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Acceleration Methods and Discrete Soliton Equations

(DN & B ) b o 5 HER)

Atsushi NAGAT (k3 ) 1
Junkichi SATSUMA (BEEE )

Department of Mathematical Sciences, University of Tokyo

1 e-mail: nagai@sat.t.u-tokyo.ac.jp

§1 Introduction

Integrable discretization of soliton equations has been in progress since 1970’s!. Recently discrete
soliton equations have attracted attention in other fields such as engineering. For example, finite,
nonperiodic Toda equation appears in the field of matrix eigenvalue algorithm [2, 3]. The discrete
(potential) KdV equation is nothing but one of the most popular convergence acceleration schemes,
the e—algorithm [4].

Our main interest in this paper is on the convergence acceleration algorithms. Let {Sm} be a
sequence of numbers which converges to S.. In order to find S.,, direct calculation often requires

a large amount of data. Sequences

: 11 (-1)m
Sm o= 1-5+3 L—— (1)
11 1
Sm = 1+2—2+3,’3+---+——(m+1)2 (2)

are typical examples. Beside these simple cases, one has often to deal with slowly convergent
sequences in the field of numerical analysis, applied mathematics, and engineering. In such cases we
transform the original sequence {5} into another sequence {7,,} instead of calculating directly. If

{T’n} converges to S, faster than {S,,}, that is

lim Tn =S _

m—oo S — S -

0, (3)

18ee [1], for example.
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we say that the transformation T : {Sm} — {Tm} accelerates the convergence of the sequence
{Sm}. We now have various kinds of convergence acceleration algorithms such as e—algorithm [5],
n—algorithm [6], p—algorithm [7, 8], BS-algorithm [9], Levin’s {—, u—, and v—transformation [10],
and f—algorithm [11].

The main purpose of this paper is to study acceleration methods from a different aspect, that
is, the soliton theory. In §2, we introduce Bauer’s n—algorithm and show its equivalence with the
discrete KdV equation [1]. In §3, we look over the result by Papageorgiou et al., the equivalence
between Wynn’s e—algorithm and the discrete potential KdV equation. In §4, we introduce a
different type of algorithm, Wynn’s p—algorithm. In spite of its similarity with the eé—algorithm,
it possesses noticeably different characteristics not only as a convergence accelerator but also as a
discrete soliton equation. When we respect the p—algorithm as a two-variable difference equation,
its solution is represented by double Casorati determinant. We show in §5 that this fact is quite
natural if we discuss the p—algorithm in relation with Thiele’s interpolation formula [7]. We also
present the Thiele’s p—algorithm, which is one generalization of the p—algorithm, and compare its
performance with the original p—algorithm. In §6, we consider the “PGR algorithms”, which are the
most generalized thombus algorithms satisfying the singularity confinement condition. Concluding

remarks are given in §7.

§2 The n—algorithm

In this section we show that Bauer’s p—algorithm[6], which is one of the famous convergence
acceleration algorithms, is equivalent to the discrete KdV equation. The p—algorithm involves a
two-dimensional array called the n—table (Figure 1). The table is constructed from its first two

columns. Let initial values n(()m) and ngm) be
1™ =00, o™ = = ASp_q, (m=0,1,2,...), S-1 =0, (4)

where A is the forward difference operator given by Ay = a4y — ax. Then all the other elements

are calculated from the following recurrence relations called the n—algorithm;

m +1 +1
RPN A -
1 1 _ 1 1 (rthombus rules). (5)
(m) + (m) - (m+1) + (m+1)
Mont2  TMontt 2n+1 2
Equation (5) defines a transformation of a given series ¢, = n{m),m =0,1,2,... to a new series

o = 77510), n=1,2,... such that 22, ¢/, converges more rapidly to the same limit Se..
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(0)
™
(00 =)nM ny)
7751) 77:(;0) )
(o0 =)ng” ) )
n? ns" ni”
(00 =)ns) ny) ng"
R
(00 =) )
: M

Figure 1: The n—table.

As a simple example we consider a slowly convergent series (1) and construct the n—table. We

see from Figure 2 that the transformed series

poly1 111
3 30 130 975 4725

converges more rapidly to log2 than the original series. While the sum of the first seven terms of
the original series gives 0.7595 - - -, that of the corresponding seven terms of the transformed series

does 0.693152-- ..

