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SOME REMARKS ON THE DUGUNDJI EXTENSION THEOREMS

島根大学総合理工 {服部泰直 (Yasunao Hattori)
静岡大学教育学部 大田春外 (Haruto Ohta)

1. RESULTS THAT ARE KNOWN OR EASILY PROVED

Let $X$ be a space, $A$ a closed subspace of $X$ and $Z$ a locally convex linear topological
space. Let $C(X, Z)$ be the linear space of all continuous mappings from $X$ to $Z$ . A linear
transformation $u:C(A, Z)arrow C(X, Z)$ is said to be a $Dugund_{\ddot{fl}}$ extender if $u$ satisfies the
following conditions: For each $f\in C(A, Z)$ ,
(a) $u(f)$ is an extension of $f$ , and
(b) the range of $u(f)$ is contained in the closed convex hull of the range of $f$ .

The study of this area is initiated by Dugundji [2]. He proved that for every closed
subspace $A$ of a metrizable space $X$ there exists a Dugundji extender $u$ : $C(A, \mathbb{R})arrow$

$C(X, \mathbb{R})$ . Michael ([8]) noticed that the Dugundji extender constructed by Dugundji is
continous with respect to the pointwise convergence topology, the compact-open topology
and the uniform convergence topology.

We shall consider the Dugundji extention theorems on product spaces.

Definition 1.1. Let $X$ be a space, $A$ a closed subspace of $X$ and $Z$ a locally convex
linear topological space. Then we say that $A$ is $D(Z)$-embedded in $X$ if there is a Dugundji
extender $u$ : $C(A, Z)arrow C(X, Z)$ . Furthermore, we say that $A$ is $D$-embedded in $X$ if $A$ is
$\mathrm{D}(Z)$-embedded in $X$ for every locally convex linear topological space $Z$ .
Definition 1.2. Let $X$ be a space, $A$ a closed subspace of $X$ and $Z$ a locally convex linear
topological space. Then we say that $A$ is $\pi_{D(Z)}$ -embedded in $X$ if for every space $Y$ there
is a Dugundji extender $u$ : $C(A\cross Y, Z)arrow C(X\cross Y, Z)$ . Furthermore, $A$ is said to be
$\pi_{D}$ -embedded in $X$ if $A$ is $\pi_{D(Z)}$-embedded in $X$ for every locally convex linear topological
space $Z$ .
Definition 1.3. Let $X$ be a space, $A$ a closed subspace of $X$ and $Z$ a locally convex
linear topological space. Then we say that $A$ is continuously $\pi_{D(Z)}$ -embedded (resp. $\pi_{D^{-}}$

embedded) in $X$ if we can choose the Dugundji extender $u$ as is continuous with respect the
pointwise convergence topology, the compact-open topology and the uniform convergence
topology.

For a space $X$ and a locally convex linear topological space $Z$ we denote $C_{u}(X, Z)$

the linear topological space of all continuous mappings from $X$ to $Z$ with the uniform
convergence topology, i.e., the sets of the form $V(f)=\{g\in C(X, Z) : g(x)-f(X)\in V\}$ ,
where $V$ is a neighborhood of the origin of $Z$ consists a $\mathrm{b}\mathrm{a}s$ ic neighborhoods of $f\in$

$C_{u}(X, Z)$ . Let $C_{\omega}(X, Z)$ be the linear topological space of all continuous mappings from
$X$ to $Z$ with the compact-open topology.
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A mapping $f$ : $Xarrow Y$ is called a $Z$-map if $f(Z)$ is closed for every zero-set $Z$ of $X$ .
Then we have the following.

Theorem 1.1. Let $X$ and $Y$ be spaces and $A$ a $D$-embeded subspace of X. Let $p_{A}$ :
$A\cross Yarrow A$ and $p_{Y}$ : A $\mathrm{x}Yarrow Y$ be the projections. If either of the following conditions
is satisfied, then $A\cross Y$ is $D$-embedded in $X\mathrm{x}Y$ :

(1) $p_{A}$ is a Z-map.
(2) $p_{Y}$ is a $Z$-map and there is a continuous Dugundji extender $u$ : $C_{u}(A, Z)arrow$

$C_{u}(X, Z)$ for every locally convex linear topological space $Z$ .

Theorem 1.2. ([4]) Let $X$ and $Y$ be spaces, $A$ a closed subspace of $X$ and $Z$ a locally
convex linear topological space. Suppose that $X$ is locally compact or $X\cross.Y$ is a k-space.
If there exists a continous Dugundji extender $u:c_{co}(A, z)arrow C_{\omega}(X, Z)$ , then $A\cross Y$ is
$D(Z)$-embedded in $X\cross Y$ .

