Metadata, citation and similar papers at core.ac.uk

Provided by Kyoto University Research Information Repository

Bl =
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

Title Tractability of Cut-free Gentzen Type Propositional Calculus
with Permutation Inference

Author(s) | Arai, Noriko H.

Citation Ob00obOobOoDbDOo (1996), 950: 181-188

Issue Date | 1996-05

URL http://hdl.handle.net/2433/60322

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39193906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0000000000
950 0 1996 0 181-188 181

Tractability of Cut-free Gentzen Type Propositional
Calculus with Permutation Inference

LB A% B T (Noriko H. Arai)
March 4, 1996

1 Introduction

One of the most fundamental problems of the complexity theory and the automated reasoning
theory is to find an efficient proof system for propositional calculus which is applicable for
automated reasoning. The statement contains two intuitive concepts. First, we have to make it
clear what the notion “efficient” means. There is a wide spread understanding that polynomial
time computability is the correct mathematical model of feasible computation. According to
the opinion, truly “effective” system must have a polynomial size, p(n) proof for every tautology
of size n. In [5], Cook and Reckhow named such a system, a super system. They showed
that if there exists a super system, then NP = co — N P; many people are highly skeptical
about the validity of this equality. Secondly, we have to have some criteria for propositional
calculi to be applicable for automatic theorem proving. Intuitively, we say that tautologies
are autornatically proved when we can construct a deterministic machine which says yes if the
inpul is a tautology and says no otherwise. If we interpret our goal most strictly, we have to
obtain a sound proof system which proves any tautology polynomially and the construction of
the proof is completely determined by the structure of the tautology. Then obviously P = NP
1s necessary.

How can we relax our criteria so that it is theoretically meaningful but still practical?
One fairly natural approach is to give up to prove every tautology polynomially but confine
ourselves to “familiar” tautologies.

Gentzen'’s Hauptsatz suggests us that cut-free Gentzen type sequent calculus is one of
the most reasonable systems to be applied to automatic reasoning: we can obtain a proof-
tree automatically for any given tautology. Furthermore, the construction procedure can be
determined solely by the structure of the given tautology. However, it is already known that
the number of steps required in the search procedure increases exponentially with the length
of inputs[9]. Resolution is another propositional calculus which is frequently mentioned in
autornatic theorem proving. It is also known that there are sequences of tautologies which
require exponential size proofs[7]. Unfortunately, the hard examples for cut-free Gentzen
system or for resolution are not rare nor pathological, but they are rather commonly found
combinatorial problems[10].

We suggest another possible approach; if it is too much to ask to construct a deterministic
machine accepting tautologies in polynomial time, it is worth trying to construct a nondeter-
ministic machine but the chance to obtain a sound proof {or a given tautology is relatively high.
Gentzen system with cut-rule and Frege system are known to be strictly more powerful system
than resolution[7],[3]. However, they do not satisfy the subformula property: the existence of
cut-rule and modus-ponens allows unpredictable formulas to coming into proofs. As a result,
chance to obtain appropriate proofs by machine is very low even for simple tautologies. On the

contrary, if a system satisfies the subformula property, the bound for search will be relatively
limited.

It is sensible to note that many hard examples for propositional calculus such as pigeonhole
principles are originally first-order sentences. Translating them into propositional formulas,
thesc propositions share an evident similarity, symmetries. If we can express as an inference
rule that a tautology remains invariant under permutation of variables, proofs of propositions
of this kind can be shortened dramatically[2].

In this paper, we introduce a new inference rule to play the role: permutation rule. We first

182

show thal a cut-free Gentzen type sequent calculus plus permutation, called GCNF’+permutation,

satisfies the subformula property. Then, we show that the system have polynomial size proofs
for both the pigeonhole principle and the k-equipartition.

2 Gentzen system GCNEF’

Definition 1

Resolution proves a formula to be a tautology by showing that its negation, which is put into
conjunctive normal form, is unsatisfiable.

A propositional variable is denoted by p, q,r, . Each propositional variable has a conjugate
(or negation) denoted by p. Also P = p. A literal is a propositional variable p or a conjugate
P. A clause is a finite set of literals, where the meaning of the clause is the disjunction of the
literals in the clause. For example {p1,7,,p3} means p; VP, V p;.

Resolution has no axiom. It has only one inference rule called resolution rule

Cyu{z} C,U{T)

resolution rule CLuC,

When we try to show that a set of clauses C is unsatisfiable, we take C to be a set of hypotheses
to which we apply the resolution rule until we obtain the empty clause.

GCNF’ is a variant of cut-free Gentzen syﬁtem introduced by Gallier (sce page 120 of [6]).
It is also a refuting system.

