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COUNTING SINGULARITIES IN STABLE
PERTURBATIONS OF MAP-GERMS

T.Fukul (83 ##) J.J.NuNo BALLESTEROS M.J.SAI1A

Introduction. Let f: (C",0) — (C,0) be a holomorphic function-germ which defines
an isolated singularity at 0. An important invariant of f is its Milnor number, u(f),
which we can define to be u(f) = dimc O, /J(f) where O, is the ring of holomorphic
function-germs of (C",0) and J(f) denote the jacobian ideal of f, generated by the
germs of partial derivatives aﬁ:{-— (1 < i< n). It is well-known that u(f) is the number
of critical points (X™-points, in Thom-Boardman notation) of a Morse function near f.

Let f : (C%,0) — (C?,0) be a K-finite holomorphic map-germ. We define the number
¢(f) by ¢(f) = dime O2/(J, ApS)  _aT) ) where f = (p,q),J = 29 . Then, c(f)

Nz1,z2)? O(z1,T2) ¥Hzy,x2)"
is the number of cusps (Z!-points) in a stable perturbation of f. This fact was proved
in [Fukuda-Ishikawa] and [Gaffney-Mond].

Thus, we can expect that the number of Y/ points of a stable perturbation of a
map-germ f : (C",0) — (CP,0) could be expressed by some languages of algebras
obtained by f, under some mild conditions. We consider this problem using the ideal
A? introduced by B.Morin in [Morin], which we review in §1. In §2, we review some
facts in commutative algebra which we use later. In §3, we discuss Cohen-Macaulay
property of the zero locus of Al. Our main results are described in §4. This asserts
that the number s;(f) of &/-points in a generic approximation f, of f is equal to
the number cy(f), which is the length of Artinian ring determined by some procedure
by f, under some conditions. We should remark that J.Nufio Ballesteros and M.Saia
have first considered this problem in [BS] using the ideals A’ due to B.Morin and
described several results. In the next section, we present an example which satisfies
that cr(f) > sr(fu)- In the last section, we give some open problems in this direction.

Finally T.Fukui should like to thank T.Ohmoto for valuable communications.

§1. Thom-Boardman singularities. - In this section, we review the Thom-Boardman -
singularity set £/ following the work of Morin [Morin]. Let K denote the field of real
numbers R or that of complex numbers C. Let U be an open subset of K" and V' that

of KP, J = J"(U,V) the jet space of order r and 7, : J — U, mp : J — V the natural

projections. Let F denote the foliation in J whose leaves are fibers of 7,, and G the

foliation whose leaves are images of jet sections j"f : U — J where f are polynomial

maps of degree less than or equal to r. Let I be a Boardman symbol of length k(= |I1),

ie. I = (i1,%9,...,ix) be a k-tuple of integers with n > i; > iz > ... > i 2 0. We set

tI = (i1, ix—1) if [T} = k > 2 and tI = @ if {I} = 1. Then we define inductively the

Thom-Boardman submanifold 1 in J by

sl _ (z € wtl . dim(T,F N T.G N Tz}]”) =i, k= |I|},

where T,F,T,G denote the tangent spaces of the leaves of F,§G including z € J. Here
we understand that £ = J. This is well-defined because &/ is nonsingular. See



[Boardman,(6.1)], [Morin, p.15, p.97]. By custom, we denote vr(n,p) the codimension
of ©7 in J. By [AGV .p46], [Boardman, (6.5)], [Morin, p.15],

vi(n,p) = (p—n+i1) p(I) = (is ~i2)u(iz, -vry ik) — (12 —G8)a(iz, wvey ik) = - - = (ikm1— ik )11(ik)

where p(iy, ..., i) denote the number of k-tuples (jy, ..., ji) of integers so that i, > j. >
0(0<r<k)j12j22..2J>0,and j1 > 0.

Let B be the ring of differentiable functions which are constant on each leaf of F,
and D the submodule of the vector fields of J, whose elements are tangent to all leaves
of G. For a Boardman symbol I = (iy,... zk), we denote by A’ the ideal generated by
AY and the determinants det(d,cpj)1<w<n —i,+1 Where d; € D,p; € B+ A Here we
understand that A® is the zero ideal.

It is sometimes convenient to write down an explicit coordinate system of J. Let
z = (z1,...,Z,) denote a coordinate system of U C K", and y = (y1,...,yp) that of .
V C K?. Then we can write down the canonical coordinate functions on J, namely the
function X;,Y;,ZZ for 1 <i<n,1<j<p,and 1< |o|<r where o = (01,...,04) is a
n-tuple of non-negative integers and |o| = ). 0;; these are,deﬁned by

8l9l(y; o
X; =X;0 Ty, Y;= Y;j 0 Tp, ZJ( rf( )) _%yj—-—fl(p%

where f is the germ at p of any mép from U to V. We define vector fields D; (1 < ¢ < n)

by |
J
D; = + Z (Z o(i) azJ ) ’

a:jol<r \i=1

where o(i) = (01, ..., 0i—1,0i + 1,d,—+1, ..y0n). These D; (1 < i < n) generate D. For a
Boardman symbol I = (iy, ..., i), Al is the ideal generated by At/ and subdeterminants
of order n — i + 1 of the matrix *(D;Y}, D;gs) where g = (g1,...,91) is a system of
generators of A*/. For the proof of this fact, see Lemma 2 in I.(b) and Lemma 3 in I.(c)
in [Morin]. Let I’ denote the smallest (in the lexicographic order) Boardman symbol
J which is larger (in the Iemcogra,phlc order) than I with |J| < |I|. Remark that I’ is
not defined if I = (n,...,n).

THEOREM (1.1). Let ZI be the zero locus of Al in the jet space J. Then Zj is
nonsingular along !, and, as underlying topological spaces,

Zp  if I' is defined
Zr = 2! u Z; (disjoint union) (where Z; = { ratl s deqine )

] if I is not defined

REFERENCE FOR PROOF: See [Morin], Théoréme on p.15, Corollaire on p.97. §

Let f: (K",0) — (KP,0) be a K-analytic map-germ and O = O, the ring of K-
analytic function-germs of (K",0). For a Boardman symbol I = (i1,...,1x), we define
a set-germs T/(f) in (K",0) and an ideal A/(f) by TI(f) = (*f)~1(Z)), Al(f) =
G Fr(ab).