Remark. In Theorem 1.2, the continuoity of the Dugundji extender $u$ can not be dropped.
In fact, let $X=[0,\omega_{1}]\cross[0,\omega]-\{(\omega_{1}, \omega)\}$ and $A=[0, \omega_{1})\cross\{\omega\}$ be the closed subspace
of $X$ . It is clear that $A$ is $\mathrm{D}(\mathbb{R})$-embedded in $X$ . Let $Y=[0,\omega_{1}]$ be the space with the
following topology: For each $y<\omega_{1}y$ is an isolated point of $Y$ and $\omega_{1}$ has a neighborhood
$\mathrm{b}\mathrm{a}s\mathrm{e}$ of the usual order topology. It follows that $A\cross Y$ is not C–embedded in $X\cross Y$ , and
hence $A\cross Y$ is not $\mathrm{D}(\mathbb{R})$-embedded in $X\mathrm{x}Y$ .

In [9] and [10], Stares proved that every closed subspace of spaces satisfying the de-
creasing (G) is $\pi$-embedded and every such space has the Dugundji extension property.
Before stating the theorem, we recall the definition of spaces satisfying the decreas-
ing (G) from [1]. Let $\mathcal{W}=\{\mathcal{W}(x) : x\in X\}$ be a collection of subsets of $X$ , where
$\mathcal{W}(x)=\{W(x, n) : n\in\omega\}$ such that $x\in W(x, n)$ for every $x\in X$ and $n\in\omega$ . Then we
say that $\mathcal{W}$ is decresing if $W(x, n+1)\subset W(x, n)$ for every $n\in\omega$ , and $\mathcal{W}$ satisfies (G) if

(G) for each $x\in X$ and each open set $U$ with $x\in U$ there is an open neighborhood
$V=V(x, U)$ of $x$ such that $y\in V$ implies $x\in W(y, s)\subset U$ for some $s\in\omega$ .

We say that a space $X$ satisfies the decreasing (G) if there is a collection $\mathcal{W}=\{\mathcal{W}(x)$ :
$x\in X\}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathfrak{N}^{\mathrm{n}}\mathrm{g}$ decreasing (G). We notice that every stratifiable space satisfies the
decreasing (G) ([10]). Now, we have the following.

Theorem 1.3. Let $X$ be a regular space satisfying the decreasing $(G)$ and $A$ a closed
subspace of X. Then $A$ is continuously $\pi_{D}$ -embedded in $X$ .

2. RESULTS ABOUT GO-SPACES

In [7], we proved that for a perfectly normal GO-space $X$ with $E(X)$ is a-discrete in
$X$ , a closed subspace $A$ of $X$ and $Z$ a locally convex linear topological space $Z$ , there is a
Dugundji extender $u$ from $C(A, Z)$ to $C(X, Z)$ , where $E(X)=\{x\in X$ : $(arrow, x]$ or $[x,$ $arrow$

$)$ is open in X}. We extend the theorem above as follows.

Theorem 2.1. Let $X$ be a perfectly normal GO-space such that $E(X)$ is a-discrete in $X$ .
Then every closed subspace $A$ of $X$ is continuously $\pi_{D}$ -embedded in $X$ .
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Proof. Let $A$ be a closed subspace of $X$ . Then $X-A$ is the union of a disjoint family $\mathcal{U}$

of convex components of $X-A$ . Since $X$ is perfectly normal, it follows from [3, Theorem
2.4.5] that $\mathcal{U}$ is a-discrete in $X$ . Let $\mathcal{U}=\bigcup_{n1}^{\infty}\mathcal{U}_{n}=$

’ where $\mathcal{U}_{n}$ is discrete in $X$ . Similarly, let
Int $A=\cup \mathcal{V}$, where $\mathcal{V}=\bigcup_{n=1}^{\infty}\mathcal{V}_{n}$ is a disjoint and $\sigma$-discrete family of convex components
of Int $A$ . For each $U\in \mathcal{U}$ we choose $x(U)\in U$ . We put $M_{\mathcal{U}}=\{x(U) : U\in \mathcal{U}\}$ . For each
convex open set $C$ in $X$ , we put

$\bullet$ $l(C)= \max${$a\in A:a<x$ for all $x\in C$}, and
$\bullet$ $r(C)= \min${$a\in A:a>x$ for all $x\in C$},

if the righthand of the above equations exist.
Then for each $n$ , we put $\mathcal{U}_{n}^{l}=$ { $U\in lh:l(U)$ exists} and $\mathcal{U}_{n}^{r}=$ { $U\in\%$ : $r(U)$ exists}.

