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On the Church-Rosser Property of Non-E-overlapping and
Weight-Preserving TRS’s
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ZERFELER KO &%  (Michio Oyamaguchi)
ZERFIFEE KH F (Yoshikatsu Ohta)

Abstract

A term rewriting system (TRS) is said to be weight-preserving if for any rewrite rule and
any variable appearing in the both sides, the maximal weight of the variable occurrences in the
left-hand-side is greater than or equal to that of the variable occurrences in the right-hand-
side, and to be strongly weight-preserving if it is weight-preserving and for any rewrite rule and
any variable appearing in the left-hand-side, all the weights of the variable occurrences in the

left-hand-side are the same.

1 Introduction

A term rewriting system (TRS) is a set of directed equations (called rewrite rules). A
TRS is Church-Rosser (CR) if any two interconvertible terms reduce to some common term by
applications of the rewrite rules. This CR property is important in various applications of TRS’s
and has received much attention so far [1-3,5-8]. Although the CR property is undecidable for
general TRS’s, many sufficient conditions for ensuring this property have been obtained [1,2,5-8].

However, for nonlinear and nonterminating TRS’s, only a few results on the CR property have
been obtained. Our previous papers [5,6] may be pioneer ones which have first given nontrivial
conditions for the CR property, though these conditions can be applied only to subclasses of
right-linear TRS’s. On the other hand, if we omit the right-linearity condition, then it has been
shown that only the non-E-overlapping condition is insufficient for ensuring the CR property of
TRS’s [2]. For example, Ry = {f(z,2) — a, g(z) = f(z,9(z)), ¢c = g(c)}, where z is a variable
and f,g,a,c are function symbols, is non-E-overlapping, but not CR.

In this paper, we consider the CR property of nonlinear, nonterminating and weight-preserving
TRS’s. Here, a TRS is weight-preserving if there exists a weight function from the set of function
symbols to the set of positive integers (called weights) satisfying the weight-preserving condition
that for each rule o — @ and any variable g appearing in both o and 3, the maximal weight
of the z occurrences in « is greater than or equal to that of the z occurrences in 8, where the
weight of an z occurrence is the sum of the weights assigned to function symbols on the path
from the root to the z occurrence. For example, TRS Ry = {h(z,z) — f(z,g(z))}, where g is
a variable, weight of h is 2 and weights of f, ¢ are 1, is weight-preserving, since the maximal
weight of the z occurrences of the left-hand-side is 2 and that of the right-hand-side 2. Note

that Ry is not weight-preserving.



We first show that only the non-E-overlapping and weight-preserving properties are insuf-
ficient for ensuring the CR property. That is, the following non-E-overlapping and weight-
preserving TRS R, is not CR:

Ry = {f(z,2) = a, ¢ = h(c,9(c)), h(z,9(z)) = f(z, h(z,9(c)))}

where ¢ is a variable and f, ¢, h, a, c are function symbols of weight 1.

Next, we introduce the notion of strongly weight-preserving property (stronger than the
weight-preserving one). A TRS R is strongly weight-preserving if there exists a weight function
such that R satisfies the weight-preserving condition and for each o — 3 and for any variable
¢ appearing in «, all the weights of the z occurrences in « are the same. For example, TRS
Rs = {h(g(z), 91(g2(2))) — f(z,h(z,g(c)))} is strongly weight-preserving, since by assigning 2
as weight of g and 1 as weights of the other symbols, R satisfies the weight-preserving condition
and all the weights of 2 occurrences of the left-hand-side are 3.

In this paper, we show that all the non-E-overlapping and strongly weight-preserving TRS’s
are CR. (Theorem 2). We first consider the class of depth-preserving TRS’s which is a subclass of
weight-preserving TRS’s. We show that all the non-E-overlapping and strongly depth-preserving

TRS’s are CR (Theorem 1). Using Theorem 1, we prove our main theorem (Theorem 2).