A cedent is a finite set of clauses, expressed as a sequence of clauses punctuated by com-
mas. The meaning of a cedent is the conjunction of the clauses in the cedent. For example
Cy,Cy,...,C, means C; ACyA...ANC,. We use capital Greek letters I, A, Il for cedents. The
semantics of cedents implies that a cedent C1, ..., C, is false iff the formula C;y A...AC, D L
is valid.

arioms P, P

structural inference I'A

I,Cy,...,Cp 1L)
logical inference FUll, Cyl, ..., Ckl

[is an arbitrary literal, which is called the auxiliary literal of this inference.

It is fairly easy to show the soundness and the completeness of GCNI"(see chapter 4 in

[6].)

183

Proposition 1

GCNF’ is sound and complete.

Now we define a scale to measure the efficiency of a proof system.
Definition 2

I. Let S be a proof system which is sound and complete, and let P be a proof system of S.
The size of P is the number of all the symbols used in P, thal is denoled by size(P).

2. Let §) and S; be proof systems for propositional calculus. Sy p-simulates Sy iff there
exists a polynomial function p such that for any formula f and any proof P, of f in S,
there exists a Sy-proof Py of f (translated into S) language) so that

In the following argument, we understand proofs of GCNF’ or resolution to be in DAG form.
If Pis a GCNEF’ (resolution) proof, then size(P) means the number of symbols appearing in
different cedents (clauses) in P. Now we examine hard examples for GCNF'. Haken showed an
exponential lower bound for resolution in [7]: he proved that there exists a constant ¢, ¢ > 1
so that, for sufficiently large n, every resolution refutation of the pigeonhole principle (PH P,)
contains at least ¢* different clauses. Ajtai showed in [1] a superpolynomial lower bound for
constant depth Frege proofs for the pigeonhole principle, and later showed a superpolynomial
lower bound for constant depth Frege proofs for 2— Equipartition even assuming the pigeonhole
principle. Their proofs can be translated to prove a superpolynomial lower bound for GCNF’.

Definition 3 (Pigeonhole principle)

The pigeonhole principle states that for each n, if f:{0,...,n} — {0,...,n—1} then f is not
one-to-one.

For each ¢ and j with 0 <¢ < n and 0 < j < n — 1 we will have the variable p; ; which
‘means’ f(7) = j.

PHP, A \V pij /\ A (i, ;Pm.j)

0<i<n 0<j<n~1 0<i<m<n 0<<n-1

Vo<i<n Pi 1s an abbreviation for the clause py,...,pn. Ag<icn Ci 18 an abbreviation for the
cedent Cy,...,Ch.
The number of all literals contained in PH P, is n® + 2n% + n.

Definition 4 (k-equipartition)

The k-equipartition states that if an integer n is not evenly divisible by k, then there is no
partition of {l,...,n} into disjoint sets of size k.

Let J¥ = {(G1,...,jk) 1 1 < ji < ...jx < n} For j € J, we write 1 € I to mean that there
exists 1 <[< k such that 7 = ;. Suppose that n # 0(mod k). We introduce new variables
TiGron) f0r 1 <4, 71,000,Jk < n to mean that (ji,...,J:) is a partition of {1,...,n} and
S {.jh s 5]k}

k — Eq(n) is defined as the following cedent;

ANV ez A (%, 725,7)> A (7,7, 7:3,)

: + . .t + A . . 3
]SZSn]eJkyzE] .]e']y’";! 21:226‘]5 "1¢2'.2 . _,Jlj-72_'e ‘_I}L -
i€31,i €32, # 32

The number of all literals contained in k — Eq(n) is

n—1 n k n—1)\ n—1

(31)e2(3) () (i01) #(i01)

The first A of clauses expresses that “each 7 is contained in some partition whose size is
k" The second A of clauses expresses that “if (y,...,1x) is a partition containing ¢;, then it is
also a partition containing #,,... and 7;.” The last A of clauses means that “if 7, = j; for some
1<s<kandl<t<kandif (¢1,...,0) # (J1s- .-+ Jk), then either (i4yeeytr) OF (JuyevesJk)
is not a partition.”

(Note: The definition given above is slightly different from the formulation given in [4], but
they are equivalent.)

Proposition 2 (Haken [7])

There exists a constant ¢ , ¢ > 1 such that, for sufficiently large n, every GCNF’ refutation
of PHP, contains at least ¢" different cedents.

Proposition 3 (Ajtai [1])

There exists a constant ¢ , ¢ > 1 so that, for sufficiently large n, every GCNF’ refutation
of k — Eq(n) contains at least ¢* different cedents.

