

Title	MINIMUM-TIME PROBLEM OF NONLINEAR CONTROL SYSTEM ON SEPARABLE REFLEXIVE BANACH SPACES(Nonlinear Analysis and Convex Analysis)
Author(s)	PARK, JONG-YEOUL; RYU, JONG-WON; KWUN, YOUNG-CHEL
Citation	数理解析研究所講究録 (1996), 939: 110-119
Issue Date	1996-02
URL	http://hdl.handle.net/2433/60084
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

MINIMUM-TIME PROBLEM OF NONLINEAR CONTROL SYSTEM ON SEPARABLE REFLEXIVE BANACH SPACES

JONG-YEOUL PARK, JONG-WON RYU AND YOUNG-CHEL KWUN

1. Introduction

We consider the nonlinear control system N_0 given by

$$\begin{cases} \dot{x}(t) = A_0 x(t) + F x(t) + B_0 u(t), & t \ge 0 \\ x(0) = x_0 \end{cases}$$

in the separable reflexive Banach space X_0 . Along with N_0 , the sequence $\{N_n\}, n = 1, 2, \dots$, of perturbed equations

$$\begin{cases} \dot{x}_n(t) = A_n x_n(t) + F x_n(t) + B_n u_n(t), & t \ge 0 \\ x_n(0) = x_{0,n} \end{cases}$$

in the separable reflexive Banach spaces X_n is considered with the mild solution

$$x_n(t) = S_n(t)x_{0,n} + \int_0^t S_n(t-s)\{Fx_n(s) + B_nu_n(s)\}ds$$

for every $u_n(\cdot) \in Y_n$, where Y_n is a control space and $B_n \in \mathcal{L}(Y_n, X_n)$. The operator A_n and the nonlinear operator F are assumed to satisfy that A_n generates a strongly continuous semigroup of bounded linear operator $S_n(t), t \geq 0$, on X_n and $A_n + F$ is strongly dissipative. $u_n(\cdot)$ is a locally summable function.

Linear case (F=0) of above systems in Hilbert space have been treated by Carija ([3]).

In this paper, we consider the case where $B_n = I_n$ (the identity operator in X_n) and we are to prove the existence of minimal time for the nonlinear system N_0 which steers initial value x_0 to the target x_1 and to give conditions for the convergence of the sequence of minimal times for the nonlinear approximate system N_n on X_n , $n = 1, 2, \dots$, to the minimal time for the original system N_0 on X_0 .

2. MINIMUM-TIME PROBLEM

We consider the nonlinear control systems

$$\dot{x}_n(t) = A_n x_n(t) + F x_n(t) + u_n(t) \quad t \ge 0$$

in the separable reflexive Banach spaces X_n , $n=0,1,2,\cdots$, with the mild solutions

(2)
$$x_n(t) = S_n(t)x_{0,n} + \int_0^t S_n(t-s)\{Fx_n(t) + u_n(s)\}ds.$$

For each $n \geq 0$, the set U_{ad}^n of admissible controls is defined by

$$U_{ad}^n = \{ \text{strongly measurable function } u_n(\cdot); \ u_n(t) \in Y_n,$$
 $\|u_n(t)\| \le 1, \text{ a.e.} \}.$

For $n \geq 0$, define

$$R_n(t) = \{(x_{0,n}, x_{1,n}) \in X_n \times X_n; x_n(0) = x_{0,n}, x_n(t) = x_{1,n},$$
 for some $u_n \in U_{ad}^n \}$

where $x_n(t)$ is given by (2). Define also

$$R_n = \cup_{t>0} R_n(t)$$

and the minimal-time function $T_n: R_n \to R^1$,

$$T_n(x_{0,n},x_{1,n})=\inf\{t:\ (x_{0,n},x_{1,n})\in R_n(t)\}.$$

We now list the assumptions which will be in effect throughout this paper:

(A1) there exist M > 0 and $\omega \ge 0$, such that, for n = 0, 1, 2, ... and $t \ge 0$,

$$||S_n(t)|| \leq Me^{\omega t}$$

where M and ω are independent of n,

- (A2) $S_n(t)$ is compact,
- (A3) $S_n(t) \rightarrow S_0(t)$, uniformly for t in bounded intervals,
- (A4) $S_n^*(t) \rightarrow S_0^*(t)$, uniformly for t in bounded intervals.
- (F1) the nonlinear function F is Lipschitz continuous: there exists a constant c, such that

$$||Fx_n - Fy_n|| \le c||x_n - y_n||, \quad x_n, y_n \in X_n,$$

(F2) F has a linear growth rate on X_n ; these exists a constant k > 0, such that

$$||Fx_n|| \leq k(1+||x_n||).$$

THEOREM 1. If $x_0 \in X_0$ and $x_1 \in D(A_0)$, such that

(3)
$$||(A_0 + F)x_1|| + \omega ||x_0 - x_1|| < 1 for \omega > 0$$

holds, then there exists $u \in U_{ad}^0$ which steers x_0 to x_1 in a time T_0 satisfying

(4)
$$T_0 \leq \omega^{-1} \log \left\{ \frac{1 - \|(A_0 + F)x_1\|}{1 - \|(A_0 + F)x_1\| - \omega \|x_0 - x_1\|} \right\}$$

Proof. Consider the nonlinear equation

(5)
$$\begin{cases} \dot{x}(t) = A_0 x(t) + F x(t) - sign(x(t) - x_1) \\ x(0) = x_0 \in D(A_0) \end{cases}$$

where

$$sign(y) = y/||y||, y \neq 0,$$

 $sign(0) = \{z \in X : ||z|| \leq 1\}.$

Thus, multiplying equation (5) with $x(t) - x_1 \neq 0$, using the dissipative of $A_0 + F$, multiplying by $e^{-2\omega t}$ and then integrating 0 to t(see [4]). We have

$$e^{-2\omega t} \|x(t) - x_1\|^2$$

$$\leq \|x_0 - x_1\|^2 - 2\int_0^t e^{-2\omega s} (1 - \|(A_0 + F)x_1\|) \|x(s) - x_1\| ds.$$

By Gronwall's inequality,

$$e^{-\omega t} \| x(t) - x_1 \|$$

$$\leq \| x_0 - x_1 \| - \int_0^t e^{-\omega s} (1 - \| (A_0 + F)x_1 \|) ds$$

and then,

$$e^{-\omega t} \|x(t) - x_1\|$$

$$\leq \|x_0 - x_1\| + \omega^{-1} (1 - \|(A_0 + F)x_1\|) e^{-\omega t} - \omega^{-1} (1 - \|(A_0 + F)x_1\|).$$

Thus

$$||x(t) - x_1|| \le e^{\omega t} ||x_0 - x_1|| - \omega^{-1} (1 - ||(A_0 + F)x_1||) e^{\omega t} + \omega^{-1} (1 - ||(A_0 + F)x_1||).$$

Let $x(t) \rightarrow x_1$, then

$$e^{\omega T_0}\{(1-\|(A_0+F)x_1\|)-\omega\|x_0-x_1\|\} \leq 1-\|(A_0+F)x_1\|).$$

We also

$$e^{\omega T_0} \leq \frac{1 - \|(A_0 + F)x_1\|}{1 - \|(A_0 + F)x_1\| - \omega \|x_0 - x_1\|}.$$

Hence

$$T_0 \leq \omega^{-1} \log \left\{ \frac{1 - \|(A_0 + F)x_1\|}{1 - \|(A_0 + F)x_1\| - \omega\|x_0 - x_1\|} \right\}.$$

We will assume that a mild solution exists for every $u_n(\cdot) \in L^p_{Y_n}$ and clearly, because of (F1), is unique.

LEMMA 1. Let conditions (A1)-(A4), (F1)-(F2) and

(B1)
$$x_{0,n} \to x_0, x_{1,n} \to x_1$$

be satisfied. If

$$(6) (x_{0,n}, x_{1,n}) \in R_n(t_n)$$

$$(7) t_n \to T, u_n \to u as n \to \infty$$

then $(x_0, x_1) \in R_0(T)$.