A map-germ f : (K",0) — (K?,0) is said to be a singularity of class &7 if 0 € BI(f).
Then, 0 € Z(f) iff f has kernel rank i at 0. A map-germ is said to be generic if its jet



extension is transversal to each Boardman submanifolds. If f is generic, then $/(f)’s are
nonsingular and L% ( f) = Tk ( f|Ti-++ik-1), Any map-germ may be approximated
as accurately as one wishes by a generic map. See [AGV, p.45], [Boardman], [Mather4],
and [Morin], for its proof. In this paper, we consider the following question: how many
Yl points appear in a generic approximation of a map-germ f : (K",0) — (KP?,0).
Thus we are interested in the Boardman symbol I with v;(n,p) = n. The first few such
I’s are listed in the following table.

n\p |1 ]2 3 4 5 . |6 T7 - 8
1 1)

2 (2) 1(12) ()

3 (3) [(21) {(1s) (1)

4 (4) [(31) [(212) [(14)(2) |(12) (1

5 (5) |(41) {(312) |(213)(22) |(1s)

6 (6) 1(51) {(412) [(313)(32) |(214)(3) |(16) (13)(2) [(12)
7 (7) [(61) [(512) |(413)(42) |(314) (215)(221) (17)(21)

8 (8) {(71) {(612) |(513)(52) |(414) (315)(321)(4) |(216) (1s)

k times

N
Here (1x) denote (1,...,1), and so on.

If (n,p) belongs to the region of stability (that is, the nice range of dlmensmns due
to J.Mather [Mather2]), any map-germ f : (K",0) — (K?,0) can be approximated by
a stable (precisely speaking, locally infinitesimal stable) map in the sense of J.Mather
[Mather2]. Remark that a stable map is generic. "

REMARK (1.2). Let I be a Boardman symbol and H(I) the set of all Boardman symbols
J which is not smaller (in the lexicographical order) than I with |J| < |I|. Then the
height of the ideal A! at z := j" f(0) is the minimal number of v;(n,p) so that z € Y
and J € H(I). Here I denotes the Zariski closure of ©. If the height ht(A”.) = n and
f is an A-finite (i.e. finitely determined) map-germ, then cy(f) := dimg O, /Al(f) <
co. This was shown in [Ballesteros-Saia, Lemma(4.1)]

§2. Commutative algebra. Let A be a commutative Noetherian local ring with
identity. We say that ag, ...,a, is an A-sequence if the following conditions satisfied:
(i) (a1,...,ai-1) : a; = (a1, ...,@;—1), or equivalently, a; does not represent a zero-
» divisor of A/(ay,...,a;—1), fori =1,2,...,r
(ii) (a1,...,ar) # A.
A local ring A called to be Cohen-Macaulay if there is an A-sequence in the maximal
ideal of A whose length is equal to the Krull dimension dim A4 of A.

THEOREM (2.1).

(1) A regular local ring is Cohen-Macaulay.
(ii) Letay,...,a, be an A-sequence in the maximal ideal. Then A is Cohen-Macaulay
iff A/(aq,...,ar) Is.
(iii) Let A be a Cohen-Macaulay ring, and I a proper ideal of A. Then we have

ht(I) =dim A — dim A /I = the maximal length of A-sequences in I.

(iv) Let A be a Cohen-Macaulay ring, and a,,...,a, be in the maximal ideal of A.
Then ay,...,a, is an A-sequence iff ht(ay, ...,a,) =7.



REFERENCE FOR PROOF: See [Mat] 17.8 for (i), 17.3 ii) for (ii), 17.4 i) for (iii), and
17.4 iii) for (iv). N

THEOREM (2.2). Let A be a Cohen-Macaulay local ring, and X = (c;j) an r by s
matrix with entries in A. If I denotes the ideal generated by subdeterminants of order
k of the matrix X, then ht(I) < (r — k+ 1)(s — k + 1). If equality holds, then A/I is
Cohen-Macaulay.

REFERENCE FOR PROOF: See [Hochster-Eagon}, Corollary 4. (p.1024). §

THEOREM (2.3). Let A be a Cohen-Macaulay local ring, and X = (c;j) an s by s
symmetric matrix with entries in A. If I denotes the ideal generated by subdeterminants
of order k of the matrix X, then ht(I) < 3(s — k+1)(s — k+2). If equality holds, then
A/I is Cohen-Macaulay.

REFERENCE FOR PROOF: See [Kutz]. B

§3. Cohen-Macaulay property of Z;. We continue the notation in §1. Let S(I) be
the set of all Boardman symbols J which is not smaller (in the lexicographic order) than
I so that vy(n,p) = ht(Al) and |J| < |I]. Let f: (K",0) — (KP?,0) be a map-germ,
and z = j*f(0), k = |I]. Set S(I;z) ={J € S(I): z € %7}, We also denote S(I;z) by
S(I; f). We say that a variety is said to be Cohen- Macaulay at a point if its Iocal ring
at that point is Cohen-Macaulay.

ProprosITION (3.1). Let f : (K",0) — (K?,0) be a K-analytic map-germ and I a
Boardman symbol with ht(A?,) = n. Here z = j" f(0) and r is the order of jet space we
consider. Remark that r > |I|. Let s;(f.) denote the number of ¥!-points in a generic
approximation f, (or stable perturbation f, if (n,p) is nice) of f = fo. and sr,;(fu)
the number of intersections of Z; and the jet section of f, in ¥/ counting multiplicities.
Obviously we have sy,j(fu) > sj(fu) for J € S(I), and sy.1(fu) = si(fu) by (1.1). If
cr(f) < oo, then 3 ;e gr.py S1:7(fu) < cr(f). In the case K = C, equality holds iff Z;
is Cohen-Macaulay at z.