We introduce new inference rules, called renaming, restricted renaming and permutation.

r

_%
renaming I'(p—¢q) p—d

I'(p — ¢) is obtained by replacing every occurrence of p by q in T'.

I

. . —P=4q
restricted renamang I'(p=4q)

I'(p = ¢) is obtained by replacing every occurrence of p in I' by a variable q, which does not
appear in [

F(pl’“-apm)
permutation L(7(p1)s-- . 7(pm))

7 is a permutation on {pi,...,pm} and [(x(p1),..., 7(pm)) is the result of replacing every
occurrence of p; ,1 <i < min Npy,...,pm) by 7(p;).

184

It is straightforward to show that GCNF’+restricted renaming p-simulates GCNF’+permutation.

Proposition 4

GCNF’+restricted renaming p-simulates GCNF’4-permutation.

In general, GONF’+permutation does not satisfly the subformula property. However, one
can translate a given GCNF’4permutation refutation into a GCNI"+permutation refutation
satisfying the subformula property without increasing its size too much. Before we start, we
need some definitions.

Definition 5

185

Aﬂ
J\.

Let D be a directed acyclic graph. Suppose that n, m are nodes appearing in). When
m appears below n and no other node appears between n and m, we say that m is a son of
n. When ny,...,n; are the sons of n, and when n; is the leftmost occurrence among them,
we say thal n; is the direct son of n. na,...,n; are called nondirect sons of n. A sequence of
nodes my,...,my is called a direct line of n; in D when n, is either a leaf or a nondirect son of
a node in D, and every n; for 1 < ¢ <[is the direct son of n;_;. '

In the following, we frame a 2-dimensional image of directed acyclic graphs so that we can
fix the order of right and left of nodes.

Theorem 1 (Subformula property of GCNF’+permutation)

Let P be a GCNF’'+permutation refutation of CY,...,C,. Then, there exists P/, a refuta-
tion of C'y, ..., C, such that size(P') = O(size(P)*) and P’ satisfies the subformula property;
every clause C' = [, ...l appearing in P’ is a subformula of one of Cy,...,C,.

(proof) '

We shall transform P into P’ inductively from the bottom to the top.

Suppose that n is a node in P. Let ny,...,n; are the list of sons of n. Suppose that n; is
the direct son of n. When n

ny

is weakening, no change is made. If
n_m
1

is a logical inference, no change is made. Suppose that the inference between n and ny is
permutation, say
F(pl’-'-apm) T
F(W(pl)a ERE W(pm))

Then, replace every occurrence of p; by #(p;) (1 < i < m) in each cedent on every direct line
containing the upper cedent , I'(p1, ..., pm). The result may fail to be a GCNF’+permutation
refutation: there may exist a gap between a node and its nondirect son. Suppose that n in P is
replaced by n’, and its nondirect son ny is replaced by n}. Suppose that the inference between
n and ng is a permutation. Note that a product of permutations is again a permutation.
Hence,

ny,

is a sound permutation inference. Suppose that the inference between n and nj is either
structural or logical, then insert one permutation inference necessary. Now we obtain a sound
‘GCNF’+permutation refutation, P’

186

We show that P’ satisfics the subformula property by induction on the construction of P'.
Let m be a node in P'. Let m; be the direct son of m. Then, by the induction hypothesis, m;
satisfies the subformula property. The inference between m and m, is either a logical inference,
structural inference, or a special kind of restricted renaming, which is

I\

I
Hence, m also satisfies the subformula property.

We remark that a close examination of the proof of theorem 2 gives us a polynomial algo-
rithm to translate a GCNF’4permutation refutation to GCNF'+permutation which satisfies
the subformula property.

A resolution refutation R is called regular iff for every resolution

Cy U {z} qu{f}()
C,UCy

appearing in R, no resolution of the form,

DyU{z} D,U {7}
D1 U D2

appears below /. This notion was introduced by Tseitin [8]. He proved that regular resolution
is not super before Haken's work. By analogy, we say a GCNF’ (or GCNF’+permutation)
refutation P is regular iff for every logical inference I whose auxiliary literal is [in P, no
logical inference having the same auxiliary literal [appears below 1.

We show that regular GCNF’+permutation has polynomial size refutations for PH P, and
k — Eq(n).

