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MINIMUM-TIME PROBLEM OF NONLINEAR CONTROL
SYSTEM ON SEPARABLE REFLEXIVE BANACH SPACES

JONG-YEOUL PARK, JONG-WON RYU AND YOUNG-CHEL KWUN

1. INTRODUCTION

We consider the nonlinear control system Ny given by

{ #(t) = Aoz(t) + Fz(t) + Bou(t), t>0
z(0) = o

in the separable reflexive Banach space Xp. Along with Ny, the sequence {N,},n =
1,2,-- -, of perturbed equations

{ En(t) = Anzn(t) + Fza(t) + Bpua(t), t>0
.’I)n(O) = .‘Z,'o,n

in the separable reflexive Banach spaces X,, is considered with the mild solution

2a(t) = Sa(t)zon + /0 St — 8){Fan(s) + Butn(s)}ds

for every un(-) € Yy, where Y, is a control space and B, € £(Y,,X,). The operator
A, and the nonlinear operator F' are assumed to satisfy that A, generates a strongly
continuous semigroup of bounded linear operator S,(t),t > 0, on X, and A, + F' is
strongly dissipative. u,(-) is a locally summable function.

Linear case (F' = 0) of above systems in Hilbert space have been treated by Carija

(I3D-

In this paper, we consider the case where B,, = I,, (the identity operator in X,,) and
we are to prove the existence of minimal time for the nonlinear system Ny which steers
initial value z to the target z; and to give conditions for the convergence of the sequence
of minimal times for the nonlinear approximate system N,, on X, n =1,2,---, to the
minimal time for the original system Ny on X.
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2. MINIMUM-TIME PROBLEM

We consider the nonlinear control systems

(1) En(t) = Anzn(t) + Fzo(t) +ua(t) t20
in the separable reflexive Banach spaces X,, n=0,1,2,--, with the mild solutions
. t :
(2) Tn(t) = Sn(t)zon + / Sp(t — 8){Fzn(t) + un(s)}ds.
0

For each n > 0, the set U™, of admissible controls is defined by
n = {strongly measurable function un(-); un(t) € Ya,
lun(®)] £ 1, ae.}.
For n > 0, define
Ru(t) = {(o,n, T1,n) € Xn X Xn;20(0) = Zo,n, Tn(t) = 71,0,

for some u, € U}
where z,(t) is given by (2). Define also
Rp = UtsoRa(t)
and the minimal-time function T, : R, — R?,

To(2o,n,T1,0n) = inf{t: (Zo,n,1,n) € Ra(t)}.

We now list the assumptions which will be in effect throughout this paper:

(A1) there exist M >0 and w > 0, such that, for n = 0, 1,2, .. andt >0,
[Sa(®)l < Me**

where M and w are independent of n,

(A2) S,(t) is compact,
(A3) Sn(t) — So(t), uniformly for ¢ in bounded intervals,
(A4) S%(t) — Sg(t), uniformly for ¢ in bounded intervals.

(F1) the nonlinear function F is Lipschitz continuous:

there exists a constant ¢, such that

”Fl'n - Fyn" < C"-'Bn - yn“a Ty Yn € Xn,

(F2) F has a linear growth rate on X,; these exists a constant k > 0, such that
[Fzn|| < k(1+|al))-
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THEOREM 1. Ifzq € X, and z; € D(Ay), such that
3) (Ao + Fz1|| + w|lzo —z1]| <1 for w>0
holds, then there exists u € Ugd which steers o to z; in a time Ty satisfying

1 — ||(Ao + F)a ||

4 T, < w1l
4) 0 < Wl { T e T wles — ol

Proof. Consider the nonlinear equation

®) { z(t) = Agz(t) + Fz(t) — sign(z(t) — z1)

.’E(O) = o9 € .D(Ao)
where

sign(y) =y/llyll,  y#0,
sign(0) ={z € X : ||z|| £1}.

Thus,multiplying equation (5) with z(t) — z; # 0, using the dissipative of Ay + F,
multiplying by e~2“! and then integrating 0 to t(see [4]). We have

e |la(t) — za||*

t
< llwo — 2|l - 2/ e (1 = [|(Ao + F)z1|)ll(s) — z1]lds.
0

By Gronwall’s inequality,
e lx(t) — =

t
<l -zl = [ (1= (o + F)aal)ds
0

and then,

™|z (t) — 2|
< llwo — 21l + w1 = ||(4o + F)zal)e™" — w™ (1 = [|(4o + F)za).