1
00 -1/3
-1/2 1/30
00 1/5 —-1/130
1/3 -1/105 1/975
00 ~-1/7 1/350 —1/4725
—-1/4 1/252 —1/4100 1/32508
00 1/9 -1/738 1/15867
1/5 —1/495 1/12505
00 —-1/11 1/1342
-1/6 1/858
00 1/13
1/7

Figure 2: The n—table for log 2
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The quantities nﬁm) are given by the following ratios of Hankel determinants;

Cm o Cm4n Cm+4+1 **° Cmtn
(m) _ Cm4n *°° Cm42n Cm4n *°° Cm42n-1 6
Mnt1 = ) (6)
Acp, T AC'rn-+»n—-1 ACm+1 ce ACm+n
Acmin-1 -+ Acmiom-2 Acpyn ++ ACmion-1
Cm v Cm4n Cm+1 r Cm4ndl
(m) Com+n **° Cm42n Cm4+n+l " Cm42n41
= 7
Mn+2 ~ . ( )
Acwm - Acmin | | Demss - Demen
A~Cm+'n, e Acm+2n Acm+‘n v Acm+2n—1

If we introduce dependent variable transformations,

m 1 m m
Xén) =) X%nll = ngnll (8)
R

the p—algorithm (5) is rewritten as

(m) (m+1) _ 1 1
Xn+1"Xn—1 T v(mA) T o (m)’ (9)

which is the Hirota’s discrete KdV equation [1].

§3 The c—algorithm

In this section, following the result by Papageorgiou et al., we briefly review the equivalence
the discrete potential KdV equation and the e—algorithm, which originates with Shanks [13] and
Wynn [5]. The algorithm involves a two-dimensional array called the e—table (Figure 3). Define
E(()m) and Egm) by

8(()771) =0, 8gm) = S (m =0,1,2,.. ) (10)

Then all the other quantities obey the following rhombus rule;

(e = e — ) = 1, (an
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€
(=) &Y
¢ g 1) c (30)
(0=)eg? &) €l
e )
=) &€l
8&3) ng)
0=)eg) &
e

Figure 3: The e—table

According as n becomes large, 5&:?4)-1 converges more rapidly to S, as m — co. On the other hand,

Eg,?) diverges as m — oo.
It has been shown that the ¢—algorithm (11) is regarded as the discrete potential KdV equa-

tion [14]. The quantities eslm) are also given by the following ratios of Hankel determinants;

Sm Sm+1 M Sm+n
Sm+1 Sm+2 ot Sm+n+l
é_gm) , = Sm+n Sm+n+1 T Sm+2n : (12)
nt AS,  A25p41 o A2Sppnot
AzSm+1 A25m+2 teT AzSm+n
A2Sm+n—1 A2Sm+'n. ce A2S'm.+271,--2
A3Sn  A3Supy o A3Spinoq
A8y A3Spmys oo A3S,4,
e, = A%8min-1 ASmin - A%Smizm-s . (13)
~F ASm  ASmir o ASpin
ASm41 ASmyz -+ ASpingr
Asm+n A*S"rn+'n~+—1 e ASm+2n

Equation (12) is called the Shanks transformation [13]. Substitution of n = 1 in eq. (12) gives the

well-known Aitken acceleration algorithm.
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We have so far observed that the n— and the e—algorithms are interpreted as the discrete KdV
and the discrete potential KdV equations, respectively. Therefore, these two algorithms are the
same in their performance as convergence acceleration algorithms. This equivalence can also be

understood from the fact [6] that the quantities nﬁm) and £{™ are related by

M) = it = b1y Tond1 = Ehmt1 — Eong1 (14)

§4 The p—algorithm

The p—algorithm is traced back to Thiele’s rational interpolation [7]. It was first used as a

convergence accelerator by Wynn [8]. The initial values of the algorithm are given by

pg’n) — 0’ pgm) — Sm (m = 0,1,2, . ..), (15)

and all the other elements fulfill the following rhombus rule;

(P = PP = ) = . (16)

The p—algorithm is almost the same as the e—algorithm except that “1” in the right hand side of

[{9%}]

eq. (11) is replaced by “n” in eq. (16). This slight change, however, yields considerable differences

in various aspects between these two algorithms. '
The first difference is in their performance. As one can find in ref. [15], the e—algorithm ac-

celerates exponentially or alternatively decaying sequences, while the p—algorithm does rationally

decaying sequences.