PROOF: Let S be the structure sheaf of j”f(U) and 7 the sheaf of ideals in S defining
the subspace j"f(U) N Z;. The natural sheaf homomorphism & — O, induces an
isomorphism S;r¢(0)/Z 0y = On/AL(f). Thus, in the case K = C, the theorem is a
consequence of (1.1) and Proposition 7.1, and Example 7.1.3 in [Fulton] In the case
K = R, we may assume that f, is represented by a real polynomial map. Thus, the
assertion is immediate from the case K = C. J

ProprosITION (3.2). Let f : (K",0) — (KP?,0) be a K-analytic map-germ, F :
(K™% 0) — (KP**,0) an unfolding of f so that f, is generic (or stable if (n,p) is
nice) for general u, where we write F'(x,u) = (fu(z),u), and I a Boardman symbol
with ht(A1(F),) = n. If ¢;(f) < oo, then > sescrg S67(fu) < er(f). In the case
K = C, equality holds iff A/(F) define a Cohen-Macaulay variety in (C™**,0).

ProOF: We first assume that K = C. Let u = (uy,...,u;) be the unfolding parameter
of F. Since f, is generic for general u, we have > ;cqs. ) 51;0(fu) is the intersection
multiplicity of {u; = - = u; = 0} and the zero locus of A(F), and Op4./AN(F) +
(u1, ..., ut) has length cy(f). Thus, the assertion is a consequence of Proposition 7.1 and



Example 7.1.3 in [Fulton]. In the case K = R, we may assume that f, is represented
by a real polynomial map. Thus, the assertion is immediate from the case K = C. 1

COROLLARY (3.3). Under the assumptions of (3.2), we have the following:

(i) If (n,p) = (43 4)3 then 552(fu) + 514(fu) < ¢, (f)
(11) IfTL Z 5 and p= 4, then 45n—3,2(fu) + Sn—3,15 (fu) S Cn_3’13(f).

PROOF: (i): It is enough to see that ¢1,(f) = 5, if f : (C*,0) — (C*,0) is a stable
map-germ with 0 € £2(f). Such germ is well-known as I o-singularity, and is given
by the following normal form: f(21,...,24) = (z122 + 7123 + ToZg, 25 + T3,T3,T4).
By elementary computation, we have A(f) = (z2(z2 + z3) — z1(z1 +24)), A2 (f) =
AYf)+(z123 — 2224, T4(T1+24) —T3(T2+23)), Al3(f) is generated by subdeterminants

of order 2 of

Tro Ty 0 Trg4 T3

1 X9 I3 0 T4 ’
and A (f) = (z1,...,z4)*. Thus, ¢1,(f) = 5.

(ii): It is enough to see that c,—3,1,(f) = 4, if f : (C*,0) — (C*,0) is a stable
map-germ with 0 € £"~32(f). This is Dy-singularity, and is given by f(z1,...,Zs) =
(1zizg+ §a3 + §0503 + 2oxs + 2175 + z24---+22,13,74,75). By elementary compu-
tation, we have A" 3(f) = (2122 + o5, 3 (0} + 73) + 7273 + T4, T6, ..., Tn), A7VN(f) =
A™3(f) + (23 + xozws — 23), A1 (f) = AP f) + (21 (422 + 373), 22 (472 + 323)),
and A"~ 3V (f) = (21,22, 73)2 + (24, ..., %n). Thus, cn3,1,(f) =4. § '

REMARK (3.4). Since A! is generated by polynomials in variables Zi with1 < j <
p, |o| < k = |I|, AT defines a Cohen-Macaulay variety at j” f(0) in the jet space of order
r for each r > k, iff it does for some r > k. We say that A! define a Cohen-Macaulay
variety at j" f(0) if these equivalent conditions hold.

LEMMA (3.5). Let f : (C",0) — (CP,0) be a map-germ, and F : (C"**,0) — (C?**,0)
an unfolding of f with t > 1. If ht(A!,) = ht(Al(F),) = n (z := j"f(0)) then the
following conditions are equivalent.

(i) AT defines a Cohen-Macaulay variety at z.
(ii) AI(F) defines a Cohen-Macaulay variety at 0.

ProoF: By (2.1.iv) and (2.1.i1), (i) implies (ii). Assume that (ii) holds. By projec-
tion formula, the intersection number of ;" f(C") and Zr in J"(C", CP) equals that of
jTF(C™ x 0) and Zg in J7(C™**, CP**). This equals (C" x 0).(j"F)~*(Z) by projec-
tion formula again. By Cohen-Macaulay property, it is dim Op4¢/AT(F) + (u1, ..., us) =
cr(f). This shows that the equality holds in (3.1). Thus, Zr is Cohen-Macaulay by
(3.1). n '

§4. When the equality s;(f,) = c;(f) holds? Let I = (iy,...,ix) be a Boardman
symbol with length k. Let us state the following condition (A):

(A) c¢y(f) is finite and f has an unfolding F' so that ht(A#-is (F)) = ht(Afis )
(z =j"F(0)) for s =1,2,..., k.



LEMMA (4.1). Condition (A) holds, if one of the following conditions is satisfied.

(i) f is K-finite and c;(f) is finite.
(ii) ht(A%=te(f)) = ht(AMris s rgy) for s = 1, ..., k.

ProorF: (i): If f is a K-finite map-germ, then f has an unfolding F so that F is
generic as a map-germ. In fact, since f is K-finite, f has a versal unfolding F. Then F
is stable map-germ, by the last paragraph in page 501 in [W]. Comparing the definition
of (infinitesimal) stability with the last paragraph of [Mather5], we obtain that F is
generic. Thus, ht(A’(F)) = ht(A;r () for each Boardman symbol I.

(ii): Since ht(AT(f)) = ht(Al;-40y), cr(f) is finite. By Theorem 15.1 in [Mat], we
complete the proof. §

We are ready to state the main result.

THEOREM (4.2). Suppose that f : (C",0) — (CP,0) is a holomorphic map-germ
satisfying Condition (A). Let I be a Boardman symbol, and s;(f,) denote the number
of ©!-points in a generic approximation f, (or stable perturbation f, if (n,p) is nice)
of f. Then we have sf(f,) = ci(f), if one of the foHowmg conditions holds.
(0) 0 € ZI(f), vi(n,p) = n. |
() I=(),ilp—n ') =n
0) I=(1,1),n=p=2.
)
I

(271)7 0€ 22(f)? b= 5n4-—7.