2 Definitions

The following definitions and notations are similar to those in [2, 5]. Let X be a set of
variables, F be a finite set of function symbols and T be the set of terms constructed from X
and F'. v

For a term M, we use O(M) to denote the set of occurrences (positions) of M, and M/u to
denote the subterm of M at occurrence u, and M[u < N] to denote the term obtained from M by
replacing the subterm Af/u by term N. The set of occurrences O (M), where M € T, is partially
ordered by the prefix ordering: u < v iff 3w, uw = v. In this case, we denote w by v/u. If u < v
and u # v, then u < v. If ugv and v£u, then u and v are said to be disjoint and denoted ulv.
Let V(M) be the set of variables in M, O,(M) be the set of occurrences of variable ¢ € V (M),
and Ox (M) = Ugey(m)Oz(M) i.e., the set of variable occurrences in M. O(M) is the set of
non-variable occurrences, i.e., O(M) = O(M) —Ox(M). We use N[u < M/u | u € U] to denote
Nluy  M/uy,uz < M/ug, -, un < M/u,] where U = {uy,ug, -, un}, and uy,---,u, are
pairwise disjoint. Here, N[uy < M/uj,ug ¢ M/ug, -+, un + M/u,] = (N[ug = M/uy,uz
M/ug, -+ yun_1 & My_1])[un < M/u,] if n > 1.

For a term M, H(M) = Maz{|u| | v € O(M)}. H(M) is called "height of M”. The depth
of occurrence u € O(M) is defined by |u|.

Example. H(f(g(z))) =2, H(a) =0, H(g(z)) = 1.

Let fM;--- M, where f ¢ F and M; € T such that 1 < i < n. For the function f, arity of
f is the number of arguments, i.e., arity(f) = n.

We use a function w : F — {1,2,3,---} to assign a positive integer to each function symbol.

We call w a weight function, and w(f) the weight of function symbol f. For a term M, the
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weight W, (u, M) of occurrence v is defined as follows:

Wyl(e,z) = 0
Wule, fMy---Mn) = w(f)

where z € X, f € F, arity(f) =n,1<:<n, My,---,M, € T and 1 -u € O(M).

A rewrite rule is a directed equation o — 8 such that o € T — X, 8 € T and V(a) 2 V(8).
A term-rewriting system (TRS) is a set of rewrite rules.

A term M reduces to a term N if M/u = o(a) and N = M[u + o(B)] for some o — 8 € R
and ¢ : X — T. We denote this reduction by M =% N. In this notation » may be omitted (i.e.,
M — N) and —* is the reflexive-transitive closure of —.

A parallel reduction M+« N is defined as follows:
M~-N it 3U C O(M) such that

Vu,v € U u # v = ulv,
VueU M/u-3 N/uor Nfu-Ss M/u, and
N =M[u+ N/u|u e U]

In this case, let R(M«++N) = U. (Note. U = ¢ is allowed.) Let «+4+* be the reflexive-transitive
closure of «}.

We assume that v : Mo« M+ - - - <+ M, in the following definitions, which will be used
in Section 4.

Let R(v) = Up<icn R(M;¢+>M;41) and M R(y) be the set of minimal occurrences in R(y)
under the prefix or?iering.

For u € O(My), if there exists no v € R(y) such that v < u, then v is said to be u-invariant.

We denote by ~[i, j] the subsequence M;++>M; ¢+ - 4> M, of v where s > 0 and j < n.

If M,, = No, then the composition of y and § : Noeds Ny - - - <3 Ny, i.e., Mo My - -
> M, (= No)++> N1+ - - - > Ny, is denoted by (v;4).

Let w € MR(v). Then, the cutsequence of y at uis v/u = (Mo/ust=>M;/u 4> - - - M, /u).

We denote by v[¢'/€] the sequence obtained from reduction sequence v by replaéing subse-
quence or cut sequence (or cut subsequence) ¢ of 4 by sequence ¢’.

The number of parallel reduction steps of v is |y|, = n.

Note. If § : M«+M, then |§], = 1.

Example. Let §: f(c,c)«+>f(g(c),g(c))«+>a, then |§], = 2.

Let net(y) is the sequence obtained from + by removing all M;«4++M,,, satisfying that
M; =M;4+1,0< 2 < n.

We use |§],,,, to denote |net(8)],.
We define the height of reduction sequence H(y) as H(y) = Maz{H(M;) |0 < i< n}.

