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量子確率微分方程式の体系
–物理と数学の狭間–

斎藤健 (Takeshi SAITO), 有光敏彦 (Toshihico ARIMITSU)
Institute of Physics, University of Tsukuba

Ibaraki 305, Japan

1 Introduction

Studies of the Langevin equation for quantum systems were started by Senitzky [1], Lax
[2] and Haken [3]. They investigated the Langevin equation for a quantum mechanical
damped harm.onic oscillator. In the quantum Langevin equation, variables in both relevant
and irrelevant systems are stochastic operators. Putting the condition that the equal-time

canonical commutation relation should hold for all time even for stochastic operators, they
derived commutation relations among random force operators and their correlations.

In their studies, Senitzky, Lax and Haken did not construct a representation space
explicitly. In quantum theory, observable operators do not have physical meaning until a
representation space is specified. As was pointed out by Kubo [4], the quantum Langevin
equation is an operator equation defined on a total representation space, i.e., a space of
relevant system and of random forces. Any representation space of random force operators

had not been constructed by physicists.

Mathematicians such as Hudson, Parthasarathy and their $\mathrm{c}(\succ \mathrm{W}\mathrm{o}\mathrm{r}\mathrm{k}\mathrm{e}\mathrm{r}\mathrm{s}[5]- 1^{1}0]$ con-
structed explicitly a representation space of random force operators. With the represen-
tation space, they realized a stochastic Schr\"odinger equation by analogy with the usual
quantum mechanics. A timeevolution generator satisfying the stochastic Schr\"odinger
equation was determined on the requirement of its unitarity, which is one of the neces-
sary conditions for construction of a canonical operator formalism. It seems that, for
mathematicians, a construction of the stochastic Liouville equation was out of their con-
siderations.

The stochastic Liouville equation was introduced first by Kubo $[11, 12]$ in order to
investigate classical stochastic systems. In classical systems, the stochastic Liouville equa-
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tion is an equation of motion for a probability distribution function in phase space under

the influence of random forces. There had been a few attempts to extend the stochastic

Liouville equation to quantum systems. Gardiner et al. $[13, 14]$ and Dekker [15] derived

a quantum stochastic Liouville equation by obtaining, within the trace formalism, an

adjoint operator of a time-evolution generator for quantum Langevin equation. Further-

more, Gardiner et al. [16] rederived their stochastic Liouville equation on the basis of the

stochastic Schr\"odinger equation introduced by Hudson et al. by making use of the fact

that a density operator is a functional of wave functions. Within the density operator

formalism, it is impossible to extract an explicit form of the time.evolution generator sat-

isfying the stochastic Liouville equation, since the Liouville equation has entanglements

between relevant operators and a density operator due to commutators and anticommu-

tators among them. These difficulties prevent one from constructing a canonical operator

formalism based on the stochastic Liouville equation.

On the other hand, within the framework of Non-Equilibrium Thermo Field Dynamics

(NETFD) $[17]-[19]$ , a unified canonical operator formalism of quantum stochastic differen-

tial equations was $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{I}^{\cdot}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{d}[20]-[30]$ on the basis of the stochastic Liouville equation.

The quantum stochastic differential equations include the quantum Langevin equation

and the quantum stochastic Liouville equation together with the corresponding quantum

master equation. Within NETFD, introducing two kinds of operators, with tilde and

without tilde, the entanglements between relevant operators and a density operator in the

stochastic Liouville equation can be disentangled. Therefore, one can extract the explicit

form of the time-evolution generator satisfying the stochastic Liouville equation, which

enables us to construct a unified canonical operator formalism.

In this paper, we will construct quantum Wiener processes by means of boson annihi-

lation and creation operators with their representation space extending mathematicians’

procedure and implanting it into NETFD. The thermal degree of freedom in the quan-

tum Wiener processes will be introduced by a Bogoliubov transformation in the thermal

space which is a representation space within NETFD. Then, starting from a stochastic

Shr\"odinger equation, we will show how one can obtain the time-evolution generator sat-

isfying a stochastic Liouville equation with the help of the fact that a density operator

is a functional of wave functions together with the principle of correspondence between

quantities in the thermal space and in.. the Hilbert space. We will also show how one

can construct a unified canonical operator formalism of quantum stochastic differential
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equations on the basis of the time-evolution generator.

2 Quantum Wiener Processes

We will construct quantum Wiener processes at zero temperature according to Hudson

and Parthasarathy [5, 9, 10].

2.1 Fock Space

We introduce boson operators $b(t)$ and $b^{\mathrm{t}}(t)$ with $t\in[0, \infty)$ satisfying the canonical

commutation relations

$[b(t), b^{\uparrow}(t)]=\delta(t-s)$ , $[b(t), b(s)]=0$ , (1)

and define the vacuums $|0\rangle\rangle$ and $\langle\langle$ $0|$ by

$b(t)|\mathrm{o}\rangle\rangle=0$ , $\langle\langle$ $0|b^{\uparrow}(t)=0$ . (2)

We introduce $\mathrm{k}\mathrm{e}\mathrm{t}-$ and $\mathrm{b}\mathrm{r}\mathrm{a}$-vectors defined by

$|t_{1},$
$\cdots,$

$t_{n} \rangle\rangle=\frac{1}{\sqrt{n!}}b^{\uparrow}(t1)\cdots b^{\mathrm{t}}(i)n|\mathrm{o}\rangle\rangle$ , $\langle\langle$ $t_{1},$ $\cdots t_{n}|=\langle\langle 0|\frac{1}{\sqrt{n!}}b(t_{1})\cdots b(t_{n})$ , (3)

which satisfy the orthonormalization condition

$\langle\langle t_{1}, \cdots, t_{n}|S1, \cdots, S\rangle m\rangle=\delta nm^{\frac{1}{n!}\sum-s}P\delta(i1-S_{1})\cdots\delta(t_{nn})$, (4)

and the completeness relation

$\sum_{n=0}^{\infty}(\prod_{l}^{n}\int_{0}^{\infty}dt\iota)|t_{1},$
$\cdots,$

$t_{n}\rangle\rangle\langle\langle t_{1},$

$\cdots,$ $t_{n}|=I.$ (5)

Here, $\Sigma_{P}$ indicates the summation over all possible permutations of $t_{1},$ $\cdots$ , $t_{n}$ with $s_{1},$ $\cdots.s_{n}$

fixed. Therefore, the set of $\mathrm{k}\mathrm{e}\mathrm{t}$-vectors $\{|t_{1}, \cdots , t_{n}\rangle\rangle\}$ and that of $\mathrm{b}\mathrm{r}\mathrm{a}$-vectors $\{\langle\langle t_{1,n}\ldots, t|\}$

form complete orthonormal systems. The vector space $\Gamma^{0}$ built on the complete orthonor-

mal basic vectors $|t_{1},$
$\cdots,$

$t_{n}\rangle\rangle$ and $\langle\langle$ $t_{1},$ $\cdots,$
$t_{n}|$ is called the Fock space*.

*Since annihilation and creation operators $b(t),$ $b^{\uparrow}(t)\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathfrak{h}$’ bosonic canonical commutation relations
(1), the vector space $\Gamma^{0}$ is also called the boson Fock space or the symmetric Fock space [10].
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2.2 Quantum Wiener Processes

Let us define the operators $B_{t}$ and $B_{t}^{\mathrm{t}}$ on the Fock space $\Gamma^{0}$ by

$B_{t}= \int_{0}^{t}dsb(s)$ , $B_{\mathrm{t}}^{1}= \int_{0}^{\mathrm{t}}dsb^{\dagger}(S)$ . (6)

Taking average of $B_{t},$
$B_{t}^{\mathrm{t}}$ and the product $B_{t}^{1}B_{s},$ $B_{t}B_{s}^{1}$ with respect to the vacuums

$|0\rangle\rangle$ and $\langle\langle$ $0|$ , we find that
$\langle\langle 0|B_{t}|\mathrm{o}\rangle\rangle=\langle\langle 0|B_{t}^{\dagger}|0\rangle\rangle=0$ , (7)

$\langle\langle 0|B_{ts}\dagger B|0\rangle\rangle=0$ , $\langle\langle 0|B_{t}B^{\uparrow\min}s|\mathrm{o}\rangle\rangle=(t, s)$ , (8)

where we used (2) and (1). Since the correlations (7), (8) indicates that the operators $B_{t}$

and $B_{t}^{\mathrm{t}}$ on the Fock space $\Gamma^{0}$ can be interpreted as the Wiener process for a quantum

system, we call the operators the quantum Wiener processes. The processes $B_{t}$ and $B_{t}^{\dagger}$

are also called annihilation and creation processes, respectively $[9, 10]$ .

2.3 Product Rules

Let us introduce the exponential $vector|e(f)\rangle\rangle,$ $\langle\langle$ $e(f)|\in\Gamma^{0}$ by

$|e(f) \rangle\rangle=\exp[\int_{0}^{\infty}dtf(t)b^{\uparrow}(t)]|0\rangle\rangle$ , $\langle\langle$ $e(f)|= \langle\langle 0|\exp[\int_{0}^{\infty}dtf^{*}(t)b(t)]$ , (9)

where $f$ is an element of the set $L^{2}$ of square integrable functions satisfying $\int_{0}^{\infty_{d}}t|f(t)|^{2}<$

$\infty$ . Since the sets $\{|e(f)\rangle\rangle|f\in L^{2}\}$ and $\{\langle\langle e(f)||f\in L^{2}\}$ of all exponential vectors are

linearly independent and total in the Fock space $\Gamma^{0}[10]$ , any operator on the Fock space is

characterized by the action on the exponential vectors [5]. The annihilation and creation

operators $b(t)$ and $b^{\mathrm{t}}(t)$ are characterized by the relations

$b(t)|e(f)\rangle\rangle=f(t)|e(f)\rangle\rangle$ , $\langle\langle$ $e(f)|b^{\uparrow}(t)=\langle\langle e(f)|f*(t)$ , (10)

respectively.