=(m—-p+1,7),0€ " PH(f), p=3j(i+ 1)+ 1.
(29) I=(n—p+3,1),0 €T rHi(f), p—"’—'i‘;f_lf—*—lﬂ.
(3.1) I=(n—2,1,1),0 € I 2%(f), p

(3j)) I=(n—p+1,51),0€ T~ ”“’J(f) p=3+2.
k0) I=(1x),0 € Z(f), k(p—n+1) =n.

k1) I=(n—p+1,1k_1), 0 € Zn7PELI(f)

(2.
(2.0
(2.

We first remark that the Boardman symbols I above satisfy vi(n,p) = n. When
p=1I=(n—p+1)in (1), ¢;(f) is the Milnor number, and the result is classical.
(2.0) is originally due to [Fukuda-Ishikawa], see [Gaffney-Mond (1.6)] also. In the case
(n,p) = (2,3), this result can be found in [Mond (2.4)]. We should remark that (0),
(1), and (k.0) were obtained by [Ballesteros-Saia].

PROOF: It is easy to see that S(I; f) = {I} in each cases. By (3.1-2), the only thing
we have to do is to show that Al (or A/(F)) defines a Cohen-Macaulay variety at
z := j¥ f(0) (or 0) of codimension vr(n, p).

The following shows that (0), (1), (2.0) of (4.2).

LEMMA (4.3).

(i) Z; is Cohen-Macaulay and of codimension i(p — n + i).
(ii) If z € ©f, then Z; is Cohen-Macaulay at z and of codimension vi(n, p).
(ii1) If n = p, Z1 1 i1s Cohen-Macaulay and of codimension 2.

PROOF: Since vi(n,p) = i(n — p + 1), we obtain (i) using (2.2). By (1.1) and (2.1.i),
(ii) holds. We show (iii). Assume that » = p. In the notation in §1, the ideal Al
is generated by § = det(Z}), ., .., and its height is 1. Thus, A is generated by



subdeterminants of order n of the matrix {(Z7, D;6). Since ht(A!) = vy(n,p) = 2, we
complete the proof of (iii) by (2.2). 1

LEMMA (4.4). Let F : (C",0) — (C?,0) be a map-germ with 0 € X*(f), i.e. rank
n — k. Then there are systems of local coordinates ¢ = (zy,...,&,) of C" at 0, and
y = (y1,--,¥p) of C? at 0 such that y o F(z) = (f}(z),.... fP7"*(z), Zt41, - Tn)
where fi(z) (1 < j < p— n+ k) are some function-germs. ’

PROOF: See p.161 in [AGV], and so on. §

LEMMA (4.5). Let F : (C™,0) — (CP?,0) be a map-germ with 0 € S"~P+L*(f). Then
there are systems of local coordinates z = (z1,...,2,) of C" at 0, and y = (y1,...,¥p) of
C? at 0 such that yo F(z) = (g(z1, .y Tptk-1) + Z?=p+k T2, ki1, Tppk—1) Where g
is a function-germ with variables xy, ..., Tp4r—1.

ProoF: Consequence of (4.4) and parametrized Morse lemma. §i
The following implies (2.1),(3.1), (3.j) and (k.1) of (4.2), because of (3.5).

LEMMA (4.6). Let f : (C",0) — (C?,0) be a map-germ with n > p, and F :
(C™**,0) — (CP*',0) an unfolding of f in Condition (A). If f has rank p — 1, i.e.
0 € ©»~P*L(f), then the following hold.
(i) A™~P+1(F) defines a Cohen-Macaulay variety at 0 of codimension n —p + 1.
(ii) Am~P+LI(F) defines a Cohen-Macaulay variety at 0 of codimension n —p+1+
2j(+1), forjwith1 <j<n—p+1,
(iii) Ar~P+LLI(F) defines a Cohen-Macaulay variety at 0 of codimension n — p + 3.
(iv) If 0 € =»~P+LE( ) then A"~P+LEL(F) defines a Cohen-Macaulay variety at 0
of codimension n — p+ k? + 2.
(v) If0 € n~PHLL(F) then A"~PH+11e-1(FY} defines a Cohen-Macaulay variety at 0
of codimension n — p+ k.

Proor: Let f : (C",0) — (CP,0) be a map-germ with rank p — 1, i.e. kernel
rank n — p + 1. By (4.4), we may assume that f(z) = (9(z),Tn—pt2,.-,Tn) and
F(z,u) = (G(z,u), Tn_pt2, -y Tn). Then I := AP"PTI(F) is generated by G; := %;:
(1<i<n—p+1). Since ht(f;) = vp_pyi(n,p) =n—p+1, A; = On+t/I; is Cohen-
Macaulay with dimA; = t + p — 1 by (2.2), which shows (i). The ideal A" 7P+1J is
generated by I; and I, where I is the ideal generated by the subdeterminants of order
n —p— j+ 2 of the symmetric matrix (Gil,iz)lsil,izsn_p.,.l where G, 5, = ﬁi—;. We
denote by I the ideal generated by the image of I, in A;. Since ht(An—P+LI (F)) =
Vnpt11(m,p) = n—p+ 1+ 3i(j+ 1), Ay := Opyy/A"PHLI(F) A; /I, has di-
mension t +p — 1 — 1j(j + 1) and ht(I2) = dimA; — dim A, /T> = $j(j + 1), Az is
Cohen-Macaulay by (2.3), which shows (ii). Setting H = det (Giyis);<;, iy<n—ps1> tDE
ideal An—P+LLL(F) is generated by I; and Is where I3 is the ideal generated by the
subdeterminants of order n — p + 1 of the matrix *(Gj, ;,, 3%%)191,,'25,1_,,4.1. We de-

note by I3 the ideal generated by the image of I3 in A;. Because ht(A"~P+1LL1) =
un_p_,.l,l,l(n,p) = n-p + 3, A3 = On+t/An_p+l’l’1(F) ~ Al/Tg has dimension
t+p— 3 and ht(I3) = dim A; — dim Ay/I; = 2. Thus, Az is Cohen-Macaulay by
(2.2), and this implies (iii). Assume that 0 € E""P*1*(F). Then, by (4.5), there are