Theorem 2

There exists a regular GCNF’+permutation refutation of PH P, whose size < O(n®).
(proof)
Assume that we already have a regular GCNF’+permutation refutation P,_; of

n—2 n-2
\/ Po,jaeeen v Pr—1,5s /\ /\ (ﬁi,j[_)m,j)

0<i<m<n—10<3<n-2
such that size(P,_;) < O((n—1)¢). We supplement some lines below P,_; to obtain B, ,_,.First,
we add a logical inference of which auxiliary literal is p,—1 n-1.

n-2

n—2
\/ Po,js-- \/ Prn—1,j1 /\ /\ (ﬁi,jﬁm,j) ﬁn—l,n—l’pn—lan"l
i=0 =0 0<i<m<n—10<;5<n—2

n—2 n—2 n—1 (Pn—l,n—l)
I_)n.—l,n-lﬂ \/ P0,js v \/ Pn-2,5 \/ Pn—-1,5, /\ /\ (ﬁi,ﬂ—)m,;j)
J=0 7=0

=0 0<i<m<n—10<j<n~-2
Similarly, add logical inferences whose auxiliary literals are p,—2.n—1,...,Pon—1, and whose
right upper cedents are axioms. Then, we get

n—1

n—1
;ﬁO,n—la" "ﬁn—l,n—l’ \/ po:j"' °9 \/ pn—l,j’ /\ /\ (-pza.]ﬁmﬂ)
7=0 j=0 0<i<cm<n~-10<;<n~2

187

This refutation graph is called P, ,—1. The last cedent means that “for all 0 < k£ <n — 1,
the k-th pigeon sits in one of the hole,0,...,7n — 1. At the same time, the pigeon does not sit
the (n-1)-th hole.” Define a permutation 7 by a product of (n — 1) transpositions,

(270,n-1 Po,k) T (Pu-],n-1 Pn.—1,k)
for all 0 < & < n —2. To obtain P, , for each 0 <k < n — 2 add one permutation inference;

n—1 n—1

ﬁO,n-—la oo 1—p—n—1,12—11 \/ POjye-s \/ Pn—1,5, /\ /\ (Tp.i,j—f)m,j)
7=0

=0 0<i<cm<n—10<y<n—2
Tk
n—1 n—1
Dok« s Pn-1ks \/ Pogs---s \/ Pn—-1, /\ /\ (pi,jpm,j))
7=0 j=0 0<i<m<n~10<<n~1,j#k
For each 0 <k <n — 1, we add a logical inference;
n—1 n-1
p(),kj"’!pn-—l,k’ \/ Dogjr---y \/ Pn-1, /\ /\ F-i,jpm,j pﬂ,k.‘pn,k
j=0 j=0 0<i<cm<n—-10<j<n=-1,j#k —
(pn,k)

n—1 n—1
Pn .k, \/ Poj,---» \/ Pn-1;, /\ /\ p-i,ji)-nn,ji /\ pn,kﬁi,k
j=0 j=0

0<i<m<n~10<j<n—1,j#k 0<i<n—1

Combine these together by applying n — | logical inferences to obtain P, of PHP,. P,_;
is regular by the induction hypothesis, so is P,.

size(Pp) < (len(Po_y) +2n 4+ 2(n — 1))(n 4+ 1 + n*(n + 1)/2) < o(n®).

We can also prove the following theorem.
Theorem 3
There exists a polynomial function p, independent from n, and a regular GCNF'+permutation
refutation of £ — Fq¢(n) whose size < p(n).
Corollary 1
Resolution does not p-simulate GCNF'+permutation.
Corollary 2

Bounded depth Frege systems do not p-simulate GCNF’+permutation.

References

[1] M.Ajtai, “The complexity of the pigeonhole principle”, 29th Annual Symposium on the
Foundations of Computer Science (1988), 346-55.

[2] B. Benhamou and L. Sais, “Tractability through symmetries in propositional calculus”,
J. Automated Reasoning, Vol.12 (1994), 89-102.

188

[3] S. R. Buss, “Polynomial size proofs of the pigeonhole principle”, J. Symbolic Logic, Vol.52
(1987), 916-27.

[4] P. Clote, “On polynomial size Frege proofs of certain combinatorial principles”, in Arith-
metic, Proof Theory, and Computational Complexity, Clarendon Press, Oxford (1993),
162-84.

[5] S. A. Cook and R. A. Reckhow, “The relative efficiency of propositional proof systems”,
J. Symbolic Logic, Vol.44 (1979), 36-50.

[6] J. Gallier, Logic for Computer Science, (John Wiley &Sons, New York, 1987).

[7] A. Haken, “The intractability of resolution”, Theoretical Computer Science, Vol.39 (1985),
297-308.

[8] G. S. Tseitin, “On the complexity of derivation in propositional calculus”, Studies in
Mathematics and Mathematical Logic Part 2, 1968,V. A. Steklov Math. Institute.

[9] A. Urquhart, “The complexity of Gentzen systems for propositional logic”, Theoretical
Computer Science, Vol.66 (1989), 87-97.

[10] A. Urquhart, “Hard examples for resolution”, .J. Assoc. Comput. Mach., Vol.34 (1987)
209-219.