Proof. Condition (6) implies that there exists $u_n \in U_{ad}^n$ such that

$$x_{1,n} = S_n(t_n)x_{0,n} + \int_0^{t_n} S_n(t_n - s) \{Fx_{1,n}(s) + u_n(s)\} ds$$

By (7), there exists T_0 such that

$$t_n \leq T_0, n \geq 1.$$

For every $n \geq 1$ and every $t \in [0, T_0]$, we have

$$||x_{1,n} - x_1||$$

$$= ||S_n(t_n)x_{0,n} + \int_0^{t_n} S_n(t_n - s)\{Fx_{1,n}(s) + u_n(s)\}ds$$

$$- S_0(T)x_0 - \int_0^T S_0(T - s)\{Fx_1(s) + u(s)\}ds||$$

$$\leq ||S_n(t_n)x_{0,n} - S_0(T)x_0||$$

$$+ ||\int_0^{t_n} S_n(t_n - s)u_n(s)ds - \int_0^T S_0(T - s)u(s)ds||$$

$$+ \| \int_0^{t_n} S_n(t_n - s) F_{x_{1,n}}(s) ds - \int_0^T S_0(T - s) F_{x_1}(s) ds \|$$

$$= I + II + III.$$

First, it is not hard to show that

$$S_n(t_n)x_{0,n} \rightarrow S_0(T)x_0.$$

$$II \leq \| \int_{T}^{t_{n}} S_{n}(t_{n} - s)u_{n}(s)ds \|$$

$$+ \| \int_{0}^{T} (S_{n}(t_{n} - s)u_{n}(s) - S_{0}(T - s)u_{n}(s))ds \|$$

$$+ \| \int_{0}^{T} (S_{0}(T - s)u_{n}(s) - S_{0}(T - s)u(s))ds \|.$$

The first term converges to zero by (A1). The second term converges to zero by (A4). For the moment, let us concentrate on the third term. From the Hahn-Banach theorem, we know that we can find $x_n^* \in B_1^* = \text{dual unit ball such that}$

$$|(\int_0^T S_0(T-s)(u_n(s)-u(s))ds, \ x_n^*)|$$

$$= \|\int_0^T (S_0(T-s)u_n(s)-S_0(T-s)u(s))ds\|$$

$$\Rightarrow |\int_0^T (u_n(s)-u(s), \ S_0^*(T-s)x_n^*)ds|$$

$$= \|\int_0^T (S_0(T-s)u_n(s)-S_0(T-s)u(s))ds\|.$$

From Schauder's theorem, we know that, for T>s, $S_0^*(T-s)$ is compact. By Alaoglu's theorem, we know that B_1^* is w-compact. So by passing to subsequence if necessary, we may assume that $x_n^*\to x^*\in B_1^*$. Hence, $S_0^*(T-s)x_n^*\to z^*(t)$. Since $u_n\rightharpoonup u$,

$$\begin{split} & |\int_0^t (u_n(s) - u(s), \ S_0^*(T - s)x_n^*) ds| \ \to \ 0 \\ \Rightarrow & \| \int_0^t S_0(T - s)(u_n(s) - u(s)) ds \| \ \to \ 0, \end{split}$$

as $n \to \infty$.

$$III \leq \| \int_{T}^{t_{n}} S_{n}(t_{n} - s)Fx_{1,n}(s)ds \|$$

$$+ \| \int_{0}^{T} (S_{n}(t_{n} - s)Fx_{1,n}(s) - S_{n}(t_{n} - s)Fx_{1}(s))ds \|$$

$$+ \| \int_{0}^{T} (S_{n}(t_{n} - s)Fx_{1}(s) - S_{0}(T - s)Fx_{1}(s))ds \|.$$

First and third term converges to zero. Let

$$r_n(t) = I + II + [First and third term of III] \rightarrow 0,$$

as $n \to \infty$. We have

$$||x_{1,n}(t) - x(t)||$$

$$\leq r_n(t) + ||\int_0^T (S_n(t_n - s)Fx_{1,n}(s) - S_n(t_n - s)Fx_1(s))ds||$$

$$\leq r_n(t) + MK \int_0^T e^{\omega(t_n - s)} ||x_{1,n}(s) - x_1(s)|| ds.$$

Using Gronwall's inequality, we get that

$$||x_{1,n}(t) - x_1(t)||$$

$$\leq r_n(t) + MK \int_0^T r_n(s) e^{\omega(t_n - s)} \exp(\int_0^T e^{\omega(t_n - \tau)} d\tau) ds.$$