systems of local coordinates z = (21, ..., 2,) of C" at 0, and y = (¥1,...,yp) of C? at 0
such that y o F(z) = (¢(21, -+, Tp+k—1) + 2icpik T3 s Tht1, -, Tptk—1). Then, the ideal
An—PTLE(F) is generated by G1, ..., Gk, Tt py oy Ty G1,15 oy Gy ooy Gl 1y ovy Glefer We
denote its quotient ring by A4. Note that this is a Cohen-Macaulay ring and the di-
mension is ¢ + p — 3k(k + 1) — 1. The ideal A""P*LE1(F) is generated by I, and
Is where I5 is the ideal generated by the subdeterminants of order k of the ma-
trix (Gil,iz;j)lsilsizﬁk;lﬁjﬁk' Here Gi],ig;j = %G,’],i,‘,. We denote by 75 the ideal
generated by the image of I5 in As. Because ht(Am~P+LE1) = 3, 1) i(n,p) =
n—p+1+2k(k+1)+2k(k+1)—k+1, ht(I5) = dim Ay —dim A4 /T5 = 1k(k+1)—k+1.
This completes the proof of (iv) because of (2.2). In the above proof of (iv), we set
k = 1. Continuing the discussion similar to the above, we obtain (v). B

Using similar computation, it is not hard to see the following (4.7) which is, essentially,
due to [Ballesteros-Saia]. This implies (k.0) of (4.2).

LEMMA (4.7). Let f : (C*,0) — (CP?,0) be a map-germ, and F : (C"**,0) — (C?** 0)
an unfolding of f in Condition (A). If f is rank n — 1, i.e. 0 € T(f), then Al*(F)
define a Cohen-Macaulay variety of codimension k(p — n + 1).

The following implies (2.0°) of (4.2).

LEMMA (4.8). Let f : (C*,0) — (CP?,0) be a map-germ, and F : (C"** 0) — (CP** 0)
an unfolding of f in Condotion (A). If f is rank n — 2, i.e. 0 € X%(F), then AZ(F)
define a Cohen-Macaulay variety of codimension 4(p — n) + 7.

Proor: Let f: (C",0) — (C?,0) be a map-germ with rank n — 2, i.e. kernel rank 2.
By (4.4), we may assume that f(z) = (fi(z),..., fF7"2%(z), z3,.. ,mn) and F(u,z) =
(FY(z,u), ..., FP~"*2(z, u), 23, ..., n,u). Then I := A%(F) is generated by Fl .= ‘?91: ,
(1<i<2,1<j<p—n+2). Since ht(I;) = va(n,p) =2(p—n+2), Ay := Opys/1I; is
Cohen-Macaulay with dim A; = ¢ + 3n — 2p — 2. Let I, denote the ideal generated by
the subdeterminants of order 2 of the 2 by 2(p — n + 2) matrix

J J
( Fl_,l Fl_,z
J J
F, F,

5 i
) where F} iy = b?a—g:—c— :
1<j<p—n+2 i19%i, |
Then the ideal A2 (F) is generated by I; and I. Let T> denote the ideal generated
by the image of I» in A;. Since ht(AZY(F)) = va1(n,p) = 4(p—n) + 7, Ay =
Ontt/ A (F) =~ A; /T, has dimension ¢ + 5n — 4p — 7. Since ht(I;) = dim A; —
dim A; /I = 2(p — n) + 5, A, is Cohen-Macaulay by (2.2). |

The following implies (2.j) of (4.2).
LEMMA (4.9). Let f : (C",0) — (CP,0) be a map-germ, and F : (C***,0) — (CP**,0)
an unfolding of f in Condition (A). If f is rank p — j, ie. 0 € Tn-P+i(f), then
A"~P+1(F) define a Cohen-Macaulay variety of codimension (2j —1)(n —p+j) + 1.

The proof of (4.9) is similar to the discussion above, and we omit the details.

§5. Examples. In this section, we see that the consequence s;(f,) = c7(f) of (4.2)
does not always hold, even if (n,p) = (3,2). We denote by C(f) the critical locus of a
map f.



EXAMPLE (5.1). Let f, : (C?,0) — (C?,0) be a map-germ defined by fu.(z,y,z) =
5@+ 92 +2%) +u(z, o +y).
(i) fo is K-finite, i.e. f~1(0) N C(fo) = {0} near 0.
(i) s2,1(fu)(the number of cusps) = 6, for general u.
(iii) dimg O3/A%Y(fo) =T.

PRrOOF: Since the jacobi matrix of f, is

T Yy u

u ut+y z)’°
the ideal A%(f,) is generated by zy + u(z — y), yz — u(u +y), zz — u?. This shows
that f3'(0) N C(fo) = {0}. Moreover, the image of the map A : C — {0,~u} — c?
defined by Ay) = (uy(u + y)~ 1, y,uy~ (v + y)) is the critical set C(f,). Thus, the

tangent space of C(f,) is generated by the vector v = !(u?(v +y)~2,1, —u?y™2). Since
the restriction X of the Jacobi matrix of f; to C(f,) is written by

Xz(uy(u+y)‘1 y u 1)7

U y+u u(uty)y”

we obtain

sy = UV (0 —w)(u+y) ( y )
yu+y)? uty)’

which is zero iff u3y3 + (¥ — v®)(u + y)® = 0. Therefore we obtain sy 1(fu) = 6 for
general u. Since A2'(fy) is generated by ry, zz,yz,2°, 9>, 2%, dimc O3 /A% (fo) = 7. §
This example shows that Z2; is not Cohen-Macaulay at j"fo(0) for r > 2. The

following example shows the consequence of (4.2) does not always hold, even if f is
finitely determined (i.e. A-finite).

EXAMPLE (5.2). With the notation in the preceding example, we set gy q : (C?,0) —
(CZ,O) the map-germ defined by gy «(z,y,2) = fu(z,y,2) + a(z™ +y",2") where n is
an integer greater than 4.
(i) go, Is A-finite, ifa #0. .
(ii) $2,1(gu,q)(the number of cusps) = 6.
(111) dmc Og/Az’I(go’a) =T7.

