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Periodic solutions of integral equations

BEARAEI HRAEX ( Tetsuo Furumochi )

1. Introduction

In this paper, we study the behavior of solutions of the

integral equations of neutral type

z(t)=a(t)+[(D(t, 8, 2())ds+ [$E(t s, 2(s))ds,  tER, (1)

and
_ t o
z(t)=p(£)+[E Pt 5, 2(s))ds+[Fa(t, 5, 2(s))ds,  tER, (2)

and their relation to each other. Eq.(2) is a limiting equation of
Eq.(1). Conditions on a, p, D, E, P, and Q are given later, but
all of them are at least continuous. Many results are obtained for
these equations without the third terms of the righthand sides.
Excellent up to date collections of such results are found in
Corduneanu [4] and Gripenberg-Londen-Staffans [5]. Moreover, some
results concerning periodic solutions and attractivity of such e-
quations are obtained in Burton-Furumochi [2]. On the other hand,
integral equations of neutral type have been also studied. For ex-
ample, we can find an integral equation of neutral type in the
classical book [3, pp.329-340] of Coddington and Levinson.

The purpose of this paper is to investigate periodicity and con-
vergence of solutions by employing contraction mappings and limiting

quations.
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In Section 3, we show the existence of a periodic’ solution of

(2) and its attractivity.

2. NOTATIONS AND PRELIMINARY RESULTS

Let R and R denote the intervals O0<t<e, and -w<f<®, re-
spectively. Let a, p : R = Rn, D, P : A"xR™ + R® and E, Q : AT x
Rn - Rn are continuous, where A :={(%,8) : s<t} and A+:={(t,3)
g=t}. Moreover,

p(t+T)=p(t), and q(t):=a(t)-p(t) » 0 as ¢ -» =, (3)
where 7T>0 1is constant,

P(t+T,s+T,z)=P(¢t, 8, z), and F(t,s,x):=D(t,s,$)—P(t,s,z), (4)

Q(t+T,s+T,z)=Q(¢t,8,z), and G(t, 8, x):=E(%,8,2)-Q(¢, 8,%), (5)

and for any J>0 there are continuous functions PJ, FJ : AT > RT

and Q GJ : A" » RY such that
PJ(t+T;S+T)=PJ(t,S) if s9x<t,
IP(t,s,m)ISPJ(tﬂs) if s<t and |zl<d,
|F(t, 8, 2)|<F;(£,8) if s<t and lzl<d,
Q,;(t+T, 8+7)=Q,; (%, 8) if 32§,

|Q(t,s.m)lsQJ(t.s) if s2t and |z|<d,
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IG(t,S.:z:)ISGJ(t,s) if 82t and |zl|<J,
where |:| denotes the Euclidean norm of R, and

J'E;TPJ(t, 8)d8+J.:+_C(QJ(t, 8)+GJ(t’ 8))ds » 0
(6)

uniformly for teR as t = =,

and
t oo

fOFJ(t,s)ds+fth(t,s)ds 50 as t o . (7)

Remark. From Lemma 1 in [6], it is easy to see that Condition
(8) with GJ(t.S)EO is equivalent to the condition that IfWPJ(t,s)ds
and I:QJ(t,s)ds are continuous in t.

Now let (C,l-ll) be the Banach space of bounded and continuous
functions & : R - R™ with the supremum norm. For any toe R+, let
C(to) be a set of bounded functions £ : R* » R®™ such that &(t) is

continuous on R’ except at to and &(t0)=€(t0+). For any &£ ¢0C,

define a map H on € by
(He) (1) :=p(1)+ [ P(t, 5, 8(9))ds [Ja(t, 5, 8 (s))ds,  teR.
Similarly for any & EC(tO), define a map H' on C(to) by
(H'8) () :=a(£)+[ED(t, 5, £(5))ds+ [$E (L, 5, £ () )ds,  tat.