(m

The second difference is in their determinant expressions. The quantities €5, ’ are given by ratios

of Hankel determinants, while the quantities p%m) are given by [7]

#m)

EO)

ptm) = (—1)l*5] (17)

(m)

where [z] stands for the greatest integer less than or equal to z. Moreover, the functions Tn ~ and

%,Em) are expressed as the following double Casorati determinants;

(m)( L. -
T,,(lm) - U (k, ,C) n 2]53, (18)
w™(k+1;k) n=2k+1,
(m) b — -
u(m)(k; k+1) n=2k+1,
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where
1 m mp-1 |
1 m+1 (m + 1)P1 :
u™(p;g) = det | . . '
. . . . I
|
1 m+ptg-1 - (m4ptg-1F1
E Sm mSom - mi-1g,,
| Sm.|.1 (m + 1)Sm+1 LR (m + l)q‘15m+1
! . ) . (20)
| :
i
! Smipte=1 (M+P+q—1)Smiprg-1 -+ (M+p+qg—1)"" 80100

(m)

We remark that a pair of functions (m)

and 7’ given by egs. (18) and (19) satisfy bilinear

equations,
T,(;:{T(T;-l) _ Tgm):,'.T(Lm+1) + T7(lm+1)7-7£m) =0, (21)
ram iV + AT — armr(mih) = g, (22)

which are considered to be the Jacobi and the Pliicker identities for determinants, respectively.

§5 Reciprocal Differences and Thiele’s p—algorithm

In this section we extend the p—algorithm from the viewpoint of the 7 function and compare
its performance with the original p—algorithm (16). Before touching upon the extended version
of the p—algorithm, we review Thiele’s interpolation [7], which makes it natural that quantities
pﬁf") are given by ratios of double Casorati determinants. Let the values of an unknown function
f(z) be given for the values zg, z1,--,Z,, no two of which are equal. Then reciprocal differences

Pi(TkTry1 "+ Thei—1) are defined by

pi(zo) = f(zo), (23)
_ Tog — Iy
p2(zoz1) = ____——PI(ZO) ~ pi(z1)’ (24)
. _ o — T2 T
p3(zgz1z2) = P2(£0x1) — pz(xlwz) + pl( 1)7 (25)
p4(l’0$1$2$3) = T0— % + p2(:1;1:1:2), (26)

P3($0$1$2) — p3(z12223)

o — Ty
Pn(970331 Ivn-l) - Pn($1$2 e xn)
+ pn-1(z122 -+ Tpoy). (27)

Pr+1(ToT1 -+ Tp) =
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We remark that substitution of z; = k in the above equations gives the p—algorithm (16). Let us

replace zo by z in egs. (23)—(27). Then they are equivalent to the following identities in z;

f(@) = pi2) (28)
_ r—
pl(w) - Pl($1)+ PZ(-TZI)’ (29)
T — T2
T = z122) + R 30
pa(zz1) = p2(2122) pa(oa122) — F(or) (30)
(z2122) = pa(e12223) + c % (31)
poliain) = paifitats pa(z212223) — pa(T122)
Prt1(TT1T2 - Tp) = Pr+1(T1Z2** Tny1)

T — T,
. 32
Prt2(2T122 -+ Tng1) — Pu(T122 -+ T0) (32)

We obtain the following continued fraction expansion for f(z) from egs. (28)—(32);
x— T )

f(z) = pa(z1) + - (33

T — Ty

pa(z172) +

T — I3

T12223) — z1)+
pa(m1223) = pr(1) pa(21222324) — pa(T122)+

When we take n—th convergent of eq. (33), we obtain a rational function, which agrees in value
with f(z) at the points

T1,T2,° 3 Tn.

Approximation of f(z) by a rational function is called Thiele’s interpolation. Let us rewrite

y= f(a;)a Ys = f(ms)a Ps = ps(z1x2 . 'xs+1) (34)
for brevity. If we put n—th convergent of eq. (33) as (@) we see inductively that pon41(z),
n

¢ant1(), and pa, () are polynomials in  of degree n while g2,(2) is a polynomial of degree n — 1,

and that these polynomials are written as

pan(2) = a0+ @z +agzi++ a2 + 27, (35)
QQn(ZII) = bo + b](l? + b2$2 + ct + bn—2$n—2 + p2nzn_1a (36)
Pans1(z) = cotcaz+ 02$2 R C'n—la:n_—1 + pan+12”, (37)