Definitions of < left(y, h),right(y,h),dis(y, h), width(y,h) >

Min{i | H(M;) =k} if 3i (0< i< n)such that
left(v,h) = H(M;)=hand Vj(0<j <) H(M;)<h

1 otherwise
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Maz{i | H(M;) = h} if 3 (0<<< n)such that
right(y,h) = H(M;)=handVj(i <j<n) HM;)<h
J
1 otherwise
. _ n —left(v,h) if left(v,h) # L
ldis(v,h) = { 1 otherwise
right(vy, k) — left(v, h) if left(y,h) # L \right(v,h) # L
right(v,h) — left(v, k') if left(v,h) = L Aright(v,h) # L \
[ , 1 ! !
width(v,h) = R = Min{h' | ' > b Nleft(v,h') # L}

right(y,h') — left(vy, h) if left(v,h)# L /\M'ght('y,h) =1
B = Min{h' | ' > b \right(v, k') # 1}
1 otherwise

We write P(y,h) | if P(y,h) # L and otherwise P(y,h) 1 for P € {left,right,ld:s, width}.
Example. Let 6 : £(c)¢+F(g(9(c)))t>F(a(e)) 1 (F(9(9(0)))) e F(f(c))+-+>g(c)- Then,
we have left(5,1) = 0, left(5,2) 1, left(,3) = 1, ldis(6,1) = 5,1dis(,3) = 4, right(5,1) =
5, right(8,3) 1, width(s,1) = right(8,1) — left(6,1) = 5, width(é,2) = 3, width(é,3) = 2.

Definitions of < Ki4i5(7)s Kuwidth(7)s Krignt(7) >

Kidis (7) = {(ha ldi3(77 h)) | ldi5(77 h) ~L}
Kuian(y) = {(h,width(y,h)) | width(v,h) |}
Kyignt(v) = {(h,right(y,h)) | right(y,h) |}

Example. For & : f(c)e=f(g(g(c))) 1 (g(c)) > f(f(g(g(c))H>f(f(c))>g(c) in the
previous example, we have I(ldis((s) = {(L 5)a (37 )1 (4, 2)}’ I{width(é) = {(11 5)a (Qv 3)7 (37 2)1 (47 0)}
and K’”'ght(é) = {(1’ 5)) (25 4)1 (47 3)} ‘

We define an ordering <,C N x N (where N = {0,1,2,---}) as follows: (a,b) <, (a,¥") &
(a < d Nb<V)V(a=dAb<¥) Let <, be <, /= Weuse <, to denote the multiset
ordering of this ordering <,. Let €, be «, \/ =. We use {...},, to denote a multiset, e.g.,

{1, 1,2}

3 Weight-Preserving TRS’s
Definition of < E-overlapping TRS R >

A TRS R is said to be E-overlapping iff there exists an e-invariant reduction sequence
o (e /u)=* o'(ap) for some oy — Bi,02 = B2 € R, u € O(oy) and mappings o,0" : X —
T where v = ¢ implies that (a; — B81) # (a2 — B2). In this case, the pair (o(a)[u +
o'(B2)],0(81)) is called an E-critical pair. A TRS R is non-E-overlapping if there exist no
E-critical pairs.

Definition of < depth-preserving TRS R ([3]) >

A TRS R is depth-preserving if Yo — 8 € RVz € V(a)NV(B) Maz{|v| | v € O-(8)} <
Maz{|u| | v € Oz(a)}. )

Example. R, = {f(z,z) = a, ¢ = h(c,g(c)), h(z,9(z)) = f(z,h(z,g(c)))} (where z is a
variable) given in Section 1 is depth-preserving, since for the first and the second rules, the right-
hand-sides contain no variables, and for the third rule, the maximal depth of the z occurrences
of the left-hand-side h(z,g(z)) is 2 and that of the right-hand-side f(z,h(z,g(c))) is 2.

Definition of < strongly depth-preserving TRS R >
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A TRS R is strongly depth-preserving if R is depth-preserving and Yoo — 3 € R Vz €
Vie) Yu,v € Oz(a) |u| = |v|.