Moreover, for any J>0 let CJ:={£€ C : lEgl<d}, CJ(tO):={£6:C(tO)

Hgl,<J}, where |-ll, denotes the supremum norm on R*.
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First we prepare two basic lemmas.

Lemma 1. Under the assumptions (3)-(6), the following hold.
(i) For any J>0 there is a continuous incereasing function &=

SJ(S) : (0,2) » (0,») with
I(Hﬁ)(tl)—(Hﬁ)(tz)Re if ﬁéCJ and Itl—t2|<8.

(ii) If (7) holds, then for any toé RY and any J>0 there is

a continuous inereasing function 8+=5t J(e) : (0,») » (0,») with
o!

| (B8 (£)-(H'E) (ty) I<e if £€Cy(8,) amd fost <t <t +s".

Since this lemma can be proved easily by an elementary method,

we omit the proof.

Lemma 2. Under the assumptions (3)-(6), the following hold.

(1) If (7) holds, and if (1) has an R*-bounded solution z(t)
with an initial time in R', then for any sequence {sk} of non-—
negative numbers with 8 * ® as k » », the sequence of functions
{:z:k(t)} contains a subsequence which converges to an R-bounded

solution y(t)k of the equation
a:(t)=p(t+o)+J1i’wP(t+o,s+o,:1:(s))ds+f¥Q(t+o,s+o,$(9))ds, tER (2)

uniformly on any compact subsel of R, where xk(t) i8 defined by

z(0), t<-sk,
mk(t):= tc R,
:z:(t+sk), tz-sk,
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¢ i8 a number with 0<o<l, and y(t) satisfies (2,) on R.

(ii) If (2) has an R-bounded solution z(t) with an initial
time in R, then for any sequence {sk} with 8, » ® as k » = the
seqience of funetions {xk(t)} contaings a subsequence which con-
verges to an R-bounded solution y(t) of (20) uniformly on any
compact subsel of R, where xk(t):=x(t+sk), téR, o is a number
with 0<0<7T, and y(t) satisfies (20) on R. In particular, if (2)
has an R-bounded solution x(t) which satisfies (2) on R, then the

same conclusion holds for any sequence {sk}.

Proof. (i) Let toéER+ be the initial time of z(t), and let
z(t) denote again the R-extension of the function «(t) obtained by
defining x(t):=z(0) for ¢<0. Clearly the set {zk(t)} is uni-
formly bounded on R. Taking a subsequence if necessary, we may as-
sume that the sequence {sk} is nondecreasing. From Lemma 1, z(t)
is uniformly continuous on [to,w), and since mk(t) is obtained by
an sk—translation of z(f) to the left, for any J ¢N, the set
{mk(t)}kzj is equicontinuous on [to—sj,m), where N denotes the
set of positive integers. Thus, taking a subsequence if necessary,
we may assume that the sequence {zk(t)} converges to a bounded con-
tinuous function () uniformly on any compact subset of R.

Now we show that (%) satisfies (20) on R for some ¢ with
0<o<T. For each k¢N, let v, be an integer with vassk<(vk+l)T,
and let ok:=3k—va. Then, taking a subsequence if necessary, we may
assume that {ok} converges to some ¢ with O0<o<7T. From (1), for

tzto—sk we have

zk(t)=p(t+ok)+q(t+sk)
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(7),

and

Now
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Pt t+sk

*] _SkP(t+ok, 8+0; ,Z; () )ds+_[0 F(t+9k, 8,z(8))ds (8)

+’:Q(t+ok,s+ak,mk(s))ds+f§+3kc(t+sk,s.z(s))ds.

J>0 be a number with lizll:=sup{|z(¢t)| : t€R}<J. From (3) and

for any t€R we obtain

lim q(t+3k)=0.
k=

t+sk t+sk
limsup l 0 F(t+sk,s,m(s))dsl$limsup 0 FJ(t+sk,s)ds=0,,

ke k-

111’1(1_s)gp Ift+skc(t+8k’ 8, z(8))ds slu;_s)gp It+SkGJ(t+sk.s)ds=0.

from (6), for any &>0 there is a >0 with

J‘f;th(t’S)d9+J’:+tQJ(t,9)d8<8 for all t€R.