Similarly, we define $\mathcal{V}_{n}^{l}$ and $\mathcal{V}_{n}^{r}$ . Furtheremore, we put
$\bullet L_{n}=\{l(U) : U\in \mathcal{U}_{n}\ell\}$ ,
$\bullet R_{n}=\{r(U) : U\in \mathcal{U}_{n}^{r}\}$ ,
$\bullet$ $L_{n}’=\{l(V) : V\in \mathcal{V}_{n}^{\ell}\}$ , and
$\bullet R_{n}’=\{r(V) : V\in \mathcal{V}_{n}^{r}\}$ .

It is easy to see that all of $L_{n},$ $R_{n},$ $L_{n}’$ and $R_{n}’$ are closed discrete in $X$ . Let $L= \bigcup_{\eta--1}^{\infty}L_{n}$ ,
$R= \bigcup_{n=1}^{\infty}Rn’ L’=\bigcup_{n=1}^{\infty}L^{;}n$ and $R’= \bigcup_{n=1}^{\infty}R’n$ . Furthermore, we put

$B=\{a\in A-(L\cup R) : a\in\overline{\cup \mathcal{U}^{-}(a)}^{X}\cup\overline{\cup \mathcal{U}^{+}(a)}\}\mathrm{x}$ ,

where $\mathcal{U}^{-}(a)=\{U\in \mathcal{U}:x(U)<a\}$ and $\mathcal{U}^{+}(a)=\{U\in \mathcal{U}:x(U)>a\}$ . Let

$M=M_{\mathcal{U}}\cup L\cup R\cup L’\cup R’\cup(E(X)\mathrm{n}A)\cup B$.

Then $M$ is a GO-space and $D=M-B$ is $\sigma$-discrete in $M$ . Since $E(M)\subset D$ and $D$ is
dense in $M$ , it follows from [3, Theorem 3.1] that $M$ is metrizable. Then there exists a
compatible metric $\rho$ on $M$ bounded by 1.

We shall define a mapping $\varphi$ : $Xarrow 2^{A}$ . Let $x\in X$ . If $x\in A$ , then we put $\varphi(x)=\{x\}$ .
Let $x\in X-A$ . Then there is $U\in \mathcal{U}_{n}$ such that $x\in U$ .

Case 1. Suppose that $U\in \mathcal{U}_{n}^{\ell}\cap \mathcal{U}_{n}^{r}$ . If $U=\{x\}$ , we put $\varphi(x)=\{\ell(U)\}$ . If $U$ contains
at least two points, we choose points $s(U)$ and $t(U)$ of $U$ such that $s(U)<t(U)$ . We put

$\varphi(x)=\{$

{ $P(u_{)\}}$ , if $x<s(U)$ ,
$\{\ell(U), r(U)\}$ , if $s(U)\leq x\leq t(U)$ ,

$\{r(U)\}$ , if $x>t(U)$ .

Case 2. If $U\in \mathcal{U}_{n}^{\ell}$ and $U\not\in \mathcal{U}_{n}^{r}$ , then we put $\varphi(x)=\{l(U)\}$ .

Case 3. If $U\not\in \mathcal{U}_{n}^{\ell}$ and $U\in \mathcal{U}_{n}^{r}$ , then we put $\varphi(x)=\{r(U)\}$ .

Case 4. Finally, we suppose that $U\not\in \mathcal{U}_{n}^{l}\cup \mathcal{U}_{n}^{r}$. Then we put $\varphi(x)=\{a(U)\}$ , where
$a(U)$ is defined in the proof of Theorem 2.1 in [7]. Then we can see that $\varphi$ : $Xarrow 2^{A}$ is
upper semicontinuous.

To define an extender $u$ : $C(A\cross Y, Z)arrow C(X\mathrm{x}Y, Z)$ , let $f\in C(\mathrm{A}\mathrm{x}Y, z)$ . First,
for each $n$ and each $U\in \mathcal{U}_{n}$ we shall define a continuous function $f_{U}$ : $U\mathrm{x}Yarrow Z$ . We
consider the following four cases.
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Case 1. Suppose that $U\in \mathcal{U}_{n}^{\ell}\cap \mathcal{U}_{n}^{r}$ . If $U=\{x\}$ , we define $f_{U}(x, y)=f(l(U), y)$ for
each $y\in Y$ . If $U$ contains at least two points, we define

$f_{U}(x, y)=\{$

$f(l(U),y)$ , if $x<s(U)$ ,
$(1-\psi_{U})(X)\cdot f(l(U), y)+\psi_{U}(x)\cdot f(r(U),y)$ , if $s(U)\leq x\leq t(U)$ ,

$f(r(U),y)$ , if $x>t(U)$ ,

for each $(x, y)\in U\cross Y$ , where $\psi_{U}$ : $Xarrow I$ is a continuous mapping such that $(arrow, l(U)]\subset$

$\psi_{U}^{-1}(0)$ and $[r(U),$ $arrow)\subset\psi_{U}^{-1}(1)$ .