ProoF: The proof is similar to that of (4.2), but rather complicated. Since the jacobi
matrix of f, is '
z+anz™ ' y+any™! u
( u u+ty z+anz""1)’

the ideal A2(f,) is generated by its 2 by 2 minors. This show that go,.|C(go,a) is
generically one to one map for general a, which implies that go,, represents a A-finite
map-germ at 0 by Theorem 2.1 in [Wall]. We define a map ¢ : C — C, by ¢(y) =
y + any™ 1. Let ¢; : D — C denote the inverse map of ¢ with ¢;(0) = 0 where
D is some small disc in C centered at 0. Then, the image of the map A : D; — C°
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defined by A(y) = (¢1 0 a(y),y,91 0 B(y)) where D1 = {y € C : ¢(y) # 0,y + u #
0,a(y) € D,B(y) € D} is the critical set C(gu,q) near 0, ofy) = u(u + ¥)"1o(y), and
B(y) = w(u + y)p(y)~". Then the tangent vector of C(g, o) is generated by the vector
v="(u(u+y)?PP, 1, —up(y)~2P,P), where P; = (1 +an(n—1)(p; 0 a(y))""2)-1,
P, = (14+an(n—1)(p108(y))"2)"!,and P = (u+y)(1+an(n—1)y"~2)~(y+any™1) =
u+an(n — 1)uy™ 2 + an(n — 2)y™~!. Since the restriction X of the Jacobi matrix of
Gu,a t0 C(gy,q) is written by

x= (V2 )

we obtain

Xo = ( u(u+y)*a(y)PLP + p(y) — v’p(y) 2 PP ) __ QW ( #(y) ) |
N\ (u+y) PP+ (u+y) —upy) 2Bu)PBP )~ (ut ylPe(y)® \u+y

where Q(y) = (v +y)*(y + nay™ )% + v P((y + nay™~1)* P, — (v + y)*R,). Six zeros
of Q(y) tend to 0, if u tends 0. Therefore, we obtain 52,1(Gu,a) = 6 for general t
near 0. Since A*(fo) is generated by zy, zz, yz, 23, 43, 2%, and A% go o) = ABY(fo)
mod (z,y,2)?, dimc O3/A%(go o) = 7. 1 '

§6. Problems. To end the paper, we state some problems in our direction. The
examples above show that the number c;(f) is not enough to describe the number
sr(fu) of T-points of a generic approximation f, of map-germ f : (C",0) — (CP?,0),
even if (n,p) = (3,2). Thus, we need the Serre’s definition of intersection multiplicity to
describe s;(fy) in algebraic languages. See Example 7.1.2 in [Fulton] for its definition.
Let F : (C**1,0) — (CP*',0) be an unfolding of f defined by F(z,u) = (fu(z),u),
and I a Boardman symbol with ht(A’(F)e) = n. Suppose that f, is generic for general
u. We see cr(f) = dimk Opy1 /AN(F) + (w). If ¢;(f) < oo, then

Z s1,0(fu) = c1(f) — ti(F)

JES(I;f)

where ¢7(F') denotes the length of O, ;-module {g € On41/AI(F) : ug = 0}.
PROBLEMS.

(i) Describe the Cohen-Macaulay locus of Z;. Is it possible to describe it as a union
of some Thom-Boardman submanifolds 7 ’s?
(ii) Describe the multiplicities of Zy along irreducible components of the Zariski
closure of &7 with J € S(I).
(iii) Describe the number t(F) above in terms of f, not F.

By (1.1), the ideal A? does not describe the Zariski closure of the Thom-Boardman
submanifold ¥. Since Thom-Boardman submanifold is a key word to describe singu-
larities, we have the following question.

(iv) Find a system of generators of the ideal defining the Zariski closure of X! in
the jet space. Consider when this ideal defines a Cohen-Macaulay space, like
(i). Remark that the Morin’s ideal A’ is an answer under some restriction e.g.
p<3.
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By J.Mather’s theorem in [Matherl], A-class of a stable map-germ is determined
by its K-class. Thom-Boardman submanifolds are invariant by the action of K, and
a Thom-Boardman submanifold contains the union of some K-orbits. Thus, we are
interested in studying the location of K-orbits and the jet section of map-germ.

(v) Find systems of generators of the ideals defining the Zariski closures of K-orbits
in the jet space. Consider when this ideal defines a Cohen-Macaulay space.

In the following table, we describe simple K-orbits in the Thom-Boardman strata »!
with v7(n,p) =nand 0 < n—p < 5,0 < p < 9. Here, we use the notation of simple
K-orbits in the last page. The Thom-Boardman submanifolds ! contain no stable
jets, if the Boardman symbols I are in brackets.

npip=1 [p=2 p=3 p=4 p=>5 p=6 p="7 p=28 p=9
0 (1) Ay (12) A2} (13) A3 (14) As (15) As }(16) Ae (17) A7 (1s) As- (1) Ag
(2) I>2 I3z Iyo In3 | Isa Iz | T2 Is3 Isa | I72 Is3 Isa
21) I Ig Iy Hg
8]
1 (2) AL {(21) A2 (212) A3 |(213) Ag1(214) As (215) Ag | (216) A7 (217) As (215) Ag
(22) Dy Ds D¢ D~ Dsg Do
(221) Fe E7 (2211) Eg
[222]
3) Ss Se S7 Ss So
T Uy Ts Us Ws | Ts Ug Wo
: (31) Zy
2 (3) Ay (31) A (312) A3z | (313) A4 (314) As (315) Ae | (316) A7 (317) Asg (318) Ao
(32) Dy Ds Dg Dy Dg Dy
(321) Eg Eq (3211) Eg
W s |22
3 (4) Ay (41) Ao (412) As (413) Ay (414) As (4.15) Asg (416) Az (417) Asg (413) Ao
(42) Dy Ds Dg Dy Dg Dy
(421) Eg Er (4211) Es
. o [43][5] [422]
4 (5) A1 [ (51) A (512) Az (513) Ay (514) As (515) A6 1 (516) A7 | (517) Asg (518) As
(52) Dy Ds Dg Dy Dg Dy
(521) Fs Eo (5211) Es
53 |[s22lle]
5 (6) Ay | (61) Az |(612) A3 | (613) As|(614) As | (615) As [ (616) A7 [(617) As (61g) Ao
(62) Dy Ds Dg D+ Dyg Dy
(621) FEeg Er (6211) Fsg
3 |22 [
REFERENCES

[AGV} V.L.Arnold, S.M.Gusein-Zade and A.N.Varchenko, “Singularities of differentiable maps 1,”

Birkhauser, 1988.
[BS] N.Ballesteros and M.Saia, An invariant for map germs (preprint).