From this, for any t€R we have

limsup l‘rfs P(t+ok, 8+0,, :z:k(s) )ds-ffmp( t+o, 8+0,¥(8))ds
k

k-
+J':Q( t+ok. 8+0,, :ck(s) )ds—J"ZQ(tw, s+0, ¥y (8) )ds|

<timsup | [ (P(t+a,, s+0,, 2, (8))-P(t+0, 8+0,¥(8)))ds]

ks
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tr . o
+1imsup ( Ewth(t+°k’S+°k)dS+It+fQJ(t+ak'S+°g’mk(3))d9)

kbo °

t]
+1imsup | §+"(Q(t+ck. s+0,, %, (8))-Q(t+0, 8+0, ¥(8))ds|

koo

+J)f;tPJ( t+o, 8+0,y(8) )dS+I:+tQJ(t+o' 8+0)d8<2g,

which implies lim(IfSkP(t+ok,s+ok;mk(3))ds+I:Q(t+ok,s+ok,zk(s))ds)

ko

=IEwP(t+o,s+a,y(s))ds+f:Q(t+o.s+o,y(s))ds. Thus, letting k. - o« in

(8), we obtain
- t bt
y(t)-p(t+0)+f_mP(t+c,s+0.y(s))ds+ItQ(t+o.s+o,y(s))ds, teRrR. (9)

Since (ZT) is equivalent to (20), (9) shows that ¥%(t) 1is an R-
bounded solution of (20) with 0<£o<I' which satisfies (20) on R.
(ii) This part can be easily proved by a similar method to the

one in (1).
3. PERIODIC SOLUTIONS AND ATTRACTIVITY

In this section, we investigate the existence of a I-periodic
solution of (2) and its attractivity by employing contraction map-
pings and limiting equations.

First we note that for any p and o with 0<p, o<T, if (20)
has an R-bounded solution which satisfies (Zp) on R, then (2,) has
an R-bounded solution which satisfies (20) on R. From this fact and

Lemma 2, we have the following theorem.

Theorem 1. [If (3)-(6) hold, and if (2) has a unique_R—bounded

solution zo(t) which satisfies (2) on R, then the following hold.



117

(i) The solution zo(t) is T-periodic.

(ii) If (7) holds, then any‘R+—bounded solution of (1) with any
initial time in RY is asymptotically T-periodice, and approaches
mo(t) as t » =,

(iii) Any R-bounded solution of (2) with any initial time in R

is asymptotically T-periodie, and approaches zo(t) as t o o,

Proof. (1) Let ml(t) be a function obtained by the T-
translation of mo(t) to the left. Then, clearly xl(t) is also
an R-bounded solution of (2) which satisfies (2) on R. Thus, from
the uniqueness of R-bounded solutions which satisfy (2) on R, mo(t)
and zl(t) must be identical on R, that is, mo(t) is T-periodic.

(i1) Let 2(t) be an R'-bounded solution of (1) with an i-
nitial time in R’, and let mk(t) be the sequence of functions as
in Lemma 2 with sk=kT. Then, from‘Lemma 2(1i) and the uniqueness of
R-bounded solutions which satisfy (2) on R, it is easy to see that
mk(t) converges to xo(t) uniformly on [0,T]. This implies that
z(t) 1is asymptotically T-periodic and its T-periodic part is given
by ,(1).

(iii) From Lemma 2(ii), this part can be easily proved by a

similar method to the one in (ii).

Among the assumptions of Theorem 1, the uniqueness of R-bounded
solutions of (2) which satisfy (2) on R seems to be most important.
Here we give a condition of contraction type which assures the u-
niqueness of R-bounded solutions of (2) which satisfy (2) on R.