With the help of the properties (10), the quantum Wiener processes $B_{\mathrm{t}}$ and $B_{t}^{\uparrow}$ defined

by (6) are characterized by the following relations:

$\langle\langle e(f)|dBt|e(f’)\rangle\rangle=f’(t)dt\langle\langle e(f)|e(f/)\rangle\rangle$ , (11)

$\langle\langle e(f)|dB^{\dagger}t|e(f/)\rangle\rangle=f^{*}(t)dt\langle\langle e(f)|e(f^{J})\rangle\rangle$. (12)
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The products of the increments $dB_{t}=B_{t+\ ^{-}}B_{\mathrm{t}},$ $dB_{t}^{\uparrow}=B_{t+dt}^{1}-B^{\dagger}t$ and $dt$ are charac-

terized by the following $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}^{\uparrow_{:}}$

$\langle\langle e(f)|dBedB_{t}|e(f/)\rangle\rangle=O(dt^{2})$ , (13)

$\langle\langle e(f)|dBtdB_{t}||e(f’)\rangle\rangle=dt\langle\langle e(f)|e(f/)\rangle\rangle+O(dt^{2})$, etc.. (14)

Taking into account of the terms of $O(dt)$ in $L^{2}$-space and neglecting the terms of
$o(dt)$ , we have, from the matrix elements (11), (12) and (13), (14), the following product

rules [5]:

(15)

3 Quantum Wiener Processes at Finite Tempera-
tures

We will construct quantum Wiener processes at finite temperatures considering boson
operators on the thermal space, which is the representation space within NETFD. This
is the reconstruction of quantum Wiener processes at finite temperatures introduced by
Hudson and Lindsay $[7, 8]$ , within the framework of NETFD.

3.1 Representation Space

We introduce the tilde operators $(\tilde{b}(t),\tilde{b}\dagger(t))$ on the tilde conjugate space $\tilde{\Gamma}^{0}$ associated

with $(b(t), b^{\uparrow}(t))$ on $\Gamma^{0}$ . Here, the tilde $conjugation\sim \mathrm{i}\mathrm{s}$ defined by

$(A_{1}A_{2})^{\sim}=\tilde{A}_{1}\tilde{A}_{2}$ , (16)

$(_{C_{1}A_{1}}+c_{22}A)^{\sim}=c^{*}\tilde{A}_{1}+1\tilde{A}_{2}c_{2}*$ , (17)

$(\tilde{A})^{\sim}=A$ , (18)

$(A\dagger)^{\sim}=\tilde{A}^{\uparrow}$ , (19)
$\uparrow_{O(X})$ indicates that

$\lim_{xarrow 0}\frac{O(x)}{x}=\alpha\neq 0$ ,

while $o(x)$ indicates that
$\lim_{xarrow 0}\frac{o(x)}{x}=0$ .
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where $A_{1},$ $A_{2}$ and $A$ are arbitrary operators on $\Gamma^{0}$ and $c_{1}$ and $c_{2}$ are $\mathrm{c}$-numbers. Note that

the tilde conjugate space $\tilde{\Gamma}^{0}$ is the Fock space built on the $\mathrm{b}\mathrm{a}s$ ic vectors made by cyclic

operations of $\tilde{b}^{\uparrow}(t)$ on the vacuum $|\tilde{0}\rangle\rangle$ and $\tilde{b}(t)$ on the vacuum $\langle\langle$
$\tilde{0}|$ , where the vacuums

$|\tilde{0}\rangle\rangle$ and $\langle\langle$
$\tilde{0}|$ are defined by

$\tilde{b}(t)|\tilde{\mathrm{o}}\rangle\rangle=0$ , $\langle\langle$
$\tilde{0}|\tilde{b}^{\uparrow}(t)=0$ . (20)

Note that $|\tilde{0}\rangle\rangle$ and $\langle\langle\tilde{0}|$ are the tilde conjugate of $|0\rangle\rangle$ and $\langle\langle 0|$ .

We consider the tensor product space

$\Gamma=\Gamma^{0}\otimes\tilde{\Gamma}0$ . (21)

The vacuum states $|0$) and ($0|$ of $\Gamma$ is defined by

$|0)=|0\rangle\rangle\otimes|\tilde{0}\rangle\rangle$ , ( $0|=\langle\langle 0|\otimes\langle\langle\tilde{0}|,$ (22)

which are invariant under the tilde conjugation, i.e., $\{|0)\}^{\sim}=|0),$ $\{(0|\}^{\sim}=(0|$ . Note that
$\Gamma$ is the Fock space built on the basic vectors made by cyclic operations of $(b^{\mathrm{t}}(t),\tilde{b}^{\uparrow}(t))$

on the vacuum $|0$) and $(b(i),\tilde{b}(t))$ on the vacuum ( $0|$ . In the following, we will use the

notational conventions such as

$b(t)\otimes\tilde{I}\Rightarrow b(t)$ , $b^{\uparrow}(t)\otimes\tilde{I}\Rightarrow b^{\uparrow}(t)$ , (23)

$I\otimes\tilde{b}(t)\Rightarrow\tilde{b}(t)$ , $I\otimes\tilde{b}^{\uparrow}(t)\Rightarrow\tilde{b}^{\uparrow}(t)$ , (24)

where $I$ and $\tilde{I}$ stand for identity operators on $\Gamma^{0}$ and $\tilde{\Gamma}^{0}$ , respectively. The annihilation

and creation operators $b(t),$ $b^{\mathrm{t}}(t),\tilde{b}(t),\tilde{b}^{\uparrow}(t)$ on $\Gamma$ satisfy the canonical commutation

relations
$[b(t), b^{\mathrm{t}}(s)]=[\tilde{b}(t),\tilde{b}^{\uparrow}(S)]=\delta(t-s)$ , (25)

$[b(t), b(s)]=[\tilde{b}(t),\tilde{b}(s)]=[b(t),\tilde{b}(s)]=[b(t),\tilde{b}^{\dagger}(s)]=0$ . (26)

Note that the vacuums $|0$) and ($0|$ satisfy

$b(t)|0)=\tilde{b}(t)|0)=0$ , ( $0|b^{\uparrow}(t)=(0|\tilde{b}^{\dagger}(t)=0$ . (27)

The thermal degree of freedom can be introduced by Bogoliubov transformation in $\Gamma$ .
First, we require that the expectation value of $b^{\mathrm{t}}(t)b(s)$ should be

$\langle b^{\mathrm{t}}(t)b(s)\rangle=\overline{n}\delta(t-S)$ , (28)
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with a real positive number $\overline{n}$ , where $\langle\cdots\rangle$ indicates the expectation with respect to some

states $|\rangle$ and $\langle$ $|$ . We find that in order to insure the equation (28), it is sufficient to impose

the following conditions on the states $|\rangle$ and $\langle$ $|$ :

$b(t)| \rangle--\frac{\overline{n}}{1+\overline{n}}\tilde{b}^{\uparrow}(t)|\rangle$ , $\langle$
$|b^{\uparrow}(t)=\langle|\tilde{b}(t)$ . (29)

In fact, using the conditions (29), we have

$\langle b^{\uparrow}(t)b(s)\rangle=\frac{\overline{n}}{1+\overline{n}}\{\langle|b\dagger(t)b(s)|\rangle+\delta(t-s)\}$ , (30)

which leads to (28). We call the states $|\rangle$ and $\langle$ $|$ the thermal $ket$-vacuum and the thermal

$bra$-vacuum, respectively, and the conditions (29) the thermal state conditions for the

thermal ket- and bra-vacuums.

We introduce annihilation operators $c(t),\tilde{c}(t)$ and creation operators $c^{*}(t),\tilde{c}^{*}(t)$ for

the thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum $|\rangle$ satisfying

$c(t)|\rangle=\tilde{c}(t)|\rangle=0$ , $\langle$ $|c^{*}(t)=\langle|\tilde{c}^{*}(t)=0$ , (31)

and the canonical commutation relations

$[c(t), c^{*}(s)]=[\tilde{c}(t),\tilde{C}^{*}(S)]=\delta(t-S)$ , (32)

$[c(t), C(\mathit{8})]=[\tilde{c}(t),\tilde{C}(s)]=[C(t),\tilde{c}(s)]=[c(t),\tilde{c}^{*}(_{S})]=0$ , (33)

$[c^{*}(t), c^{*}(s)]=[\tilde{c}^{*}(t),\tilde{c}^{*}(s)]=[c^{*}(t),\tilde{c}(s)]=[c^{*}(t),\tilde{c}^{*}(s)]=0$. (34)

Recalling the thermal state conditions (29), we see that such operators $c(t),$ $c^{*}(t)$ and

their tilde conjugates are related to $b(t),$ $b^{\mathrm{t}}(t)$ and their tilde conjugates through the

transformation
$=(\tilde{b}^{\uparrow}(t)b(t))$ . (35)

The transformation (35) is called the Bogoliubov $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}_{0}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\ddagger[31]$ . The Bogoliubov

transformation is the canonical one such that the canonical commutation relations do not

change under this transformation.

Let the boson Fock space built on the basic ket- and $\mathrm{b}\mathrm{r}\mathrm{a}$-vectors made by cyclic

operations of $(c^{*}(t),\tilde{C}^{*}(t))$ on the thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum $|\rangle$ and of $(c(t),\tilde{c}(t))$ on the thermal
$\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $|$ , be denoted by $\Gamma^{\beta}$ .

\ddagger In the expression of the $\mathrm{B}\mathrm{o}_{6}^{\sigma}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{u}\mathrm{b}\mathrm{o}$ transformation, there is a freedom of normalization constant.
The expression (35) is the only one that is linear with respect to $\overline{n}$ .