Example. Let Ry = {f(z,2) — a, ¢ = g(d), 9(¢) — f(z,2)} and Rs = {f(z,2,2) —
h(z,z,z,2,9(c)), c = g(c)} where z is a variable. Both R, and R are strongly depth-preserving.
(Note that both R4 and Ry are duplicating[6].)

Definition of < weight-preserving TRS R >

For a weight function w, a TRS R is w-weight-preserving if Vo — 8 € RVz € V(a) NVv(B)
Maz{Wy(v, 8) | v € Oz(8)} < Maz{Wu(u,a) | v € Oz(a)}-

A TRS R is weight-preserving if R is w-weight-preserving for some weight function w.
Example. R = {f(z,2) = a, ¢ — h(e,1(92(¢))), 9(&) = F(2,h(x,9()))}. Re is w-weight-
preserving for a weight function w such that w(g) = 2 and the weight of the other symbols are
1. But Rg is not depth-preserving,. ‘

Definition of < strongly weight-preserving TRS R >

For a weight function w, a TRS R is strongly w-weight-preserving if R is w-weight-preserving
and Va — f € RVz € V(a) Vu,v € Oy(a) Wy(u,a) = Wy (v, a).

A TRS R is strongly weight-preserving if R is strongly w-weight-preserving for some weight
function w.

Example. Ry = {f(z,2) = a, ¢ = h(c,01(92(c))), h(g3(z),91(92(2))) — f(2,h(z,9(c)))}- Rr
is strongly w-weight-preserving for a weight function w such that w(gs) = 2 and the weight of
the other symbols are 1. But Ry is not strongly depth-preserving.

If TRS R is depth-preserving, then R is weight-preserving, since R is w;-weight-preserving for
the weight function w; such that w, (f) = 1 forall f € F. And if R is strongly depth-preserving,
then R is strongly weight-preserving.

In this section, we show that the TRS

Ry = {f(z,2) = a, ¢ = h(c,9(¢)), h(z,9(z)) = f(z,h(z,9(c)))}

given in Section 1 is non-E-overlapping and depth-preserving (and weight-preserving), but not
CR.

Obviously, R, is non-E-overlapping, since there is no pair (o /u, o) satisfying that the root
(topmost) symbols of oy /u and ay are the same for oy — B, ay — B2 € Ry and u € O(ay),
except that oy = o, 81 = B2 and u = ¢. It has already been explained in the above that R, is
depth-preserving (and weight-preserving).

We can show that TRS R, is not CR. Note that
¢ h(e,9(c)) — F(ehle,9(e))) = F(h(e,9(0)), h(e, 9(c))) — a and ¢ »* h(a,g(a)).

Thus, a+4-* h(a,g(a)) holds, but we can show that q and h(a, g(a)) are not joinable.

4 Assertions

We use the following six assertions S(n),S’(n), P(k), P'(k),Q(k) and Q’(k) (where n >
2,k > 0) to prove that non-E-overlapping and strongly depth-preserving TRS R is CR.
Assertions S(n) and S’(n) are similar to the Elimination lemma in [4]. Assertion (k)
ensures that TRS R is CR.