But note that $\int_0^T e^{\omega(t_n-\tau)} d\tau \leq R$. So we have

$$||x_{1,n}(t) - x_1(t)|| \le r_n(t) + MK \exp(R) \int_0^T e^{\omega(t_n - s)} r_n(s) ds.$$

Recall that, for all $t \in [0,T]$, $r_n(t) \to 0$. So using the dominated convergence theorem, we get that $r_n(\cdot) \to 0$. Since

$$\int_0^T e^{\omega(t_n-s)} r_n(s) ds \leq M' \|r_n\|,$$

$$\lim_{n\to\infty}\int_0^T e^{\omega(t_n-s)}r_n(s)ds \to 0.$$

Therefore

$$||x_{1,n}(t) - x_1(t)|| \rightarrow 0$$

as $n \to \infty$. Hence $x_{1,n}(t) \to x_1(t)$, as $n \to \infty$, for all $t \in [0,T]$.

LEMMA 2. Assume (A1)-(A4), (B1),

(B2)
$$x_1 \in D(A_0), \|(A_n + F)x_1\| < 1;$$

(B3)
$$x_{1,n} \in D(A_n), A_n x_{1,n} \to A_0 x_1.$$

If $(x_0, x_1) \in R_0(t)$, then there exists a sequence $\{\gamma_n\}$, convergent to zero, such that

(8)
$$(x_{0,n}, x_{1,n}) \in R_n(t+\gamma_n)$$

for n sufficiently large.

Proof. First of all, we prove the following assertion: if $y_n \to x_1$, then there exists a sequence $\{\gamma_n\}$ convergent to zero such that

$$(9) (y_n, x_{1,n}) \in R_n(\gamma_n)$$

for n sufficiently large. Indeed, since

$$||(A_0+F)x_1|| < 1,$$

there exists a positive integer n_1 such that, for $n \geq n_1$, we have

$$||(A_n+F)x_{1,n}|| \leq c_1 < 1.$$

Furthermore, since $y_n \rightarrow x_1$, we may conclude that

$$||(A_n+F)x_{1,n}|| + \omega||y_n-x_{1,n}|| < 1, n \ge n_1.$$

So, by Theorem 1, $x_{1,n}$ can be reached from y_n in a time T_n which satisfies

$$T_n \leq \omega^{-1} \log \left\{ \frac{1 - \|(A_n + F)x_{1,n}\|}{1 - \|(A_n + F)x_{1,n}\| - \omega\|y_n - x_{1,n}\|} \right\}.$$

Taking $\gamma_n = T_n$, we obtain (9) and $\gamma_n \to 0$ as $n \to \infty$ as claimed. Since $(x_0, x_1) \in R_0(t)$, there exists $u \in U^0_{ad}$ such that

(10)
$$x_1 = S_0(t)x_0 + \int_0^t S_0(t-s)\{Fx_1(s) + u(s)\}ds.$$

Denoting

(11)
$$y_n = S_n(t)x_{0,n} + \int_0^t S_n(t-s)\{Fy_n(s) + u_n(s)\}ds.$$

$$\begin{aligned} &\|y_{n}(t) - x_{1}(t)\| \\ &\leq \|S_{n}(t)x_{0,n} - S_{0}(t)x_{0}\| \\ &+ \|\int_{0}^{t} S_{n}(t-s)(Fy_{n}(s) + u(s))ds - \int_{0}^{t} S_{0}(t-s)(Fx_{1}(s) + u(s))ds\| \\ &\leq \|S_{n}(t)x_{0,n} - S_{0}(t)x_{0}\| \\ &+ \int_{0}^{t} \|S_{n}(t-s) - S_{0}(t-s)\| \|u_{n}(s)\| ds \\ &+ \int_{0}^{t} \|S_{0}(t-s)(u_{n}(s) - u(s))\| ds \\ &+ \int_{0}^{t} \|S_{n}(t-s) - S_{0}(t-s)\| \|Fx_{1}(s)\| ds \\ &+ \int_{0}^{t} \|S_{n}(t-s) - S_{0}(t-s)\| \|Fy_{n}(s) - Fx_{1}(s)\| ds \\ &= J1 + J2 + J3 + J4 + J5. \end{aligned}$$