Gn+1(z) = do+diz + doz® + -+ dp1z™ + 2™ (38)
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Regarding
p2n(378)
—_ = s 821,2,"‘,271 39
() Ys ( ) (39)
P2n+1(Ts)
—_— = s 3—_:1,2,---,2n+1 40
ona(20) Ys ( ) (40)

as simultaneous equations for (ao, a1, +,@n-1,b0,01,-,bn—2, p2,) and
(cosc1,+yen-1,do,d1," "+ ,dn_1,pan+1), we see from the Cramer’s formula that the quantities pa,

and pg,41 are given by

n—2 ,n—2 n—1
s s

2 n
Ilaysaxsazsys7137"'7z Ys, Ty ’wsl
1 ,n-1

- n— n—
llaywmsawsys’ng"’xs ' Ts “YsyTs 4 Ts T Ys

, T

Pan = pan(T122 - T2p)

n—2 n—2 n—1
Iy o1 =y - 2 Ty Ty 4y
n—2 n—2 n—1
1 y2 =z Ty2 -+ T3 Ty “Y2 X T3
n—2 n—2 n-—1
B 1 yn Zan Zonlan -+ To,~ o, Yon Ty, 23, (a1)
- n—2 n—2 n—1 n—1 ’
1 nn = T o Ty Ty Y1 Ty Iy N
n—2 n—2 n—1 -1
1 ¥y z2 my2 -+ T4 Ty Yy T, Ty Yo

2 n—1

n—2 n—1
Ty, Yo Ty, Ton Yon
2 -1 ~1
|1,ys7wsaw5ym$sa”'ax? Ty ysax?ysl

2 n—1 _n—1
|1aysyl‘saxsys>$sy"'axs » Ts ysam?

n—
1 yan Z2n ZTonYon -+ Ty,

P2n+1 = Pzn+1($1$2 s 932n+1) =

-1 n—1
1 n Ty 1Y ORI 24 7T Ty
n—1 n—1
1 Ty Ty R 2 Ty Y2 T5Y2
n—1 n—1
_ 1 Yon41 T2+ Tont1¥Yont1 - Tont1 Tong1Y2n+1 $3n+1312n+1 (42)
- n—1 n—1 :
1 n T T SERI 24 zyT %N z7
n-—1 n—1
1y To T2Y2 SRR 4 zy Y2 Ty
-1 n—1
1 Yont1 Zont1 Tong1¥2mt1 vt x3n+1 Tont1Y2n+1  Thngr

Determinants in eqs. (41) and (42) become double Casorati determinants by changing their columns.
It should be noted that eq. (20) is recovered by putting
zxk =k, yr = Sk (43)

in eqgs. (41) and (42).
Next we extend the p—algorithm according to the notion of Thiele’s interpolation. When we

redefine u(™)(p; q) in eq. (20) by
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1 a(m) - o(m)P-1 |
|
oc(m+1 o(m+ 1)P!
ul™(p; g) = det ( . : ( . ) :
. ° . l
i
L om+p+g—1) -+ o(m+p+g—1P11
L S o(m)Sm, e a(m)? 1S,
1
L S o(m+1)S,, o(m+1)1718,,
o ot DS T L)
' . . .
I
! Smtp+q-1 o(m+p+q—1)Smiptq-1 -+ o(m+p+q- 1) St ptg-1
we can construct extended version of the p—algorithm,
(21h = 12T — o) = o(n + m) - o(m). (45)

Since we obtain the p—algorithm by putting o(z) = z in eq. (45), we call eq. (45) “Thiele’s

p—algorithm”. This algorithm accelerates sequences of the following form;

(51 C3 . (46)

C2
S~ Soe ¥ Sy T ) T Gtmyp *

Let us apply Thiele’s p—algorithm for two examples and compare its performance with the

p—algorithm (16). First we consider a sequence

m
1
Sm=3_ T — 261237534868 - - -, (47)
k=1
whose asymptotic behavior is given by
(5] C2
SmNSoo-i-m'i'W-*-'“. (48)

In eq. (48), ci(é = 1,2,...) are constants. We put o(z) = z'/2 in eq. (45) and compare the result
with the p—algorithm.