Assertion S(n)
Let v : 0(f) + o(a)+* o'(a) — o'(B) for some rule o — 8 € R and mappings 0,0’ where
|7], = n and the subsequence ¥ : o(a)++>* o'(a) is e-invariant.
Then 36 : o(3)«4=+* o'(B) such that the following conditions (i)-(iii) hold:
i) |8p<n—-2
(i) If B is a variable, then H(8) < H(v).
Otherwise, § is e-invariant and H () < H(y).
(i) Kigis(8) <o Kiais(7)
Assertion S’(n)
Let v : 0(8) + o(a)<=* o'(a) — o'(B) for some rule « — 3 € R and mappings o,0’ where
||, = n and the subsequence ¥ : o(a)++>* o'(a) is e-invariant.
Then 36 : 6(B)«+=* o’(B) such that the following conditions (i)-(iii) hold:
(i) I(Slp = I'Ylpv |6|'np < |7lnp -2
(i) If B is a variable, then H(8) < H(y)-
Otherwise, § is e-invariant and H(§) < H(7)-
(i) Kais (8) €5 Kiais(v) and K, igni (6) €5 Krigne(7)-
Note that v satisfies the same condition in S(n) and S’(n).
Assertion P(k)
Let 4 : M4* o(a) = o(8) for some rule « — 3 € R and mapping o where H(y) < k and the
subsequence 5 : M+«++* o(a) is ¢-invariant.
Then, there exists § : M«}+*N+*o(8) for some N such that the following conditions
(i)-(iii) hold:
() H() < H()
(i) M—=*N
(iii) for the subsequence §' : N«i=+* o () of &, either H(8') < H(y) or ¢’ is e-invariant.
Assertion P'(k)
Let v : Mo+t MM, - - -+ M, where H(y) < k, the number of ¢-reductions in v is I(> 0)
and each ¢-reduction is M; —=» M;,, for some 7 (0 < i < n). Let My, —» M; 41,--+, M;, —
M;, 41 be the e-reductions of 4, 0 < 4y < iy--- < i < n. Then, there exist i; (1 < j <) and
§ : Mo++=+*N++>*M;, 1, for some N such that the following conditions (1)-(iii) hold:
(i) H(6) < H(v[0,4; +1])
(ii) My—=*N
(ili) for the subsequence §’ : N+++* M; 4y of 8, either H(§') < H(y[0,4; 4 1]) holds or
i; = 4; and §’ is e-invariant.
Assertion (k)
Let v : M«+>* N where H(y) < k.
Then, 3§ : M«—+* L+ts* N for some [ such that H(§) <k, M —* L and N —* L.
Assertion Q'(k)
Let ~; : M«+5* M;, where H(v;) < k,1<i<nandn>2.
Then, 3§ : M«}+* N for some N such that H(§) < kandVi (1<i<mn) M; -*N.

We can prove S(n) A S’(n) by induction on n > 2, and that P(k) = P'(k) and Q(k) = Q'(k)

for any k£ > 0. Using these results, we can prove P(k) AQ(k) by induction on k > 0. These
proofs are omitted.

5 Conclusion
By Q(k) where k£ > 0, we have the following result.

Theorem 1
All the non-E-overlapping and strongly depth-preserving TRS’s are CR.
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For any strongly w-weight-preserving TRS R, we construct a strongly depth-preserving TRS
R which can simulate reductions of R. For this purpose, we define a set of new function symbols
F and a translation + : F — [™* as follows:

FZ{fIvf?v"'afklfeF?w(f) :k}
where arity(f;) =1, 1 < i < k and arity(fy) = arity(f)
V() =fi-faree frfor fe Fofw(f)=k

Here, (fl .f2 ..... fk)Man :fl(fz(kolju_'n)) for Mla"',Mn ceT.
Translation ¢) is extended to the translation: T — T* as follows:

’l/)(a:) = g forze X

Here, T is the set of terms constructed from X and F.
Using this translation 1, we define a new TRS R by

R ={¢(a) = ¥(8) |« = B € R}
It is straightforward that if R is non-E-overlapping and strongly w-weight-preserving, then
R is non-E-overlapping and strongly depth-preserving.
And R is CR iff R is CR. Hence, we have the following result.

Theorem 2
All the non-E-overlapping and strongly weight-preserving TRS’s are CR.

Example. If the third rule of R, in Section 1 is replaced by h(g; (¢92(z)), 9(z)) = f(z,h(z,g(c))),
then we obtain a new TRS

By ={f(z,2) = a, c = h(c, g(c)), hlg1(92(2)),9(2)) = f(=,h(z,9(c)))}
which is non-E-overlapping and strongly w-weight-preserving for a weight function w such that
w(g) = 2 and the weight of the other symbols are 1, so that Theorem 2 ensures that R} is CR,
though R, is not CR.
Finally, we remark that Theorem 1 can be extended a little bit, i.e., TRS R is CR if R is
non-E-overlapping and satisfies that Voo —+ 8 € RVz € V(o) V(8) Min{|u| | v € Oz(a)} >
Maz{Jo] | v € 0.(8)}-
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