J1, J2 and J4 are converge to zero as $n \to \infty$. By same method of Lemma 2, J3 is converge to zero as $n \to \infty$. Let $k_n(t) = J1 + J2 + J3 + J4 \to 0$ as $n \to \infty$. We have

$$||y_n(t) - x_1(t)||$$

$$\leq k_n(t) + \int_0^t ||S_n(t-s)|| ||Fy_n(s) - Fx_1(s)|| ds$$

$$\leq k_n(t) + MK \int_0^t e^{\omega(t-s)} ||y_n(s) - x_1(s)|| ds.$$

Using Gronwall's inequality, we get that

$$||y_n(t) - x_1(t)||$$

$$\leq k_n(t) + MK \int_0^t k_n(s)e^{\omega(t-s)} \exp(\int_0^t e^{\omega(t-\tau)} d\tau) ds.$$

But note that $\int_0^t e^{\omega(t-\tau)} d\tau \leq R'$. So, we have

$$||y_n(t) - x_1(t)|| \le k_n(t) + MK \exp(R') \int_0^t e^{\omega(t-s)} k_n(s) ds.$$

Recall that, for any t > 0, $k_n(t) \to 0$. So using the dominated convergence theorem, we get that $k_n(\cdot) \to 0$. Since

$$\int_0^t e^{\omega(t-s)} k_n(s) ds \leq M'' ||k_n||,$$

where M'' is constant,

$$\lim_{n\to\infty} \int_0^t e^{\omega(t-s)} k_n(s) ds \ \to \ 0.$$

Therefore $||y_n(t) - x_1(t)|| \to 0$ as $n \to \infty$. Hence $y_n \to x_1$, as $n \to \infty$, for any t > 0. Therefore, (9) holds for y_n defined by (11).

Finally, by (9) and (11), we obtain (8), thereby completing our proofs.

THEOREM 2. Under conditions (A1)-(A4), (F1)-(F2), assume that (B1)-(B3) and $(x_0, x_1) \in R_0$. Then, the following results hold:

(a) $(x_{0,n}, x_{1,n}) \in R_n$, for n sufficiently large.

(b) $\lim_{n\to\infty} T_n(x_{0,n}, x_{1,n}) = T_0(x_0, x_1).$

Proof. By Lemma 2, there exists a subsequence of $\{T_n(x_{0,n}, x_{1,n})\}$, denoted by $\{T_{n'}\}$, which converges, say to T'. Using once again Lemma 2, with $t = T_0(x_0, x_1)$, we obtain

$$T_{n'} \leq T_0(x_0, x_1) + \gamma_{n'}.$$

Hence, we obtain

$$T' \leq T_0(x_0, x_1).$$

Finally, using Lemma 1, we may infer that

$$T_0(x_0, x_1) \leq T',$$

and thus we obtain

$$T_0(x_0, x_1) = T'.$$

Since the last equality can be obtained for all convergent subsequence, the proof is complete.

References

- [1] N. U. Ahemed, Finite-Time Null Controllability for a Class of Linear Evolution Equations on a Banach Space with Control Constraints, JOTA Vol. 47, No. 2, PP 129-57, 1985.
- [2] O. Carja, On the Minimal Time Function for Distributed Control Systems in Banach Spaces, JOTA Vol. 44, No. 3, PP 397-406, 1984.
- [3] O. Carja, On Variational Perturbations of Control Problems: Mini- mum-Time Problem and Minimum-Effort Problem, JOTA Vol.44, No. 3, PP.407-33, 1984.
- [4] K. Naito, Feedback Controllability of a Semilinear Control System, Control-Theory and Advanced Technology Vol. 7, No. 2, PP. 217-36, 1991.

[5] N. S. Papageorgiou, Existence of Optimal Controls for Nonlinear Systems in Banach Spaces, JOTA Vol. 53, No.3, PP 451-9, 1987.

Dept. of Math., Pusan National University, Pusan 609-735, Korea

Dept. of Math., Dong-A University, Pusan 604-714, Korea