[B] J.Boardman, Singularities of Differentiable maps, Inst. Hautes Etudes Sci. Publ. Math. 33
(1967), 21-57.
[FI] T.Fukuda and G.Ishikawa, On the number of cusps of stable perturbations of plane-to-plane
singularities, Tokyo J. of Math. 10 (1987), 375-384.
[F] W.Fulton, “Intersection theory,” Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge
Band 2, Springer-Verlag, 1984.



12

[GM] T.Gaffney and D.Mond, Cusps and double folds of germs of analytic maps C2 — C2, J.
London Math. Soc. 43 (1991), 185-192.

[HE] M.Hochster and J.Eagon, Cohen-Macaulay rings, inveriant theory, and the generic perfection
of determinantal loci, Am. J. Math. 93 (1971), 1020-1058.

[Kutz] R.Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups,
Trans. Amer. Math. Soc. 194 (1974), 115-129.

[Mather1] J.N.Mather, Stability of C>°-mappings IV: Classification of stable germs by R-algebras,
Publ. Math. Inst. Hautes Etudes Sci. 37 (1970), 228-248.

[Mather2] J.N.Mather, Stability of C*°-mappings VI: The nice dimension, in “Proceeding of Liver-
pool singularities symposium, I,” Lect. Notes in Math. 192, 1971, pp. 207-253. '

[Mather3) J.N.Mather, Stable map-germs and algebraic geometry, in “Manifolds—Amsterdam,” Lect.
Notes in Math. 197, Springer-Verlag, 1971, pp. 176-193. .

[Mather4] J.N.Mather, Generic projection, Ann. of Math. 98 (1973), 226-245.

[Mather5] J.N.Mather, On Thom-Boardman singularities, in “Dynamical systems,” ed. M.Peixoto,
Academic Press, 1973, pp. 233-248.

[Mat] Y2z, “v IR R,” S - OB E 4, Er HIR, 1980 (English translation
H.Matsumura, Commutative ring theory, Cambridge Studies in Advanced Math. 8, 1986).

[Mond] D.Mond, Vanishing cycles for analytic maps, in “Singularity theory and its application,
Warwick 1989, Part I,” Lect. Note in Math. 1462, Springer-Verlag, 1991, pp. 221-234.

[Morin] B.Morin, Calcul jacobian, Ann. scient. Ec. Norm. Sup. 8 (1975), 1-98.

[Wall] C.T.C Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981),

481-539.

n — p | Notation Normal form Restrictions
s—1 Ap it + 224 422 k>1,s>1
s—1 Dy, z§m2+z§_1+m§+---+z§ k>4,5>2
s—1 Esg o3+ ad+ 24+ a2 s>2
s—1 E, B trpdtait 422 | s>2
s—1 Es a3 +z5+a24.--+a? s>2

0 I T122, 79 + 75 a>b>2

0 Ipqt1 z? + zg, zg a>3

0 I, 23 + 23, 212572 a>4

0 I, z3, 4

0 H, z2 + 9:;"5,.7:1:1:% a>9

1 Sk z? 4+ 22 + z?':”3,x213 k>5

1 Tk xf+mg+x3_4,x2x3 T<k<9

1 Uy z% + z2x3, 7172 +zg

1 Us x% + xox3,21T2 +x1x§

1 Uy z% + zox3,2122 +z§

1 Ws o + 23,22 + zy23

1 We I% +x2z§,x% +x123

1 Zy x? + 23,22 + 23

1 AT z% +zzz§,x3 +$§

Notations of simple contact orbits
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e : T@RER LY

PIFISTHRERR, FICCMRBRORD, 2oWT#BB LA L 2R0BARLEATE &
DILDTHS. EE, TRERRIZOVWTCLDEALOTELLERVWEZEVT WS
CEERNL. LALALBALS LRGP S TRRAZBRTIACL>-TAPOBE
CLENEEEEW, CRHBLLTBRILI L. LEEORELEENRE, L3
HIZW - ZIWEWTHS. EHIZOWTIEIHRBOTHE BB L TTF I,

AZBAIL L 2L OWHMR, M % A-MBLT 5. Spec(A) T A DRAFTIALLED
AT Zariski (I EVRICNHZER, B ADAF7A T oL BHES

V(I)={P € Spec(A): PD I}
PHARELTHIIL (BBO) IHZREERT.

Ass(M) := {P € Spec(A) : P = ann(z), 3z € M},
Supp(M) := {P € Spec(A) : Mp # 0}

EBL M BA—-3B A LOBERER A MB% 51T Ass(M) IZER&EST,

Ass(M) C Supp(M) = V (ann(M))

7 Supp(M) DBATL I Ass(M) DBATL s —KT 5.

§1. HEmE (I, 4 B]). AMB P BYROZKERE-T L EHEBN (ZEMEM
H)Thdewns: #8025 f: M >N L E8nst g: P— N ZxL,g=foh %
Wd h:P—-> M BEETS.

EBL.

(i) BEEMBEZABNT, $ENREIEENBOENRTE TS 5.
(i) EEROMBIIHBME (P ITEEME) ORKFMEL LTERE 3.
(i) A ZFPRETE. COL S5HP A-MBL B A-MBIXFE L 82 (K, 2.5]). =
SIZHBRAERMBICOWTIR, FH A-FL Bh A- B LR LS (BN, 7.10)).

A-DE M ZHLEBME P o M ANDEH P - M %L 0208% K, t3h
0> Ko— P —>M—-07%2%2M2H55. Ko COWTHRBIZHEME P, 250
2H P - Ky 2 WiF0—- K - P - Ky —0%2%e5%85%. UTARILT
=12, CHLTHBNE P L2 0-K, - P, - K, - 05 fE5h3. Zh
LEDLZWTHLNS ik

(P.) "'—"Pn""Pn——l“’“‘—*Pl“"PO—*O

* M DH#5 M (projective resolution) L W35 . HHD Py — 0% Py — M — 0 (25
ZRI:bDIIREFNL 5.
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HE. AP FA—IBRTM PFERER A-MBLLE R 2FRERBENFELTLI L
WTE ZDL &I Ko bERBERICZS. UTHRRTHE o6 M DHEBIBLLTE
P, 7EBEREENBETH L LDPFHET 5.

