The
proof of our Theorem also ultimately rests on transcendence. The
key tool is an estimate for endomorphisms established by Wiistholz
and the author in [MW2], as a consequence of the main result of
[MW1] proved using Baker's method. This is applied to obtain a
relation between the sets Vgyx(d,h) and certain other sets Vgy(t)

defined by a second, purely geometric filtration. After this,
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there is no more number theory in the proof, and we can formulate
a Proposition which gives an upper bound for wW(Vegx(t)) in terms
of the parameter t.

The proof of this Proposition is essentially an extended
exercise in effective elimination estimates. We introduce
coordinates on the abelian varieties Ay, and we use a result of
Lange [L] to estimate the degrees of equations defining
endomorphisms. We make the coordinates into abelian functions by
introducing derivations. Then we construct certain systems of
auxiliary polynomials whose purpose is to "encode" the generic
endomorphism ring End A, which we identify with End Ap for a
generic point N of V. The encoding is via analytic |
representations, and relies on generalized Wronskians together
with a "zero estimate" of a kind familiar in the context of
transcendence theory.

Next we use the Hilbert Nullstellensatz, in a sharp
effective form first established by Brownawell [B], to
reformulate this encoding property in terms of a system of
polynomial identities over C. We then "refine" these identities
so that they are defined over the field k(n). Roughly speaking,
they thus involve a denominator P(N) in the ring k[Nn]. Now the
Proposition can be proved by observing that if v is an
exceptional point then the above "encoding" must break down for
End ‘Ay. This can happen essentially only if P(v) = 0, which
provides. our estimate for w.

When I first talked about these results in Paris, Daniel
Bertrand raised the interesting question of what kind of
estimates for the exceptional sets could be obtained using

Hilbert's Irreducibility Theorem. He sketched an argument in the
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case d=1, based on specialization properties of Galois
representations, suggesting that the set Vgyx(k) of exceptional
points over k is a "thin set" in V(k) in the sense of Serre [Se2]
(p.121). Later on I learnt from Rutger Noot that the Galois
representation properties had been proved by Serre himself in a
letter [Sel] to Ribet. The details can be found, together with
the application to endomorphisms (among other things), in a
preprint by Noot [N], and this work does indeed imply that Veax (k)
is a thin set.

If V is a curve, one can deduce estimates for the sets
Vex(1l,h) in this way. For there are essentially best possible
estimates for thin sets (see for example [Se2] pp.132-136) which
are "often", but not always, polynomial in the logarithmic height
h. For higher-dimensional V there are also cardinality estimates
([Se2] Theorems 3 and 4 p.178), but these seem not to be best
possible unless one restricts to "integer points" ([Se2] Theorems
1 and 2, pp.177,178). In any case it is not clear how théy can
lead to our polynomiai estimates for wW. For example, if S is a
thin subset of ZM in affine space V - A, a cardinality estimate
of order HYV for points of S with height at most h = log H would
lead to an estimate for W of order HY/M_  We can get any V > m-%
in general, and perhaps any V > m-1 "often", but neither of the
resulting estimates for W can be polynomial in h if m=2.

The situation gets worse if we consider the sets Vex(d,h)
for fixed d>1. In fact there do not seem to be any analogous
estimates at all in the literature for thin sets. Even.if there
were, they could not possibly be polynomial in h. For example, a
typical thin set in k arises, from a polynomial P(Y,X) in k[Y,X]

irreducible over k(Y), as the set of v such that P(v,X) is
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reducible over k(v). But this happens in particular for all v
such that P(v,x) = 0 for some x in k. These v have bounded
degree, and it easily seen that their number with logarithmic
height at most h grows at least exponentially in h (compare (3)
above).

Incidentally, all these remarks apply equally to the
exceptional sets discussed in [M1l] in connexion with Mordell-Weil

groups; that these are thin sets was proved by Néron (see also

[Se2] p.152).
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