Case 2. If $U\in \mathcal{U}_{n}^{l}$ and $U\not\in \mathcal{U}_{n}^{r}$ , then we put $f_{U}(X, y)=f(l(U), y)$ for each $(x, y)\in U\cross Y$ .

Case 3. If $U\not\in \mathcal{U}_{n}^{f}$ and $U\in \mathcal{U}_{n}^{r}$ , then we put $f_{U}(X, y)=f(r(U), y)$ for each $(x, y)\in$

$U\cross Y$ .

Case 4. If $U\not\in \mathcal{U}_{n}^{\ell}\cup \mathcal{U}_{n}^{r},$ $f_{U}(x, y)=f(a(U), y)$ for each $(x, y)\in U\cross Y$ .

We define a function $u(f)$ : $X\cross Yarrow Z$ as follows:

$u(f)(x, y)=\{$
$f(x, y)$ , if $x\in A$ ,

$f_{U}(X, y)$ , if $x\in U$ for some $U\in \mathcal{U}$ .

In a similar $\mathrm{f}\mathrm{a}s$hion to [7], we can see that $u(f)$ is a continuous extension of $f$ and the
range of $u(f)$ is contained in the closed convex hull of the range of $f$ .

By use of the upper semicontinuity of $\varphi$ , we can show that the extender $u$ above is
continuous with respect to the point convergence topology, compact-open topology and
uniform convergence topology (cf. [8]).

In a similar fashion as the proof of Theorem 2.1, we obtain the following (in fact, the
proof of this case is more simple than Theorem 2.1).

Theorem 2.2. Let $X$ be a GO-space, $A$ a closed subspace of $X$ and $X-A=\cup \mathcal{U}$ ,
where $\mathcal{U}$ is a $di_{\mathit{8}}joint$ family of convex components of $X$ –A. If $\mathcal{U}’=\{U\in \mathcal{U}$ :
$U$ has neither $l(U)$ nor $r(U)\}$ is discrete in $X$ , then $A$ is continuously $\pi_{D}$ -embedded in
X.

Corollary 2.1. Let $X$ be a locally compact GO-8pace. Then every closed subspace $A$ of
$X$ is $continuo^{J}LLsly\pi D$ -embedded in $X$ .

Corollary 2.2. Every closed subspace of the Sorgenfrey line $\mathrm{S}$ is continuously $\pi_{D}$ -embedded.

Corollary 2.3. Let $X$ be a GO-space such that the underlining ordered set is well-ordered.
Then every closed subspace $A$ of $X$ is continuously $\pi_{D}$ -embedded.

Now, we have the following corollaries.

Corollary 2.4. Let $X_{i}(i=1,2, \cdots n)$ be perfectly normal GO-space8 with $E(X_{i})\sigma-$

discrete in $X_{i}$ and $A_{i}$ are closed subsets in $X_{i}$ . Then, $\prod_{i=1}^{n}A_{i}$ is $D$ -embedded in $\prod_{i=1}^{n}X_{i}$ .

Corollary 2.5. Let $\kappa$ be an ordinal and $A_{i}(i=1,2, \cdots, n)$ are closed subsets of $\kappa$ . Then
$\prod_{i=1}^{n}A_{i}$ is $D$ -embedded in $\kappa^{n}$ .
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Remark. In [5], Heath and Lutzer proved that for every closed subspace $A$ of a GO-
space $X$ there is a simultaneous extender $u$ : $C^{*}(A)arrow C^{*}(X)$ . However, Heath, Lutzer
and Zenor [6] proved that there is no Dugundji extender $u$ : $C^{*}(\mathbb{Q})arrow C^{*}(\mathrm{M}[)$ which is
continuous when both function spaces are equipped with the compact-open topology nor
the pointwise convergence topology, where $\mathrm{M}$[ is the Michael line and $\mathbb{Q}$ is the subspace
of MI consisting of all rationals.
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