Thus

ll=() — 21l
< ellzo — 21|l —w (1 = [|(4o + F)z1[)e”* +w ™ (1 = [|(Ao + F)aza]).
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Let z(t) — =1, then

eI {(1 = [|(Ao + F)z1||) — wllwo — 1]} < 1—[|(Ao + F)zs ).

We also
o 1 —[|(Ao + F)z4|
e < )
1—[(4o + F)a1 || — wllzo — o]
Hence 1—||(Ao + F)a ||
T, < w1 L :
oS w °g{1-||(A0+F)m1||—wllwo—w1||}

We will assume that a mild solution exists for every u.(-) € L, and clearly, because
of (F1), is unique. ’

LEMMA 1. Let conditions (Al)-(A4), (F1)-(F2) and
(Bl) _ Zo,n — Toy, Tin — T2
be satisfied. If

(6) (Zo,n, T1,n) € Ra(ta)

) th = T, up — u a8 n— oo
then (zo,z1) € Ro(T).

Proof. Condition (6) implies that there exists u, € U}, such that

tn

Zi,n = Sn(tn)mo,n + Sn(tn - 3){F$1,n(3) + un(s)}ds
0

By (7), there exists Tp such that
ta < Ty, n>1.
For every n > 1 and every t € [0,Tp], we have

l£1,n — 1|
tn

= ||Sn(tn)zo,n + A Su(tn — $){Fz1,n(s) + un(s)}ds

T
— So(T)zo — /0 So(T — s){Fz1(s) + u(s)}ds||
< [1Sn(ta)z0,n — So(T)ol|

tn

T
+ |l ; Su(tn — 8)un(s)ds — ‘/(; So(T — s)u(s)ds||
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tn

+1l [ Su(tn — 8)Fosn(s)ds — / " So(T — 8)Fa(s)ds]
=TI+ IIO + II1. ’
First, it is not hard to show that
Sa(tn)ro,n — So(T)zo.

tn

Ir <| g Sn(tn—s)un(s)ds”
T
+1 / (Sa(tn — 8)un(s) — So(T — s)un(s))ds]|

T
+1 / (So(T — 8)un(s) — So(T — s)u(s))ds]l.

The first term converges to zero by (Al). The second term converges to zero by (A4).
For the moment, let us concentrate on the third term. From the Hahn-Banach theorem,
we know that we can find z}, € Bf = dual unit ball such that

T
(] Su(T = 9)un(s) = u(s))ds, 23]
0T
=1 [ (So(T = s)un(s) = So(T = shus))ds]
OT
> 1 o) = ul), S5 as

T
| / (So(T = 5)un(s) — So(T — s)u(s))ds]l.

From Schauder’s theorem, we know that, for T > s, S§(T —s) is compact. By Alaoglu’s
theorem, we know that B} is w-compact. So by passing to subsequence if necessary, we
may assume that z;, — z* € B}. Hence, S§(T — s)z¥, — 2z*(¢). Since u, — u,

| / (un(s) — u(s), S3(T — s)an)ds| — 0
> | / So(T — 5)(tn(s) — u(s))ds|| — 0,

asn — 00.
tn

IIT <|| . Sn(tn — 8)Fz1 q(s)ds||
T
+1 /0 (Su(ts — )F1,0(5) — Sultn — 8)Fo(s))ds|

T
+ ||/(; (Sn(tn — s)Fz1(s) — So(T — s)Fz1(s))ds||.



First and third term converges to zero. Let
ro(t) = I+ II+ [First and third term of III] — O,

asn — o00. We have
llz1,2(t) — ()|l
T
< ra(t) + || / (Sn(tn — 8)Fz1,n(8) — Sa(tn — 3)Fz1(s))ds||
° T
< ro(t)+ MK /0 (=92 o (s) — 21(s)||ds.

Using Gronwall’s inequality, we get that

l£1,2(2) — z1 (D)l

T T
< ra(t)+ MK/ ro(s)e?(tn—) exp(/ e“(tn=7) dr)ds.
0 0

But note that foT e“(tn=7)dr < R. So we have

T
£1,2(t) — 21(@)]| < ralt) + MK exp(R) /0 e“(tn =)y (s)ds.
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Recall that, for all ¢ € [0,T], ro(t) — 0. So using the dominated convergence

theorem, we get that r,(-) — 0. Since

T
/ e“’(t"_s)rn(s)ds < M'||ra|l,

0

T
lim e“(tn=3r (5)ds — 0.
n—00 0

Therefore
lz1,(t) — z1(8)|| — O

asn — oo. Hence z; ,(t) — z1(t), as n — oo, for all ¢ € [0, T.