Suppose that p : A = R, L} : A" =+ R', and L} : A" 2 RT are

continuous functions such that

IP(t.s.m)—P(t,s,y)ISL}(t.s)Iz~yI if (¢, 8)ea, lzl, lylsd (10)
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and
lQ(t, s, 2)-Q(t, 8, 9) 1L (8 8) lz-y| if (t,8) €a”, |zl, lylss. (11)
Then we have the following lemma.
Lemma 3. In addition to (10) and (11), if for any J>0
xgi=sup{[£ L7 (2, $)ds+[TLY (L, 9)ds + ¢ eR}<1 (12)

holds, then (2) has at most one R-bounded solution which satisfies

(2) on R.

Proof. Let zi(t)‘(i=1,2) be R-bounded solutions of (2) which
satisfy (2) on R with HziHSJ (i=1,2), and let z(t):=zl(t)—mz(t),
t¢€R. Then, from (2) we have

z(t)=[%,(P(t, 5,2, ())-P(L,5,7,(5)) )ds
3@t 8,2, (9))-Q(t, 8, 25(2)))ds,  teR
which together with (10) and (11) yields

12(8) 1<[? L3t 5) 12(s) lds+[L5 (%, 8) | z(s) Ids
(13)

([T L7t 8)ds [3L5 (2, 9)do) Nzisajlzl,  teR.

Thus, (12) and (13) imply that 2(f)=z0 on R.

Using Theorem 1(iii) and Lemma 3, we have the following theorem.
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Theorem 2. In addition to (3)-(8) and (10)-(12), if
A:=sup{AJ  J>0)<1 (14)

holds, then (2) has a unique I'-periodic solution, and if is a unique
R;bounded solution which satisfies (2) on R. Moreover, any R-
bounded solution of (2) with an initial time tp € R and a bounded
continuous initial function ¢ : (==, t5) = R™ approaches the T-

periodic solution as t = «.

Proof. First we prove that (2) has a unique T-periodic solution.
Let (PT,H'H) be the Banach space of continuous T-periodic functions
E : R~ Rn with the supremum norm (-, and define a map H on PT

by
. e 2 o :
(Ht)(t).—p(t)+f_wP(t.s,s(s))ds+ft9(t,s,E(s))ds. tE€R.

Then, from (3)-(6), it is easy to sée that H maps PT into PT’
Moreover, for any Eié PT with ﬂEiHSJ (£=1,2) for some J>0, we

have
| (HE,) (£)-(HE,) (1) |
<[E L3t 8) 18, (8)-8,(8) lds+[FLY (4 8) 18, (s)-2,(s) Ids
e 8,0, tER,

which together with (14) yields HHE1~HE2H$Aﬂﬁl-€2ﬂ. Thus # :‘PT >

P is a contraction mapping. Hence H has a unique fixed point in

T
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PT’ which gives a unique T-periodic solution of (2), say n(t).
Next, from Lemma 3, n(t) 1is the unique R-bounded solution of
(2) which satisfies (2) on R. Thus, the latter part is a direct

consequence of Theorem 1(iii).

In Theorem 1(ii), the existence of an R*-bounded solution of (1)
with an initial time in R’ is assumed. Here we consider a few
cases where the existence of R*-bounded solutions of (1) with
F(t,s,z)=0 and G(&t,s8,z)=0 1is assured.

Consider the equation
t oo S
z(t)=a(t)+I0P(t.s.x(s))ds+ItQ(t.s,z(s))ds. teER, (15)

where a : R' » R™ 1is bounded continuous, and P : A xR" + R" and
Q : A"XR"® » R® are continuous and satisfies (10), (11) and (14).

Lét (B.H-H+) be the Banach space of bounded continuous functions ¢
: R+ - Rn with the supremum norm H-H+, and define a map H on B
by

+

(HE) (£):=a(t)+[EP(t 8, z(9))ds+[FQ(t, 8, 2(9))ds, tER".