Next we consider the problem of evaluating

5= [ ' g(o)ds (49)

by the trapezoidal rule. Define S,, by

Sm= {ég(m +Yo(=)+ égu)}, (50)



54

If g(z) is sufficiently smooth, an asymptotic behavior of S, is given by

d  dy  ds
Sm o= Swt—zt—t—ot-, (51)
1 1
d —— Il _ IO ,d - I”l _ IIIO cee,
1 12{g( )—9'(0)}, d; ——720{9 (1) - ¢"(0)},

We put g(z) = (0.05 + 2)~1/2 in eq. (49) and apply Thiele’s p—algorithm with o(z) = 22.
As one can see from Figures 4 and 5, Thiele’s p—algorithm accelerates larger classes of sequences.

We should select o(z) in eq. (45) appropriately according to asymptotics of a given sequence §,,.

§6 The PGR algorithms

In this section, we discuss the “PGR algorithms”. First of all, we consider the most general

form of the algorithm given by

(a5 — e @D — 2(m) = 20, (52)

Papageorgiou et al. [4] applied the singularity confinement test to eq. (52). If we have g{mt) -

=™ 4§, then xffi)l diverges as z,(zm)/ 6. At the next iteration, we find

Z(m) ) z(m-l)
zppp = o 4+ | 1= S 64 0(8%), 030 = oM + 2H 4 0(8). (59)
X Zn n
The singularity confinement condition, i.e. :vf:igl) finite, is
A -2l - Al + s =o. (54)

The £(2™ = 1), p(2{™ = n), and Thiele’s p(z{™ = o(m + n) — o(m)) algorithms pass the above
condition (54). We call the most generalized class of algorithms (52), where 2™ satisfies eq. (54),
“the PGR algorithms”. It is interesting to remark that Brezinski and Redivo Zaglia [16] have
already proposed the algorithm (52) satisfying the singularity confinement condition (54), which
they termed “the homographic invariance”.

Tvs}o question arises; (1) what kind of integrable equations are the PGR algorithms associated
with if they are considered as difference equations? (2) how is the performance of PGR algorithms
as convergence accelerators?

As one solution to the first question, we have recently found that it is related to the discrete

Painlevé equation of type I [17]. We consider a special case of the PGR algorithms,

(23]~ 20D — 2M) = 1= m+ € (C = const), (55)
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which passes the singurality confinement test. Through variable transformations,
k=n-m,l=m, (56)

we have

(X(k+1,0) - X(k - 2,1 + D)X (k- 1,1) = X(k,1)) = k + C. (57)

Elimination of the dependence of the variable [ in eq. (57) gives the following equation;

-k-C

X(k+1) - X(k-2) = 5 "FE-1) (58)
Through dependent variable transformation,
Y(k)= X(k)— X(k-1), (59)
we have
-k-C
Yk+1)+Y((k)+Y(k-1)= ) (60)

from eq. (58). The equation (60) is nothing but the discrete Painlevé equatibn of type I. It is noted,
however, the algorithm (55) does not accelerate convergence of sequences well.

Let us go to the second question, i.e. acceleration performance of the PGR algorithms. Intu-
itively speaking, most of the PGR algorithms do not well accelerate convergence as far as we have
tested them. Among them, however, when we take

1
(m) - =
“n m+n+1’ (61)

the algorithm accelerates both alternatively and rationally decaying sequences (See Figures 6 — 8).

§7 Concluding Remarks

We have shown there being a strong tie between convergence acceleration algorithms and discrete
soliton equations. It is a future problem to clarify how two different notions, acceleration and
integrability, are associated with each other. In other words, we should consider whether we can
construct new convergence acceleration algorithms from the other discrete soliton equations? and
what kind of equations the other algorithms correspond to. The solution of these problems will

shed a new light on the study of discrete integrable systems and numerical analysis.

2 Actually, Papageorgiou et al. have proposed a new algorithm based on the discrete modified KdV equation.
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Appendix A Numerical Results

We here present numerical examples. In Figure 4 the p—algorithm and Thiele’s p—algorithms
m

1
are applied to the sequence 5,, = E PR These two algorithms are also applied to the numerical
k=1

1 1
integration for /0 mdx iln Figure 5. We also employed e—algorithm, p—algorithm, and
(m) _

PGR algorithm with zp P | to accelerate the series,
1 (=pm-1
L= g oo i oo log 2(= 0.69314718 ), (62)
LRI S ™ (= 1.6449336 ) (63)
— .« — D e = . “ e
22 m? 6 ’
1 1-3 (2m — 1N

1 +

1 dz
57349 ""FW-F""—’/O —_m—l(—o.31102877"')s (64)

numerical results of which are given in Figures 6 — 8.
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