LEMMA 2. Assume (Al)-(A4), (B1),

(B2) 1 € D(4p), ||(An+ F)zi| < 15

(B3) : Tin € D(An), An:cl,,, — Apz:.
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If (zo,71) € Ro(t), then there exists a sequence {v,}, convergent to zero, such that

(8) (:BO,n, zl,n) € Rn(t“l"Yn)

for n sufficiently large.

Proof. First of all, we prove the following assertion: if y, — =z, then there exists a
sequence {75} convergent to zero such that

(9) (Un, T1,0) € Rn(7a)
for n sufficiently large. Indeed, since

(Ao + Fzq|| < 1,
there exists a positive integer ny such that, for n > n;, we have

(A + F)z1p]] < a1 < 1.
Furthermore, since y, — z;, we may conclude that
[(An + F)z1nll + wllyn — 21,8l < 1, n2>ny.

So, by Theorem 1, z; ,, can be reached from y, in a time T}, which satisfies

1 — [|(4n + F)z1 ||

T, < wllo .
S T T Foral = wlive —oial)

Taking 7, = Tn, we obtain (9) and 9, — 0 asn — oo as claimed. Since
(zo,71) € Ro(t), there exists u € U, such that

- (10) z; = So(t)xo+/o So(t — s){Fz1(s) + u(s)}ds.

Denoting

- (11) Yn = Sn(t)zo,n +/o Sa(t — $){Fyn(s) + un(s)}ds.
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lya(t) — z1(B)]
< ||Sn(t)zo,n — So(t)zoll

+ / Sult — 8)(Fya(s) + u(s))ds — / So(t — 8)(Fa(s) + u(s))ds]
< |ISn(t)zo,n — So(t)zoll

+ /ot Sa(t = s) — So(t — s)|l[lun(s)||ds
+ [ 15t = s)(ua(s) — u(s)lds
+ /0 1Sa(t = 8) — So(t — s)||||Fz1(s)llds

t
+ / 1Sn(t — )l Fya(s) — Faa(s)|lds
=J1+J24J3+J4+ J5.

J1,J2 and J4 are converge to zero asn — oo. By same method of Lemma 2, J3 is
converge to zero as n — co. Let kn(t) = J1+J2+J3+J4 — Oasn — oo. We have

llyn(t) — 22 (D)l
< ka(t) + /0 [1Sn(t = )l Fyn(s) — Fa1(s)llds

< ka(t) + MK /0 =)y (5) — o1(s) | ds.

Using Gronwall’s inequality, we get that

llyn (2) — 21 (D)]]
t t
< kn(t) + MK/ kn(s)e(t®) exp(/ (=7 dr)ds.
0 0

But note that fot e*(t-7)dr < R'. So, we have

lya(t) =21l < ka(t) + MK exp(R') /0 (= ey (s)ds.

Recall that, for any ¢t > 0, kn(t) — 0. So using the dominated convergence theorem,
we get that k,(-) — 0. Since

t
/ o (s)ds < M||ka]|

0
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where M" is constant,

t
lim | ek, (s)ds — 0.

n—00 0

Therefore ||yn(t) — z1(¢)]] — O0Oasn — oo. Hence y, — z1,asn — oo, for any
t > 0. Therefore, (9) holds for y, defined by (11).
Finally, by (9) and (11), we obtain (8), thereby completing our proofs.

THEOREM 2. Under conditions (A1)-(A4), (F1)-(F2), assume that (B1)-(B3) and
(_:1:0, z1) € Ry. Then, the following results hold:
(a) (zo,n, T1,n) € Ry, for n sufficiently large.

(b) limn_,oo Tn(a:o,n, wl,n) = To(:L‘o, 3'.‘1).

Proof. By Lemma 2, there exists a subsequence of {T,,(zo,n, %1,n)}, denoted by {Ty},
which converges, say to T'. Using once again Lemma 2, with ¢t = Ty(zo, ;), we obtain

T, < T0($0, -'1"1) + Yo'
Hence, we obtain
T’ S To(w(), :tl).
Finally, using Lemma 1, we may infer that
To(zo, 1) < T',
and thus we obtain
To(.‘L‘o, (I)]) = T'.

Since the last equality can be obtained for all convergent subsequence, the proof is
complete.
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