231



Note that the Bogoliubov transformation (35) is $\mathrm{r}\mathrm{e}\backslash \mathrm{v}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{n}$ as

$c(t)=U_{B}^{-1}b(t)U_{B}$ , $\tilde{c}^{*}(t)=U_{B}^{-1}\tilde{b}^{\dagger}(t)UB$ , (36)

where
$U_{B}= \exp[-\overline{n}\int_{0}^{\infty}dtb^{\dagger\uparrow}(t)\tilde{b}(t)]\exp[\int_{0}^{\infty}dtb(t)\tilde{b}(t)]$ , (37)

$U_{B}^{-1}= \exp[-\int_{0}^{\infty}dtb(t)\tilde{b}(t)]\exp[\overline{n}\int_{0}^{\infty}dtb\dagger(t)\tilde{b}\uparrow(t)]$ . (38)

The equations (36) together with the properties (27) and (31) give the relations between

the thermal vacuums in $\Gamma^{\beta}$ and the vacuums in $\Gamma$ as follows:

$|\rangle=U_{B}^{-1}|\mathrm{o})$ , $\langle$ $|=(0|U_{B}.$ (39)

Using the formula of the Lie algebra of SU(I,I) group $[32]_{-[}35]$ , we can rewrite $U_{B}^{-1}$ as

normal ordered product

$U_{B}^{-1}= \exp[\frac{\overline{n}}{1+\overline{n}}\int_{0}^{\infty}dtb\dagger(t)\tilde{b}|(t)]$

$\cross\exp[-\ln(1+\overline{n})\int_{0}^{\infty}dt\{b^{\uparrow}(t)b(t)+\tilde{b}^{\uparrow}(t)\tilde{b}(t)+\delta(0)\}]$

$\cross\exp[-\frac{1}{1+\overline{n}}\int_{0}^{\infty}dtb(t)\tilde{b}(t)]$ . (40)

Here, $\delta(0)$ is the delta function $\delta(t)$ with $t=0$ . The equations (39) and (40) together

with the property (27) give

$| \rangle=\exp[-\delta(0)\ln(1+\overline{n})\int_{0}^{\infty}dt]\exp[\frac{\overline{n}}{1+\overline{n}}\int_{0}^{\infty}dtb^{\uparrow}(t)\tilde{b}^{\mathrm{t}}(t)]|0)$. (41)

Since $\delta(0)=\infty$ , the equation (41) shows that in the thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum $|\rangle$ , infinite

number of the $(b(t),\tilde{b}(t))$-pairs are condensed and the Fock space $\Gamma^{\beta}$ is inequivalent to the

Fock space $\Gamma$ in the sense that any vector in $\Gamma^{\beta}$ can not be written as a superposition of

vectors in $\Gamma$ and vice versa.

On the other hand, the equation (39) together with the expression (37) of $U_{B}$ gives

$\langle|=(\mathrm{O}|\exp[-\overline{n}\int_{0}^{\infty}dtb^{\uparrow(t})\tilde{b}\dagger(t)]\exp[\int_{0}^{\infty}dtb(t)\tilde{b}(t)]$

$=( \mathrm{O}|\exp[\int_{0}^{\infty}dtb(t)\tilde{b}(t)]$ , (42)

where we used the property (27). We see that the equation (42) is consistent wvith the

thermal state condition (29) of the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum. In fact, using the equation (42) and the

property (27), we can prove the thermal state condition (29).
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3.2 Quantum Wiener Processes at Finite Temperatures

Quantum Wiener processes at finite temperatures are defined by the operators

$B_{t}= \int_{0}^{t}dsb(s)$ , $B_{t}^{\dagger}= \int_{0}^{t}d_{S}b\dagger(S)$ , (43)

and their tilde.conjugates represented in the Fock space $\Gamma^{\beta}$ . The explicit representa-

tions of the processes $B_{t},$ $B_{t}^{1},\tilde{B}_{t}$ and $\tilde{B}_{t}^{\uparrow}$ in $\Gamma^{\beta}$ are given in terms of the Bogoliubov

transformation (35) by

$B_{t}= \int_{0}^{t}dS[c(s)+\overline{n}\tilde{c}^{*}(s)]=C_{t}+\overline{n}\tilde{C}_{t}^{*}$, (44)

$B_{t}^{1}= \int_{0}^{t}ds[\tilde{c}(s)+(1+\overline{n})c^{*}(s)]=\tilde{C}_{t}+(1+\overline{n})C_{t}^{*}$ , (45)

and their tilde conjugates, where $C_{t},$ $C_{\ell}^{*},\tilde{C}_{t}$ and $\tilde{C}_{t}^{*}$ are the annihilation and creation

processes in $\Gamma^{\beta}$ defined by

$C_{t}= \int_{0}^{t}dsc(s)$ , $C_{t}^{*}= \int_{0}^{t}dsC(*s)$ , (46)

and their tilde-conjugates.

Any operator in the Fock space $\Gamma^{\beta}$ can be characterized by the exponential vectors
$|e(f, g)\rangle,$ $\langle$ $e(f,g)|$ in $\Gamma^{\beta}$ with $f,$ $g\in L^{2}$ defined by

$|e(f,g) \rangle=\exp[\int_{0}^{\infty}dt\{f(t)C^{*}(t)+g^{*}(s)_{\tilde{C}}\#(s)\}]|\rangle$ , (47)

$\langle$ $e(f,g)|= \langle|\exp[\int_{0}^{\infty}dt\{f*(t)_{C(}t)+g(S)\tilde{C}(s)\}]$ , (48)

which satisfy the following relations:

$c(t)|e(f,g)\rangle=f(t)|e(f,g)\rangle$ , $\langle$ $e(f,g)|c(\# t)=\langle e(f,g)|f*(t)$ , (49)

$\tilde{c}(t)|e(f,g)\rangle=g^{*}(t)|e(f,g)\rangle$ , $\langle$ $e(f,g)|\tilde{c}( t)=\langle e(f,g)|g(t)$ . (50)

As the case of the construction of annihilation and creation processes $B_{t},$
$B_{t}^{\uparrow}$ in Fock

space $\Gamma^{0}$ , the evaluation of matrix elements of the products of the increments $dC_{t},$ $dC_{t}^{*}$ ,
$d\tilde{C}_{\mathrm{t}},$ $d\tilde{C}_{t}^{\mathrm{a}_{\mathrm{a}}}\mathrm{n}\mathrm{d}dt$ between exponential vectors $|e(f,g)\rangle$ and $\langle$ $e(f,g)|$ with the help of the

properties (49), (50) gives the product rules of the increments $dC_{t},$ $dc_{t’ t}^{\mathrm{i}}d\tilde{c}_{t},$$d\tilde{C}*_{\mathrm{a}}\mathrm{n}\mathrm{d}dt$ ,

which are summarized as the following table.

(51)
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By means of the expressions (44), (45) and their tilde conjugates and the product rules

(51), we can evaluate the products of the increments of $dB_{t},$ $dB_{\mathrm{t}}^{\mathrm{t}},$ $d\tilde{B}_{t},$ $d\tilde{B}_{t}^{1}$ and $dt$ and

obtain the product rules summarized as follows:

(52)

Using the equations (44), (45) and their tilde conjugates, the commutation relation

(32) and the properties (31) of the thermal vacuums, we obtain the correlations of the

increments $dB_{t},$ $dB_{t}^{\uparrow},$ $d\tilde{B}_{\mathrm{t}}$ and $d\tilde{B}_{t}^{1}$ with respect to the thermal vacuums $|\rangle$ and $\langle$ $|$ as
follows:

$\langle dB_{\mathrm{t}}\rangle=\langle dB_{t}^{\uparrow\rangle}=\langle d\tilde{B}_{t}\rangle=\langle d\tilde{B}_{t}^{1}\rangle=0$ , (53)

$\langle dB_{t\rangle}^{\dagger_{dB}}S=\langle d\tilde{B}_{t\rangle}^{\dagger_{d\tilde{B}}}s=\langle dB_{t}d\tilde{B}_{S}\rangle=\langle d\tilde{B}_{t}dB_{S\rangle}=\overline{n}\delta(t-s)dtds$ , (54)

$\langle dB_{t}dB_{s}^{\mathrm{t}}\rangle=\langle d\tilde{B}_{t}d\tilde{B}_{s}^{1}\rangle=\langle dB_{t}^{1}d\tilde{B}_{s}^{1\rangle}=\langle d\tilde{B}_{t\rangle}^{||}dB_{s}=(1+\overline{n})\delta(t-s)dtds$, (55)

(others) $=0$ , (56)

where $\langle\cdots\rangle\equiv\langle|\cdots|\rangle$ . From the correlations (53) $-(56)$ , we see that putting $\overline{n}$ to the

Planck distribution given by
$\overline{n}=\frac{1}{\mathrm{e}^{\beta\omega}-1}$ , (57)

with some positive number $\omega$ and the inverse of the temperature, $\beta=1/T$ , the quantum

Wiener processes $B_{t},$
$B_{t}^{\mathrm{t}}$ are essentially equivalent to those introduced in the problem of

quantum optics [3].

4 Quantum Stochastic Calculus

On the basis of the quantum Wiener processes at finite temperatures, we will investigate

the quantum stochastic calculus.

4.1 Adapted Processes

The Fock space $\Gamma^{\beta}$ is decomposed as

$\Gamma^{\beta\beta_{\otimes}\beta}=\Gamma\Gamma t](t$

’ (58)

$\backslash ’ \mathit{1}$
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in which for $f,g\in L^{2}$ ,

$|e(f,g)\rangle=|e(ft],gt1)\rangle\otimes|e(f(t,g(t)\rangle,$ $(e(f,g)|=\langle e(ft],g_{t]})|\otimes\langle e(f_{(g_{(}t}t,)|$ , (59)

where we set
$f_{t1^{=f}]}\chi_{\mathrm{t}}$ , $f_{(t}=f\chi(\mathrm{t},$ (60)

and assumed that
$|\rangle=|t]\rangle\otimes|_{(t}\rangle$ , $\langle$ $|=\langle_{t]}|\otimes\langle_{(t}|$ . (61)

Here, $\chi_{t}$ ] and $\chi_{(t}$ are defined by

$\chi_{t]}(s)=\theta(t-s)$ , $\chi_{(t}(s)=\theta(s-t)$ , for $t,$ $s>0$ . (62)

Note that $\Gamma_{t]}^{\beta}$ is the boson Fock space built on the vacuums $|_{t]}\rangle$ and $\langle_{t]}|$ , while $\Gamma_{(t]}^{\beta}$ is the

boson Fock space built on the vacuums $|_{(t}\rangle$ and $\langle_{(t}|$ . The quantum Wiener processes $B_{t}$ ,
$B_{t}^{\mathrm{t}},\tilde{B}_{t},\tilde{B}_{t}^{1}$ are operators on the space $\Gamma_{t]}^{\beta}$ .

Let us consider a tensor product space $\mathcal{H}_{S}\otimes\Gamma^{\beta}$ where $\mathcal{H}_{S}$ is a certain vector space.

For $\mathrm{t}’ \mathrm{n}\mathrm{e}$ sake of notational convenience, we identify the quantum Wiener processes $B_{t},$ $B_{t}^{1}$ ,
$\tilde{B}_{t},\tilde{B}_{t}^{\uparrow}$ in $\Gamma_{t]}^{\beta}$ with their ampliations to $\mathcal{H}_{S}\otimes\Gamma^{\beta}$ , i.e.