Then it is easy to see that H 1is a contraction mapping from B
into B. Thus H has a unique fixed point, which gives a unique R*-
bounded solution of (15) which satisfies (15) on R'. From this and

Theorems 1 and 2, we have the following theorem.

Theorem 3. Suppose that (3)-(8), (10), (11) and (14) hold.
Then (15) has a unique R*-bounded solution which satisfies (15) on
RY and (2) has a unique T-periodic solution. Moreover, any R -

bounded .solution m(t)=z(t,t0,¢) of (15) approaches the unique T-
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periodic solution of (2) as t -» », where tOéR+ and ¢ : [o,to) -

Rn i3 bounded and continuous.

Proof. It is easy to see that (15) has a unique R*-bounded so-
lution which satisfies (15) on R+, say £€(t). Let E&(f) denote
again the R-extension of the given &(f) obtained by defining E(%)
:=£(0)=a(0) for <0, and for any k€N, let g (1)=E(1+kI), tEé€R.
Since Theorem 2 implies that (2) has a unique T-periodic solution,
say n(t), and it is a unique R-bounded solution of (2) satisfying
(2) on R, by Lemma 2(i), it is easily seen that Ek(t) converges to
n(t) uniformly on [0,T] as k = «. Thus we obtain E(t)-rn(f) - O

as t =» o, The latter part follows directly from Theorem 1(iii).

Next consider (2) under (3)-(8), and suppose that (2) has a u-
nique R-bounded solution satisfying (2) on R, say n(t). Then it is
T-periodic and it is easy to see that n(tf) 1is a solution of the e-

quation
t ® +
z(t)=p(t)+r(t)+[EP(L, 5, a(s))ds+ [7Q(t 8, m(8))ds, TR, (16)

where r(t):=I9wP(t,s,n(s))ds, t¢R'. Moreover, from (6) we have
that »(t) is continuous and r(tf) » 0 as ¢ - =. Thus (16) is a
special case of (1) with q(&)=r(t), F(t, 8,2)=0 and G(i,8,2)=0.
From Theorem 1 and the argument in the proof of Theorem 3, we obtain

the following corollary.

Corollary. Suppose that (3)-(8) hold, and that (2) has a unique
R-bounded solution satisfying (2) on R, say m(t). Then it is T-
periodic and n(t) 1is a unique R'-bounded solution of (16) which

gsatisfies (18) omn RY, and any R*-bounded solution m(t)=z(t,t0.¢)
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of (16) approaches n(t) as t =+ «, where toé-R+ and ¢ : [O,to) -

R" is bounded and continuous.
Now we show an example.
Example. Consider the scalar linear equation

m(t)=p(t)+affm63_t(cos t)z(s)ds+8f:et_s(sin t)x(s)ds, teR, (17)

where p : R+ R 1is continuous 2n-periodic, and o« and 8 are
constants with |e|+|B|<1. Eq. (17) is a special case of (2) with =
=1, P(t, 8 z)=ae° t(cos t)z and Q(t s z)=Be’ (sin t)z. Thus, (3)-
(6), (10) with L:I(t.s)=|a|es_t, (11) with L}(t,s)=|s|et‘3, and (14)
with a=|a|+|8] hold. Thus, from Theorem 2, (17) has a unique R-
bounded solution satisfying (17) on R, say n(t), and it is 2m-
periodic, and any R-bounded solution of (17) with an initial time to
¢ R and a bounded continuous initial function @ : (—w,to) -+ R ap-
proaches n(t) as & = =,

On the other hand, n(f) 1is a unique R*-bounded solution of the

equation

x(t)=p(t)+afgwes_t(eos t)n(s)ds+a ges_t(cos t)z(s)ds
teR" (18)
+8[3e 2 (sin t)z(s)ds,

which satisfies (18) on R+. Moreover, from Corollary, any R"-
bounded solution x(t)=m(t,t0.¢) of (15) approaches the 2mn-periodic
solution n(t) of (18) as ¢ = =, where toérR+ and ¢ : [O,to) -

Rn is bounded and continuous.
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