$I_{S}\otimes B_{t}\otimes I_{(t}\Rightarrow B_{t}$ , $I_{S}\otimes B_{t}^{\mathrm{t}}\otimes I_{(t}\Rightarrow B_{t}^{\mathrm{t}}$ , (63)

$I_{S}\otimes\tilde{B}_{t}\otimes I_{(t}\Rightarrow\tilde{B}_{t}$ , $I_{S}\otimes\tilde{B}_{t}^{\mathrm{t}}\otimes I_{(t}\Rightarrow\tilde{B}_{t}^{1}$ , (64)

where $I_{S}$ and $I_{(t}$ are the identity operators on $\mathcal{H}_{S}$ and $\Gamma_{(t}^{\beta}$ , respectively.

An adapted process $F_{\mathrm{t}}$ is defined by

$F_{t}=F_{t}0\otimes I(t,$ (65)

where $F_{t}^{0}$ is an operator on $\mathcal{H}_{S}\otimes\Gamma_{t]}^{\beta}$ . The quantum Wiener processes $B_{t},$ $B_{t}\dagger,\tilde{B}_{l},\tilde{B}_{t}^{\uparrow}$ are

adapted. For the adapted process $F_{t}$ , we have

$[F_{t}, dB_{t}]=[F_{t}, dB_{t}^{\mathrm{t}}]=[F_{t}, d\tilde{B}_{t}]=[F_{t}, d\tilde{B}_{t}^{\mathrm{t}}]=0$ . (66)

4.2 Quantum Stochastic Calculus

Let $X_{t}$ denote an arbitrary adapted process in $\mathcal{H}_{S}\otimes\Gamma^{\beta}$ and $Q_{t}$ denote quantum Wiener

processes $B_{t},$ $B_{t}^{\uparrow},\tilde{B}_{t},\tilde{B}_{t}^{\uparrow}$ .
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Quantum stochastic integrals of the Ito type are defined by

$\int_{0}^{T}X_{t}dQt\equiv\lim\sum_{=i0}^{I-1}xt:^{\Delta Qi}t=\lim\sum_{0i=}^{I-1}Xt.\cdot(Q_{t}\dot{.}+1^{-}Q_{t_{i}})$ , (67)

and
$\int_{0}^{\tau_{dQ}}tx_{t}\equiv\lim\sum_{=i0}^{I-1}\Delta Q_{t.t}x$. $= \lim\sum_{i=0}^{I-1}(Qt.\cdot+1-Qt:)X_{t}:$

’ (68)

while those of the Stratonovich type are defined by

$\int_{0}^{\tau_{X_{t}\circ dQ_{t}}}\equiv\lim\sum_{i=0}^{I}\frac{X_{t}.+1^{+}x_{t}}{2}-1,$ $\Delta Q_{t_{i}}=\lim\sum^{-1}Ii=0^{\cdot}\frac{X_{t}.+1^{+}x_{t}}{2}.(Q_{t}.+1-Q_{t}:)$, (69)

and

$\int_{0}^{\tau_{dQ_{t}\equiv\lim}}\circ Xt\sum_{=i0}^{I}\Delta Qt-1:.\frac{X_{t}.+1^{+}x_{t}}{2}.\cdot=\lim\sum_{i=0}^{I}(Q_{t}:+1^{-}Q-1t:)\frac{X_{t_{i+1}}+X_{t}}{2}\dot{.}$ . (70)

Here, the notation $\lim$ indicates taking the limit

$\Delta tarrow+0$ , $Iarrow+\infty$ , (71)

keeping $T=I\Delta t$ fixed. Note that quantum stochastic integrals both of the Ito and of the

Stratonovich types are adapted processes.
We introduce the differential notations of the stochastic integrals (67), (68) and (69),

(70) as
$X_{t}dQ_{\mathrm{t}t}\equiv X(Q_{t}+dt-Q_{t})$ , (72)

$dQ_{t}X_{t}\equiv(Q_{tdl}+-Qt)Xt$ , (73)

and
$X_{t} \circ dQt\equiv\frac{X_{t+dt}+x_{t}}{2}(Q_{t+dt}-Q_{t})$ , (74)

$dQ_{t^{\circ x_{t}}} \equiv(Qt+dt-Q_{\mathrm{t}})\frac{X_{t+dt}+x_{t}}{2}$ . (75)

We call (72) and (73) the products of the Ito type, whereas we refer to (74) and (75) as
the products of the Stratonovich type.

From the property (66), we have in the stochastic calculus of the Ito type

$[X_{t}, dQ_{t}]=0$ , (76)

which leads to
$\int_{0}^{T}x_{t}dQt=\int_{0}^{T}dQtX_{t}$. (77)
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In addition, using the property (61) of the thermal vacuums and the property of quantum
$\mathrm{s}.\mathrm{t}.$o..chastic processes

$\langle|.\dot{Q}_{t}|\rangle=0$ , (78)

we have
$\langle|dQ_{t}x_{t}|\rangle=\langle|X_{t}dQt|\rangle--\langle_{t]}|x_{t}|t1\rangle\langle(t|dQ_{t}|(t\rangle=0,$ (79)

which indicates that there is no correlation between $X_{t}$ and $dQ_{t}$ .
It should be pointed out that while the increment $dQ_{t}$ commutes with $X_{t}$ , it does not

commute with $X_{t+dt}$ . Therefore, in the stochastic calculus of the Stratonovich type, the
commutation relation of $X_{t}$ and $dQ_{t}$ of the Stratonovich type defined by

$[X_{t}\circ, dQ_{t}]\equiv X_{t}\circ dQ_{t}-dQ_{t}\mathrm{o}X_{t}$ , (80)

does not equal zero, i.e.
$[X_{t^{\mathrm{O}}}, dQ_{t}]\neq 0$ , (81)

which leads to
$\int_{0}^{T}X_{t}\circ dQt\neq\int_{0}^{T}dQ_{t}\circ X_{t}$ . (82)

Moreover, in contrast with the case of the Ito type,

$\langle|X_{t}\circ dQ_{t}|\rangle\neq 0$, $\langle|dQ_{t}\circ Xt|\rangle\neq 0$. (83)

Substituting $X_{t+dt}=X_{t}+dX_{t}$ into (74) and (75), we obtain

$X_{t} \circ dQ_{t}=X_{t}dQ_{t}+\frac{1}{2}dX_{t}dQ_{t}$ , (84)

and

$dQ_{t^{\circ X}t}=dQ_{t}X_{t}+ \frac{1}{2}dQ_{t1}dx$ , (85)

which give the relations between the products of the Ito and the Stratonovich types.

4.3 Quantum Ito’s Formula

We introduce an operator $N_{t}$ constructed by using the stochastic integrals of the Ito type
as

$N_{T}= \int_{0}^{T}(F_{t}dB_{t}+G_{t}dB_{t}^{\uparrow}+J_{t}d\tilde{B}_{t}+K_{t}d\tilde{B}_{t}^{\uparrow}+H_{t}dt)$ , (86)

where $F_{t},$ $G_{t},$ $H_{t},$ $J_{t},$ $K_{t}$ are adapted processes. The operator $N_{t}$ is an adapted process
which satisfies

$[N_{t}, dQ_{t}]=0$ . (87)
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The differential notation of $N_{t}$ is given by

$dN_{t}=F_{\mathrm{t}}dB_{t}+G_{t}dB_{t}^{1}+J_{t}d\tilde{B}_{t}+K_{\mathrm{t}}d\tilde{B}_{\mathrm{t}}^{\mathrm{t}}+H_{t}dt$ . (88)

It should be noted that, for an arbitrary adapted process $X_{t}$ , we have in general

$[X_{\mathrm{t}}, dN_{t}]\neq 0$ , (89)

because $dN_{t}$ includes not only the increments $dB_{t},$ $dB_{t’ t}^{1}d\tilde{B},$ $d\tilde{B}_{t}^{\uparrow}$ but also adapted $\mathrm{p}\mathrm{r}(\succ$

cesses $F_{t},$ $G_{t},$ $J_{t},$ $K_{t},$ $H_{t}$ . Furthermore, for the adapted process $X_{t}$ and the increment

$dN_{t}$ , the property as (79) does not hold because of the term $H_{\mathrm{t}}dt^{\S}$ , i.e.

$\langle|X_{t}dN_{t}|\rangle=\langle|X_{t}H_{t}|\rangle dt\neq 0$ , $\langle|dN_{\mathrm{t}}Xt|\rangle=\langle|H_{t}X_{t}|\rangle dt\neq 0$ . (90)

For stochastic integrals, quantum $Ito’ s$ formula holds [5, 9, 10]:

Theorem 4.1 (Quantum Ito’s Formula) We set

$N_{T}= \int_{0}^{T}(F_{t}dB_{t}+G_{t}dB_{t}^{\dagger}+J_{t}d\tilde{B}_{\mathrm{t}}+K_{t}d\tilde{B}_{t}^{1}+H_{t}dt)$ , (91)

$N_{T}’= \int_{0}^{T}(F_{t}’dB_{t}+G_{t}’dB_{t}^{\uparrow}+J_{t}’d\tilde{B}_{\mathrm{t}}+K_{t}’d\tilde{B}_{t}^{\dagger}+H_{t}’dt)$ , (92)

where $F_{t},$ $G_{t},$ $H_{t},$ $J_{t},$ $K_{t},$ $F_{t}’,$ $G_{t}’,$ $H_{t}’,$ $J_{t}’,$ $K_{t}’$ are adapted $processe\mathit{8}$ . The differential
notations of $N_{t}$ and $N_{t}’$ are given by

$d\Lambda_{t}^{T}=F_{t}dB_{\mathrm{t}}+G_{t}dB_{\iota}^{\dagger}+J_{t}d\tilde{B}_{t}+K_{t}d\tilde{B}_{\mathrm{t}}\dagger+H_{t}dt$, (93)

and
$dN_{t}’=F_{t}’dB_{t}+G_{t}’dB_{\mathrm{t}}^{1}+J_{t}’d\tilde{B}_{t}+K_{t}’d\tilde{B}_{t}^{\dagger}+H_{t}’dt$ , (94)

respectively. Then, the differential of the product $\mathit{1}\backslash _{\mathrm{t}}N_{t}’$ can be evaluated by means of the

formvla
$d(N_{t}N’t)=dN_{t}\cdot N_{t}’+N_{\mathrm{t}}\cdot d\underline,\mathrm{V}_{t}’+dN_{t}dN_{t}’$ , (95)

with the property (66) of adapted processes and the product rules (52).

Making use of the relations (84) and (85) between the Ito and the Stratonovich prod-

ucts, we have
$N_{\mathrm{t}} \circ dN_{t}^{;}=N_{t}dN_{t}’+\frac{1}{2}dN_{t}dN_{t}’$ , (96)

\S When $H_{t}=0,$ $dN_{t}$ satisfies $\langle\langle 0|x_{tt}dN|\mathrm{o}\rangle\rangle=\langle\langle 0|d\mathit{1}\mathrm{V}tx\iota|0\rangle)=0$ , although $dN_{t}$ still does not commute
with $X_{t}$ , i.e. $[X_{t}, dN_{t}]\neq 0$ . When $H_{t}=0,$ $N_{t}$ is called the maringale $[7, 36]$ .
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and
$dN_{t} \circ Nt/=dN_{\mathrm{t}}N_{t}’+\frac{1}{2}dN_{t}dN_{t}’$. (97)

Therefore, we find that quantum Ito’s formula (95) is expressed in terms of the Stratonovich

products as
$d(N_{t}N_{t}’)=dN_{t}\circ N_{t}/+N_{t}\circ dN_{t}/$ , (98)

which is identical to the well-known formula of the ordinary differential calculus.

5 Stochastic Schr\"odinger Equation

In this section, we consider the stochastic Schr\"odinger equation investigated by Hudson

and Lindsay [7].

5.1 The Ito Type

We consider a boson system which is described by the operators $a,$
$a^{\uparrow}$ on a Hilbert space

$\mathcal{H}_{S}^{0}$ satisfying the commutation relations

$[a, a^{\dagger}]=1$ , $[a, a]=0$ , (99)

and which interacts with a reservoir at finite temperatures. Let us suppose that the

effect of the reservoir on the system is taken into account by the random force operators

represented by the quantum Wiener processes at finite temperatures constructed on the

Fock space $\Gamma^{\beta}$ . We sometimes call the boson system the relevant system and the reservoir

system the irrelevant system.

The state of the system is described by the state vector $|\psi_{f}(t)\rangle\rangle$ in the space $\mathcal{H}_{S}^{0}\otimes$

$\Gamma^{\beta}$ . The state vector $|\psi_{f}(t)\rangle\rangle$ is assumed to evolve in time according to the Schr\"odinger

equation
$d|\psi_{f}(t)\rangle\rangle=-i\mathcal{H}_{f,t}dt|\psi_{f}(t)\rangle\rangle$ , (100)

with an infinitesimal time-evolution generator $\mathcal{H}_{f,t}$ including random force operators. We

call the equation (100) stochastic Schr\"odinger equation.

The formal solution of (100) is written by

$|\psi_{f}(t)\rangle\rangle=V_{J}-(t)|\psi f(0)\rangle\rangle$ , (101)

where $V_{f}(t)$ is the stochastic time-evolution generator satisfying the equation

$dV_{f}(t)=-i\mathcal{H}_{f,t}dtV_{f}(t)$ , (102)
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with $V_{f}(0)=1$ . Note that the $\mathrm{b}\mathrm{r}\mathrm{a}$-vector $\langle\langle$ $\psi_{f}(t)|$ is defined by

$\langle\langle$$\psi_{f}(t)|=\langle\langle\psi_{f}(0)|V_{f}^{-1}(t)$ , (103)

where $V_{f}^{-1}(t)$ is the inverse of $V_{f}(t)$ .
For $\mathrm{b}\mathrm{i}$-linear and phase invariant boson system with the interaction

$i\sqrt{2\kappa}(a^{\dagger_{dB_{t}-a}\uparrow}dBt)$ ,

$\mathcal{H}_{f^{t}},dt$ has the form
$\mathcal{H}_{f,t}dt=Zdt+i\sqrt{2\kappa}(a^{\dagger_{dB_{t}d}}-aB^{\dagger}t)$ , (104)

with $Z\in \mathcal{H}_{S}^{0}\otimes\Gamma^{\beta}$ being operators having the forms

$Z=z_{s}\otimes I$ , (105)

where $Z_{S}$ are a operator on $\mathcal{H}_{S}^{0}$ and $I$ is the identity operator on $\Gamma^{\beta}$ . $dB_{t},$ $dB_{t}^{1}$ are the
increment of the quantum Wiener processes at finite temperatures and $\kappa$ is a positive
$\mathrm{c}$-number. Note that we adopt the same notations for $B_{t},$

$B_{\mathrm{t}}^{\mathrm{f}}$ and their tilde conjugates
$\tilde{B}_{t},\tilde{B}_{t}^{\uparrow}$ as (63) and (64). In the following, we will put $\overline{n}$ to the Planck distribution function
(57).

Note that since the equation (102) with the infinitesimal time-evolution generator
(104) is the quantum stochastic differential equation of the Ito type, the time-evolution
generator $V_{f}(t)$ is the quantum stochastic integral of the Ito type which is an adapted
process.

We require that the time-evolution generator $V_{f}(t)$ should be unitary, i.e.

$V_{f}^{\dagger\uparrow(t)}(t)V_{f}(t)=V_{f}(t)Vf=1$ . (106)

Therefore, we have the algebraic identities

$d[V_{f}^{\uparrow_{(t)V(t)}}f]=dV_{f}^{\uparrow}(t)\cdot V_{f}(t)+V_{f}^{\uparrow}(t)\cdot dV_{f}(t)+dV_{f}^{\uparrow}(t)dVf(t)=0$ , (107)

and

$d[V_{j}(t)V^{\dagger}(ft)]=dV_{f}(t)\cdot V_{j}\uparrow(t)+V_{f}(t)\cdot dV_{f}^{\uparrow}(t)+dV_{f}(t)dV_{f}^{\uparrow}(t)=0$, (108)

where we have made use of the calculus rule of the Ito type (quantum Ito’s formula). The
identities (107) and (108) with the equation (102) and its hermitian conjugates give the
following relation

$i(Z^{\uparrow-}Z)+2\kappa[(\overline{n}+1)a^{\uparrow}a+\overline{n}aa^{\mathrm{t}}]=0$ , (109)
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where use has been made of the product rules (52). Thus, we obtain

74$f,tdt\overline{\infty}HSdt-i\kappa[(\overline{n}+1)a^{\dagger_{a}}+\overline{n}aa^{\uparrow}]dt+i\sqrt{2\kappa}(ad\uparrow B_{tt)}-adB^{\mathrm{t}}$ , (110)

where we put $(Z+z\uparrow)/2=H_{S}$ . Note that $H_{S}$ is hermitian.

Applying the state vector $|\psi_{f}(0)\rangle\rangle$ to the equation (102) of $V_{f}(t)$ , we have the stochastic
Schr\"odinger equation of the Ito type

$d|\psi_{f(t)\rangle}\rangle=-i\mathcal{H}_{f,t}dt|\psi f(t)\rangle\rangle$, (111)

with the infinitesimal time-evolution generator (110).

5.2 The Stratonovich Type

Using the relation (85) between the Ito and the Stratonovich products, we transform the
stochastic differential equation (102) of the Ito type into that of the Stratonovich type as

$dV_{f}(t)=-i\mathcal{H}f,tdtVf(t)$

$=-i \{\mathcal{H}_{f,tf}dt\circ V(t)-\frac{1}{2}\mathcal{H}_{f,t}dtdVf(t)\}$

$\equiv-iH_{f^{\mathrm{g}}},dt\circ V_{f}(t)$ , (112)

where we have substituted (102) into the right hand side of the second equality. Here, we
defined the infinitesimal time-evolution generator $H_{f,t}$ of the Stratonovich type by

$H_{f,t}dt \equiv \mathcal{H}_{f,t}dt+i\frac{1}{2}\mathcal{H}_{f,t}dt\mathcal{H}f,tdt$. (113)

With the help of the product rules (52), we obtain the hermitian stochastic infinitesimal
time.evolution generator $H_{f,t}dt$ as

$H_{f,t}dt=H_{S}dt+i\sqrt{2\kappa}(a^{\uparrow}dB_{t}-adB_{t}^{\uparrow})$ . (114)

The hermiticy of $H_{f,t}dt$ guarantees the unitarity of $V_{f}(t)$ .
Applying the state vector $|\psi_{f}(\mathrm{o})\rangle\rangle$ to the equation (112) of $V_{f}(t)$ , we obtain the stochas-

tic Schr\"odinger equation of the Stratonovich type

$d|\psi_{f}(t)\rangle\rangle=-iH_{f,t}dt\circ|\psi_{f}(t)\rangle\rangle$ , (115)

with the infinitesimal time-evolution generator (114).
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6Stochastic Time-Evolution in Thermal Space

On the basis of the stochastic Schr\"odinger equation, investigated in the previous section,

we will construct a stochastic Liouville equation in thermal space and obtain the explicit

form of the time-evolution generator satisfying the stochastic Liouville equation within

the framework of NETFD. Using the time-evolution generator, we will construct a unified

canonical operator formalism of quantum stochastic differential equations.

6.1 Thermal Vacuums

Let us define the density operator $\rho_{f}(t)$ corresponding to the state vector $|\psi_{f}(t)\rangle\rangle$ by

$\rho_{f}(t)\equiv|\psi_{f}(t)\rangle\rangle\langle\langle\psi_{f}(t)|=V_{f}(t)|\psi_{f}(0)\rangle\rangle\langle\langle\psi f(\mathrm{o})|V_{f}^{\dagger}(t)=V_{f}(t)\rho f(0)Vf\dagger(t)$, (116)

where use has been made of (101) and (103) with the unitary time-evolution generator
$V_{f}(t)$ . The density operator $\rho_{f}(t)$ satisfies

$\mathrm{t}\mathrm{r}_{tot}\rho_{f}(t)=1$ , (117)

where the trace operation $\mathrm{t}\mathrm{r}_{tot}$ is defined by

$\mathrm{t}\mathrm{r}_{tt}\circ\equiv \mathrm{t}\mathrm{r}\otimes \mathrm{t}\mathrm{r}_{R}$ , (118)

with the trace operations tr of the relevant system and $\mathrm{t}\mathrm{r}_{R}$ of the reservoir. The expecta-

tion value of any observable $A$ is given by $\mathrm{t}\mathrm{r}_{to}tA\rho f(t)$ .

With the help of the principle of correspondence (see appendix A), the density operator
$\rho_{f}(t)$ defined by (116) is expressed as a thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum, i.e.

$|0_{f}(t)\rangle\equiv|\rho_{f}(t)\rangle=\hat{V}_{f}(t)|0_{f}(\mathrm{o})\rangle$ , (119)

where we have defined the stochastic timeevolution generator by

$\hat{V}_{f}(t)=V_{f}(t)\tilde{V}_{f}(t)$ . (120)

Note that, since $V_{f}(0)=1$ , we have $\dot{V}_{f}(0)=1$ . The vector space to which the thermal

vacuum $|0_{f}(t)\rangle$ belongs is assumed to be $\mathcal{H}_{S}\otimes\Gamma^{\beta}$ where $\mathcal{H}_{S}$ is the space of relevant system

and $\Gamma^{\beta}$ is the Fock space of the system of random force operators constructed in section

3. The operator $\hat{V}_{f}(t)$ defined by (120) is on the space $\mathcal{H}_{S}\otimes\Gamma^{\beta}$ and tums out to be

unitary from the relation

$\hat{V}_{f}^{1}(t)=V_{f}\dagger(t)\tilde{V}_{f}\dagger(t)=V_{f}^{-1}(t)\tilde{V}_{f}-1(t)=\hat{V}_{f}^{-1}(t)$, (121)
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where use has been made of the unitarity of $V_{f}(t)$ . Note that the space of states $\mathcal{H}_{S}$ of
relevant system is expressed as $\mathcal{H}_{S}=\mathcal{H}_{s}^{0}\otimes\tilde{\mathcal{H}}_{S}^{0}$ with the usual Hilbert space $\mathcal{H}_{S}^{0}$ for wave
function and its tilde conjugate space $\tilde{\mathcal{H}}_{S}^{0}$ .

The equation (117) requires that

$\langle 1_{tot}|0_{f}(t)\rangle=1$ , (122)

where the thermal $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $1_{tot}|$ is defined by

$\langle$ $1_{tot}|\equiv\langle|\langle 1|$ , (123)

with the thermal $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $1|$ in the space $\mathcal{H}_{S}$ of the relevant system and the thermal
$\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $|$ in the space $\Gamma^{\beta}$ of the irrelevant system. The expectation value $\mathrm{t}_{\Gamma_{tot}}A\rho f(t)$

is expressed as the expectation with respect to the thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum $|0_{f}(t)\rangle$ and the
thermal $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $1_{tot}|$ , i.e.

$\langle 1_{tot}|A|0f(t)\rangle=\mathrm{t}\mathrm{r}_{tot}A\rho f(t)$ . (124)

Note that for any relevant system operator $A$ , we have

$\langle$ $1|A\dagger=\langle 1|\tilde{A}$ , (125)

which is the basic property of thermal space $[17]-[19]$ . Furthermore, for the random force
operators $dB_{t},$ $dB_{t}^{\uparrow}$ , we have

$\langle$ $|dB_{t}\dagger=\langle|d\tilde{B}_{t}$ , (126)

which follows from (29).

The equation (122) together with (119) yields

$\langle 1_{tot}|\hat{V}_{J^{-()1}}t0f(0)\rangle=1$ . (127)

Since the $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}(127)$ should hold for any time $t$ and for any initial thermal vacuum
$|0_{f}(\mathrm{o})\rangle$ , we have

$\langle$ $1_{tot}|\hat{V}_{f(t)}=\langle 1_{tot}|\hat{V}f(0)=\langle 1_{tot}|$ , (128)

where we used the fact that $\hat{V}_{f}(0)=1$ .
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6.2 Stochastic Liouville Equation

6.2.1 The $\mathrm{I}\mathrm{t}\mathrm{o}\dot{\mathrm{T}}\mathrm{y}\mathrm{p}\mathrm{e}$

Using the calculus rule of the Ito type, we have from (120)

$d\hat{V}_{f}(t)=dV_{f}(t)\cdot\tilde{V}_{f(t})+V_{f}(t)\cdot d\tilde{V}_{f}(t)+dV_{f}(t)d\tilde{V}f(t)$. (129)

Substituting (102) and its tilde conjugate:

$d\tilde{V}_{f}(t)=i\tilde{\mathcal{H}}f,tdt\tilde{V}_{f}(t)$ , (130)

into (129), we have
$d\hat{V}_{f}(t)=-i\hat{\mathcal{H}}f,tdt\hat{V}f(t)$ , (131)

where
$\hat{\mathcal{H}}_{f,t}dt\equiv \mathcal{H}_{f,t}dt-\tilde{\mathcal{H}}_{f,t}dt+i\mathcal{H}_{f,t}dt\tilde{\mathcal{H}}_{f},tdt$ . (132)

With the help of (110) and the product rules (52), $\mathcal{H}_{f,t}dt\tilde{\mathcal{H}}f,tdt$ is calculated as

$\mathcal{H}f,tdt\tilde{\mathcal{H}}f,tdt=2\kappa[(\overline{n}+1)a\tilde{a}+\overline{n}a^{\mathrm{t}}\tilde{a}\dagger]dt$ . (133)

Putting (110) and (133) into (132), we obtain

$\hat{\mathcal{H}}_{f,t}dt=\hat{H}_{S}dt+i(\wedge\Pi_{R}+\Pi_{D)dt}\wedge+d\hat{M}_{t},$ (134)

where
$\hat{H}_{s=}H_{S}-\tilde{H}s$ , (135)

$\hat{\Pi}_{R}=-\kappa[(a^{\uparrow}-\tilde{O})(\mu a+\nu\tilde{a}^{\mathrm{t}})+\mathrm{t}.\mathrm{c}.]$ , (136)

$\hat{\Pi}_{D}=2\kappa(\overline{n}+\nu)(a^{\uparrow_{-\tilde{a}}})(\tilde{a}\uparrow-a)$ , (137)

and

$d\hat{M}_{t}=i\{[(a^{\mathrm{t}}-\tilde{a})dWt+\mathrm{t}_{\mathrm{C}}..]-[(\mu a+\nu\tilde{a}^{\mathrm{t}})dW_{\mathrm{t}}^{\}+\mathrm{t}.\mathrm{c}.]\}$ , (138)

with real numbers $\mu,$ $\nu$ satisfying $\mu+\nu=1$ . The operators $dW_{t}$ and $dW_{t}^{*}$ are defined by

$dW_{t}\equiv\sqrt{2\kappa}(\mu dB_{t}+\nu d\tilde{B}_{t}^{\dagger})$ , $dW_{t}^{\}\equiv\sqrt{2\kappa}(dB_{tl)}^{\uparrow_{-}d\tilde{B}}$ . (139)

Making use of the relations (125) and (126), we see that (134) satisfies

$\langle$ $1_{tot}|\hat{\mathcal{H}}f,tdt=\langle|\langle 1|\hat{\mathcal{H}}f,tdt=0$ , (140)
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which is consistent with the relation (128). Note that

$\langle$ $1|\hat{\mathcal{H}}_{f,t}dt\neq 0$ , (141)

which indicates that the conservation of probability does not hold within only the space
of states of relevant system, i.e.

$\langle 1|0_{f}(t)\rangle\neq 1$ . (142)

Similarly, from the definition

$\hat{V}_{f}^{\uparrow}(t)=V^{\mathrm{t}_{(t}}f)\tilde{V}^{\dagger}f(t)$ , (143)

we obtain
$d\hat{V}_{f}^{\mathrm{t}}(t)=i\hat{V}_{f}^{\uparrow t)t}(\hat{\mathcal{H}}_{f}(,-1)d\mathrm{t}$

’ (144)

$\backslash \mathrm{v}\mathrm{i}\mathrm{t}\mathrm{h}$

$\hat{\mathcal{H}}_{f,i}^{(-1})dt=\hat{H}_{S}dt-i(\wedge\Pi_{R}+\Pi_{D})\wedge dt+d\hat{M}_{\mathrm{t}}$ . (145)

We see that the equations (131) with (134) and (144) with (145) satisfy

$d\hat{V}_{f}^{\uparrow}(t)\cdot\hat{V}_{f}(t)+\hat{V}_{f}^{1}(t)\cdot d\hat{V}_{f}(t)+d\hat{V}_{f}^{\mathrm{t}}(t)d\hat{V}_{f}(t)=0$ , (146)

and
$d\hat{V}_{f}(t)\cdot\hat{V}_{f}^{\dagger}(t)+\hat{V}_{f}(t)\cdot d\hat{V}_{f}^{\uparrow}(t)+d\hat{V}_{f(t)d\hat{V}_{f}^{\uparrow}(t})=0$ , (147)

which are consistent of the unitarity of $\hat{V}_{f}(t)$ . $.l$

Since $\hat{V}_{f}(t)$ and $\hat{V}_{f}^{\uparrow}(t)$ are subject to the stochastic differential equations (131) with
(134) and (144) with (145) of the Ito type, respectively, they are quantum stochastic
processes consisting of quantum stochastic integrals of the Ito type. Therefore, $\hat{V}_{f}(t)$ and
$\hat{V}_{j}^{1}(t)$ are adapted processes.

Applying the state vector the thermal vacuum $|0_{f}(0)\rangle$ to the equation (131) of $\hat{V}_{f}(t)$ ,
we obtain the quantum stochastic Liouville equation of the Ito type

$d|0_{f}(t)\rangle=-i\hat{\mathcal{H}}_{f^{t}},dt|\mathrm{o}_{f(}t)\rangle$ , (148)

$\backslash \mathrm{v}\mathrm{i}\mathrm{t}\mathrm{h}$ the infinitesimal time-evolution generator (134).
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6.2.2 The Stratonovich Type

Using the calculus rule of the Stratonovich type, we have from (120)

$d\hat{V}_{f}(t)=dV_{f}(t)\circ\tilde{V}f(t)+V_{f}(t)\circ d\tilde{V}_{f}(t)$ . (149)

Substituting (112) and its tilde conjugate

$d\tilde{V}_{f}(t)=i\tilde{H}\mathrm{t}dt\circ f,\tilde{V}f(t)$ , (150)

into (149), we obtain
$d\hat{V}_{f}(t)=-i\hat{H}_{f,f}tdt\circ\hat{V}(t)$ , (151)

where
$\hat{H}_{f,t}dt\equiv H_{f,t}dt-\tilde{H}_{f,\mathrm{t}}dt$. (152)

Putting (114) into (152), we get

$\hat{H}_{f,t}dt=\hat{H}_{S}dt+d\hat{M}_{t}$ , (153)

which is apparently hermitian.

Taking the hermitian conjugate of the equation (151), we have the equation of $\hat{V}_{f}^{1}(t)$

as
$d\hat{V}_{f}^{1}(t)=i\hat{V}_{f}^{1}(t)\circ\hat{H}f,tdt$ , (154)

where use has been made of the hermiticy of $\hat{H}_{f,t}dt$ .
The equations (151) and (154) with (153) satisfy the following equations

$d\hat{V}_{f}^{\dagger}(t)\circ\hat{V}f(t)+\hat{V}_{f}^{\uparrow_{(t)\circ}t)}d\hat{V}f(=0,$ $(155)$
$d\hat{V}_{f}(t)\circ\hat{V}_{f}\mathrm{t}_{(t})+\hat{V}_{f}(t)\circ d\hat{V}_{f}^{\uparrow()}t=0$ , (156)

which show the unitarity of $\hat{V}_{f}(t)$ .
With the help of the properties (125) and (126), we see that the expression (153)

satisfies
$\langle$ $1_{tot}|\hat{H}f,\iota^{dt}=\langle|\langle 1|\hat{H}_{f,t}dt=0$ , (157)

which is consistent with (128).

The time-evolution equation (131) of the Ito type with (134) is connected to the

equation (151) of the Stratonovich type with (153) by the relation (85) between the Ito

and the Stratonovich products. In the same way, the equation (144) of the Ito type with
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(145) is connected to the equation (154) of the Stratonovich type with (153) through the
relation (84).

Applying the state vector the thermal vacuum $|0_{f}(0)\rangle$ to the equation (151) of $\hat{V}_{f}(t)$ ,
we have the quantum stochastic Liouville equation of the Stratonovich type

$d|0_{f}(t)\rangle=-i\hat{H}_{f,t}dt\circ|0_{f}(t)\rangle$ , (158)

$\backslash \mathrm{v}\mathrm{i}\mathrm{t}\mathrm{h}$ the infinitesimal time-evolution generator (153).

6.3 Fokker-Planck Equation

Applying the random force $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $|$ to the stochastic Liouville equation (148) of
the Ito type with the infinitesimal time-evolution generator (134), we have

$d\langle|0_{f}(t)\rangle=-i\langle|\hat{\mathcal{H}}_{f,t}dt|\mathrm{o}f(t)\rangle$

$=-i\{\hat{H}dt\langle|\mathrm{o}f(t)\rangle+\langle|d\hat{M}_{t}|\mathrm{o}_{f}(t)\rangle\}$ . (159)

Under the assumption
$|0_{f}(\mathrm{o})\rangle=|\mathrm{o}_{S}\rangle|\rangle$ , (160)

with the thermal vacuum $|0_{S}\rangle$ of relevant system at $t=0,$ $\langle|d_{\mathit{1}}|\wedge/_{I_{t}|0}f(t)\rangle$ can be evaluated
as

$\langle|d\hat{M}_{t}|\mathrm{o}_{f(t})\rangle=0$ , (161)

where we used the definition (119) of the thermal vacuum $|0_{f}(t)\rangle$ and the property (79)
of the products of the Ito type. Therefore, putting $|0(t)\rangle=\langle|0_{f}(t)\rangle$ , we finally obtain the
Fokker-Planck equation for $\mathrm{b}\mathrm{i}$-linear and phase invariant system as

$\frac{\partial}{\partial t}|0(t)\rangle=-i\hat{H}|\mathrm{o}(t)\rangle$ , (162)

where the infinitesimal time-evolution generator $\hat{H}$ is given by

$\hat{H}=\hat{H}_{S}+i\hat{\Pi}$ , (163)

with

$\hat{\Pi}=\hat{\Pi}_{R}+\hat{\Pi}_{D}$

$=-\kappa[(1+2\overline{n})(a^{\dagger}a+\tilde{a}^{\uparrow}\tilde{a})-2(1+\overline{n})a\tilde{a}-2\overline{n}a^{\uparrow\dagger}\tilde{a}]-2\kappa\overline{n}$ , (164)
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which is identical to that obtained within the framework of NETFD $[17]-[19]$ . Note that

we can also derive the Fokker-Planck equation (162) by applying the random force bra-

vacuum $\langle$ $|$ to the stochastic Liouville equation (158) of the Stratonovich type with the

infinitesimal time-evolution generator (153) $[17, 20]$ .

Recalling the equation (119) and taking (160) into account, we find that

$|0(t)\rangle=\langle|\hat{V}_{f}(t)|\rangle|0_{S}\rangle$ . (165)

On the other hand, the timeevolution generator $\hat{V}(t)$ of the thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum $|0(t)\rangle$ is

defined by
$|0(t)\rangle=\hat{V}(t)|0(0)\rangle$ . (166)

Provided that $|0(0)\rangle=|0_{S}\rangle$ , the equations (165) and (166) yield

$\hat{V}(t)=\langle|\hat{V}_{f}(t)|\rangle$ . (167)

6.4 Quantum Langevin Equation

Since $\hat{V}_{f}(t)$ is unitary, we have

$\hat{V}_{f}^{1}(t)\hat{V}_{f}(t)=\hat{V}_{f}(t)\hat{V}_{f}\uparrow(t)=1$ . (168)

From the equation (168), we see with the help of the property (128) that

$\langle$ $1_{tot}|\hat{V}^{\uparrow()=}ft\langle 1_{tot}|$ . (169)

The expectation value of any observable $A$ with respect to the state $|0_{f}(t)\rangle$ is given by

$\langle 1_{to}\iota|A|0f(t)\rangle=\langle 1_{tot}|A\hat{V}_{f(}t)|\mathrm{o}_{f}(0)\rangle$

$=\langle 1_{tot}|\hat{V}f\uparrow_{(t})A\hat{V}_{f}(t)|0f(0)\rangle$ , (170)

where we have used the equation (119) and the property (169). If we define the operator

in the Heisenberg representation

$A(t)=\hat{V}_{f}^{1}(t)A\hat{V}_{f(t})_{\mathrm{i}}$ (171)

we consider (170) to be the expectation value of $A(t)$ with respect to the initial state
$|0_{f}(\mathrm{o})\rangle$ . Note that, as $\hat{V}_{f}(t)$ and $\hat{V}_{f}^{\dagger}(t)$ are adapted processes, the operator $A(t)$ defined

by (171) is also an adapted process. Therefore, the following commutation relation holds:

$[A(t), dB_{t}]=[A(t), dB_{t}^{\mathrm{t}}]=[A(t), d\tilde{B}_{t}]=[A(t), d\tilde{B}_{t}^{\mathrm{t}}]=0$ , (172)
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for quantum Wiener processes $B_{t},$
$B_{t}^{\mathrm{t}}$ and their tilde conjugates $\tilde{B}_{t},\tilde{B}_{t}^{\mathrm{t}}$ , which comes from

(76).

Any operators in the Heisenberg representation defined by (171) keep the equal-time

commutation relations, such as

$[a(t), a^{\uparrow}(t)]$

.
$=1,$ . $[\tilde{a.}(.t),\tilde{a}^{\uparrow}(t.)]=\backslash 1$ . (173)

Note that, using the properties (125) and (169), we have for $A(t)$ defined by (171)

$\langle$ $1_{tot}|A\dagger(t)=\langle 1_{tot}|\tilde{A}(t)$ . (174)

Using the calculus rule of the Ito type, we have the algebraic identity for the operator
$A(t)$ defined by (171)

$dA(t)=d\hat{V}_{f}^{\dagger}(t)A\hat{V}_{f}(t)+\hat{V}_{f}^{1}(t)Ad\hat{V}f(t)+d\hat{V}_{f}^{\uparrow t)}(t)Ad\hat{V}f$( . (175)

Substituting the equations (131) with (134) and (144) with (145) into (175), we obtain
the quantum Langevin equation of the Ito type.

On the other hand, making use of the calculus rule of the Stratonovich type, we have
the algebraic identity for the operator $A(t)$ defined by (171)

$dA(t)=d\hat{V}_{f}\uparrow(t)\circ A\hat{V}f(t)+\hat{V}_{f}^{\uparrow_{(t}t)})A\circ d\hat{V}f$( . (176)

With the help of the equation (151) and its hermitian conjugate (154) together with the

identity (176), we obtain the quantum Langevin equation of the Stratonovich type. We
see that the quantum Langevin equation of the Stratonovich type can be expressed as the
Heisenberg equation for $A(t)$ :

$dA(t)=i[\hat{H}_{f}(t)dt^{\circ},$ $A(t)]$ , (177)

where we defined
$\hat{H}_{f}(t)dt=\hat{V}_{f}^{\uparrow}(t)\circ\hat{H}_{f},tdt\circ\hat{V}f(t)$ . (178)

The symbol $[\cdot\circ, \cdot]$ is the commutator defined by (80).

6.5 Equation of Motion of Expectation Value

Let us assume that the initial vacuum $|0_{f}(\mathrm{o})\rangle$ can be expressed by the product of the
vacuums of the relevant and the irrelevant systems as

$|0_{f}(0)\rangle\equiv|0f\rangle=|\mathrm{o}s\rangle|\rangle$ , (179)
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where $|0_{S}\rangle$ $\in \mathcal{H}_{S}$ is the thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum of the relevant system at time $t=0$ .
Applying the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $1_{\mathrm{t}ot}|$ to the quantum Langevin equation of the Ito type, we

have

$d\langle 1_{t_{\mathit{0}}t}|A(t)=i\langle 1_{tot}|[H_{S}(t), A(t)]dt$

$+\kappa(\langle 1_{tot}|a^{\dagger}(t)[A(t), a(t)]+\langle 1_{tot}|[a^{\uparrow}(t),$ $A(t)]a(t))dt$

$+2\kappa\overline{n}\langle 1tot|[a^{\dagger}(t),$ $[A(t), a(t)]]dt$

$+\langle 1_{tot}|[A(t),$ $a^{\uparrow}(t)]dFt+\langle 1_{tot}|[a(t), A(t)]dF_{t}\uparrow$ , (180)

where we used the properties (126) and (174).

Putting the $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum $|0_{f}(\mathrm{o})\rangle\equiv|0_{f}\rangle$ to (180), we obtain the equation of motion of

the expectation value of an arbitrary operator $A$ of the relevant system as

$\frac{d}{dt}\langle 1_{tot}|A(t)|0_{f}\rangle=i\langle 1_{tot}|[H_{S}(t), A(t)]|0_{f}\rangle$

$+\kappa(\langle 1_{t_{\mathit{0}}t}|a^{\dagger}(t)[A(t), a(t)]|0_{f}\rangle+\langle 1_{tot}|[a^{\mathrm{t}}(t), A(t)]a(t)|0_{f}\rangle)$

$+2\kappa\overline{n}\langle 1t_{ot}|[a^{\dagger}(t), [A(t), a(t)]]|0_{f}\rangle$ . (181)

Here, we used the property (79) of the Ito products.

Remembering (167) and the definition (171) of $A(t)$ , we find with the assumption

(160) that
$\langle 1_{tot}|A(t)|0_{f}\rangle=\langle|(1|\hat{V}f\uparrow(t)A\hat{V}f(t)|0s\rangle|\rangle=\langle 1|A|0(t)\rangle$ , (182)

where we have used the property (169) and the assumption that $|0(0)\rangle=|0_{S}\rangle$ . Taking

account of the relation (182), we see that the equation (181) of expectation value is

identical to the equation derived from the Fokker-Planck equation (162) with (163), (164),

which shows the consistency of the framework.

7 Summary and Discussion

In this paper, we constructed the quantum Wiener processes together with their represen-

tation space by extending the work of mathematicians and by implanting it into NETFD.

Then, we constructed a unified system of quantum stochastic differential equations on the

basis of the stochastic Schr\"odinger equation which was studied by mathematicians.
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The quantum Wiener processes, which we employed as random force operators, are
constructed by using boson operators with time indices together with their representa-

tion space. When we adopted the Fock space $\Gamma^{0}$ for the representation space, in the

same way as Hudson and Parthasarathy, we obtained the quantum Wiener processes at

zero temperature (section 2). Whereas, we obtained the quantum Wiener processes at

finite temperatures by extending the representation space to the Fock space $\Gamma^{\beta}$ which is

obtained by the Bogoliubov transformation in the tensor product space $\Gamma=\Gamma^{0}\otimes\tilde{\Gamma}^{0}$ .
There, the thermal degree of freedom was introduced by the thermal state conditions

or the Bogoliubov transformation, which is a manifestation of the unitary inequivalence

between the thermal vacuums of zero and finite temperatures (section 3). This notion

of the unitary inequivalence between the vacuums with different temperatures is one of

the remarkable features within NETFD or TFD. The quantum Wiener processes and the

quantum stochastic calculus given in this paper provide the foundation for those used in

quantum optics [3] and quantum stochastic differential equations within NETFD $1^{20}1-[30]$ .
We constructed the stochastic Schr\"odinger equation with the quantum Wiener pro-

cesses at finite temperatures on the requirement that the time-evolution generator should

be unitary (section 5). Then, we introduced the density operator corresponding to the

stochastic wave function. By means of the principle of correspondence between quantities

in the thermal space and in the Hilbert space, we obtained the stochastic thermal ket-

vacuum corresponding to the density operator and a stochastic Liouville equation. On
the basis of the timeevolution of the thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum, we constructed the system of

quantum stochastic differential equations wvithin NETFD (section 6).

The timeevolution equation of the thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum gave the quantum stochastic

Liouville equation. On the other hand, the Heisenberg equation with the infinitesimal
time-evolution generator of the quantum stochastic Liouville equation gave the quan-
tum Langevin equation. Using the quantum stochastic calculus constructed in section 4,

we constructed the quantum stochastic differential equations both of the Ito and of the

Stratonovich types.

Applying the random force $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $|$ to the stochastic Liouville equation of the

Ito type, we obtained the Fokker-Planck equation, which is identical to that derived in

the papers $[17]-[19]$

Taking the expectation with respect to the thermal $\mathrm{k}\mathrm{e}\mathrm{t}$-vacuum $|0_{f}\rangle$ and the thermal
$\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $1_{tot}|$ of the quantum Langevin equation of the Ito type, we obtained the
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equation of motion of expectation value of an arbitrary relevant system operator. This

equation of motion is equivalent to that derived by the Fokker-Planck equation, which

shows the self-consistency of the system.

Hudson and Lindsay constructed a unitary stochastic time-evolution in the vector

space $\mathcal{H}_{S}^{0}\otimes\Gamma^{\beta}$ , where $\mathcal{H}_{S}^{0}$ for relevant system is a usual Hilbert space and $\Gamma^{\beta}$ for random

force operators is a Fock space in thermal space, which was briefly reviewed in section

5. The fact that the vector space for relevant system is not a thermal space prevents the

system from introducing the quantum stochastic Liouville equation. In this paper, we
completed the motivation of Hudson and Lindsay by adopting a thermal space for the

space of states of relevant system as well as random force system and giving the quantum

stochastic Liouville equation.

The stochastic time-evolution constructed in this paper is unitary. On the other hand,

non-unitary stochastic time-evolution was constructed within the framework of NETFD
$[20]-[30]$ . In this way, it turned out that there exist two kinds of systems in quantum

stochastic differential equations within NETFD, one of them is the system of non-unitary
stochastic time-evolution and the other $1\mathrm{S}$ that of unitary stochastic time-evolution. The

two systems are equivalent in the sense that they give the same equation of motion

of expectation value of any observable. The relation between the two systems will be

investigated in the forthcoming paper.

A The Principle of Correspondence

The correspondence between vectors in the thermal space and operators in a Hilbert space
is given by the followving rule [37, 38, 39]:

$\rho_{S}(t)$ $rightarrow$ $|\mathrm{o}(t)\rangle$ , (183)

$A_{1}\rho_{S}(t)A_{2}$ $rightarrow$
$A_{1}\tilde{A}_{2}|0\dagger(t)\rangle$ . (184)

Here, $\rho_{S}(t)$ is a density operator on the Hilbert space, whereas $|0(t)\rangle$ is a thermal ket-

vacuum in the thermal space. $A_{1},$ $A_{2}$ are arbitrary operators on the Hilbert space.
It was noticed first by Crawford [40] that the introduction of two kinds of operators

for each operator enables us to handle the Liouville equation as the Schr\"odinger equation.

252



References

[1] I. R. Senitzky, Phys. Rev. 119 (1960) 670.

[2] M. Lax, Phys. Rev. 145 (1966) 110.

[3] H. Haken, Optics. Handbuch der Physik vol. $\mathrm{X}\mathrm{X}\mathrm{V}/2\mathrm{c}$ (1970), [La8er Theory (Springer,

Berlin, 1984)], and the references therein.

[4] R. Kubo, J. Phys. Soc. Japan 26 Suppl. (1969) 1.

[5] R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93 (1984) 301.

[6] R. L. Hudson and K. R. Parthasarathy, Acta Appl. Math. 2 (1984) 353.

[7] R. L. Hudson and J. M. Lindsay, in Quantum Probability and Applications II, -eds.
L. Accardi and W. von Waldenfels, Lecture Notes in Mathematics 1136 (Springer-

Verlag, 1984) 276.

[8] R. L. Hudson and J. M. Lindsay, J.l Funct. Anal. 61 (1985) 202.

[9] K. R. Parthasarathy, Rev. Math. Phys. 1 (1989) 89.

[10] K. R. Parthasarathy, Monographs in Mathematics Vol. 85, An Introduction to Quan-
tum Stochastic $CalculI\iota S$ (Birkh\"auser Verlag, 1992).

[11] R. Kubo, J. Math. Phys. 4 (1963) 174.

[12] R. Kubo, M. Toda and N. Hashitsume, Stati8tiCal Physics II (Springer, Berlin 1985).

[13] A. S. Parkins and C. W. Gardiner, Phys. Rev. A37 (1988) 3867.

[14] C. W. Gardiner, Quantum Noise Springer Series in Synergetics 56 (Springer-Verlag,
1991).

[15] H. Dekker, Physica A175 (1991) 485.

[16] C. W. Gardiner, A. S. Parkins and P. Zoller, Phys. Rev. A46 (1992) 4363.

[17] T. Arimitsu, in Thermal Field Theories, eds. H. Ezawa, T. Arimitsu and
Y. Hashimoto (North-Holland, 1991) 207.

253



[18] T. Arimitsu, Lecture Note of the Summer School for Younger $Phy_{\mathit{8}}i_{C}ists$ in Condensed

Matter Physics [published in ”Bussei Kenkyu” (Kyoto) 60 (1993) 491-526, written

in English], and the references therein.

[19] T. Arimitsu, to be published in $c_{on}densed$ Matter Physics, a scientific joumal in

Ukraine.

[20] T. Arimitsu, Phys. Lett. A153 (1991) 163.

[21] T. Saito and T. Arimitsu, Modern Phys. Lett. B6 (1992) 1319.

[22] T. Arimitsu and T. Saito, Bussei Kenkyu 59-2 (1992) 213, in Japanese.

[23] T. Arimitsu and T. Saito, A Unified Framework of Quantum Stochastic Differential
Equations, in Proceedings of the Conference on Field Theory and Collective Phe-

nomena (1993) in press.

[24] T. Arimitsu and T. Saito, Vistas in Astronomy 37 (1993) 99.

[25] T. Arimitsu, M. Ban and T. Saito, Physica Al77 (1991) 329.

[26] T. Arimitsu, M. Ban and T. Saito, in Structure: from Physics to General Systems,

eds. M. Marinaro and G. Scarpetta (World Scientific, 1991) 163.

[27] T. Saito and T. Arimitsu, Modern Phys. Lett. B7 (1993) 623.

[28] T. Saito and T. Arimitsu, Modern Phys. Lett. B7 (1993) 1951.

[29] T. Arimitsu and T. Saito, Quantum Stochastic Differential Equations in $Pha\mathit{8}e$-Space

Methods, Mod. Phys. Lett. B (1994) submitted.

[30] T. Arimitsu and T. Saito, Generd Structure of the Time-Evolution Generator for
Quantum StoCha8tiC Liouville Equation (1995) in preparation to submit.

[31] H. Umezawa, H. Matsumoto and M. Tachiki, Thermo Field Dynamics and Condensed

States (North-Holland 1982).

[32] M. Ban, J. Math. Phys. 33 (1992) 3213.

[33] R. M. Wilcox, J. Math. Phys. 8 (1967) 962.

254



[34] W. Witschel, J. Phys. A7 (1974) 1847.

[35] M. A. Santiago and A. N. Vaidya, J. Phys. A9 (1976) 897.

[36] L. Accardi, Rev. Math. Phys. 2 (1990) 127.

[37] M. Schmutz, Z. Phys. B30 (1978) 97.

[38] T. Arimitsu and H. Umezawa, Prog. Theor. Phys. 74 (1985) 429.

[39] T. Arimitsu and H. Umezawa, Prog. Theor. Phys. 77 (1987) 32.

[40] J. A. Crawford, Nuovo Cim. 10 (1958) 698.

255