A-MB M OFEHE (272 3EENE) P. S Pi#0p2 P=0(k>d) 2227
LEP ORSEAdTHBEN). ANBEM OREBIOHEBIBORSEZ M 0¥
KL whpd(M) TRYT. M FHBNBETHS L L pd(M) =0 13FAETH 3.
HWE. AW A—SRHRT HMER AMBOTELF0 > M - M > M'—0Bbh
i¥, pd(M) < max{pd(M’),pd(M")} THEEHRI L%V E & pd(M”) = pd(M')+1.
§2. Tor. M,N % A-MBL¥5. M NHBHE (P) DEBEIZ ©aN Mﬁm%%en
2#k% PN £ #<.

(P.@ N) i3 Po QAN 5Py i ®AN— - > P @sN—>P,@4 N —0
SorE AR Tor*(M,N) # XCEHT 2. |

Ker{P, ® s N = P,_1 @4 N}
Im{Pr41®4 N — P, @4 N}~

Z B Tort(M,N) I35t BB (P) DL D FIEEET M & N 217 TRE 5.

Tor DX HE.
(i) Torg(M,N)= M ®4 N, Tor(M, N) = Tor} (N, M).
(i) M St BH L3 TFEL SIEHEED A- B N 123 L Torh (M,N) =0 (n > 0).
(i) EELeMN 0> M - M- M'" -0 LTRERH- — TorA(M’ N) —
TorA(M,N) — Tor(M",N) — Tor?_ ,(M',N) — --- — Tor{'(M",N) —
M'®AN—+M®AN—+M”®AN—>O PELNS.

§3. Ext. M,N % A-MBL$5. M O§EH® (P) »%HEIC Homa(—,N) 2L T
Bo5h38ik% Homa(P,N) <

(Hom4(P.,N))

0 — Homa(Py, N) » Homa (P, N) — --- — Homy(Pn—1, N) = Hom(Pp, N) —

TNk s A-E Exti(M,N) 2 XTE&HT 5.

Ker{Hom(P,, N) — Homa(Ppny1,N)}
Im{Hom4(P,_1,N) — Homu(P,, N)}~
ZomE Exti(M,N) ZHBIR (P) DL HYFIEKEET M & N ZGTHRZS.
Ext X%t H.
(i) Ext%(M,N) = Hom4(M, N).
(i) M BB sIEHEEN A- B N 2L Exti(M,N)=0 (n > 0).
(iil) #5ELH 0 — M — M — M"” — 0 o L TRE£25 0 —» Homa(M”,N) —
HomA(M,N) — HomA(M’,N) — Exti(M",N) — ExtyY(M,N) —
Extl (M"” N) — Ext3(M" N) = Ext3(M,N) — --- #i3o6h5.
(iv) %25 0 —- N - N > N' -0 iz L TREL25 0 — HomA(M Ny —
Homa(M,N) — HomA(M Ny — ExtA(]\/I N’) — ExtL(M,N) —
Extl (M, N") — Ext3(M,N") — Ext3(M,N) — --- 1B o6h 5.

Tora (M, N) :=

Ext? (M, N) :=
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84. BRIRDNTA—%. (Am) 2 n XKEA—PFHHRLTLIEn HOTLTERS R
e m-BEAFTNHEEL n @BEDPLWROTTERIN: m-ERA FT7LIEHF
FELLWV. 21,00 Zn P m-BERATFTNEERTEEE 21,..,2, 2 ADNITA—F R
(sop.) VW, .., 2y DERTEZAFTIENTIXA—FAFTHENS. m 2ERT
BORRELTOBNEIE dngymm/m? TH2. m B n HOTTERINSZELE A
BREMBEHRRTHLI VWV mM 2ZERTENITA—FREZEMNIX—FREWVS.

£& (B, (141)]). (4,m) 2 n KTEA—SBHR1,..,2, ENTA—FREFT B L
(i) dim A/ (21, @) =n—i (1<i< n).
(ii) ht(z1, ..., z) =t BEED ( ITOVWTER D LD LTV 2%\

= (A, (14.2)]). n REF—2 BHER (A, m) O m DT 21,..,2, I L, KiZFEHE.
(i) 21,..,zi BERINTI XA —SRO—EFich 5.

(i) Z1,...,z; O m/m? 2B 3 BHF—KMT.

(ii)) A/(x1,...,2z:) ¥ n—i REHOEHBHE.

A-fiEE M iox LTt dimM/(zy, ...z, )M =0 7% 3 m DT 21,....,2, ¥ M DIXT
A—PFREVN ZROERTEAFTAEM DRFIA—24 FT7NEVS.

§5. Samuel DEHE. (4, m) ¥ n XKEA—FRHE M 2 EHBER A-NE, (z) %
ADMBERAFTNETS. ZDEE +HKREL kloHL (M/(2) M) 13k 0F
HEBRZHELELE—XT3. Zo2HEA % Samuel ZHERK L V5. Samuel X DK
i3 A DRIFE n 12— T 5. Samuel FEARDBERDBRED n! FRERTHHIINE
e((z), M) <. e((z), M) iz Samuel DEHE L FiTh 5.

e(2), M) = lim T-4(M/(2)*M).

Bicn=0%56F e((z),M)=¢M). 27 e(A) :=e(m,A) 2 ADEHEL V.

sEE ([vF, p.130]). (A,m) # n RTEA— 7 BHE M 2 EMER A-WE, () (¢) %
ADmMBERSLFTALETE. |
(1) dimM =n % 5 e((z),M) >0 T, dmM <n % 5iF e((z), M) = 0.
(ii) (2') C (z) % 6 e((z), M) < e((2'), M), iz, e((x)", M) = e((z), M)r™.
(i) HFMER A-MBOELH 0 > M - M - M — 0 BHhiF e((z),M) =
e((z), M) + e((z), M").

EE ([BA,(14.9), [S, V]). (A,m) % n RTEA—FBHR M 2 ERER A-NE, () =
(@1, s2r) B M D NGA—=FAFTLETE. ZDEE,
UM/ (2)M) > e((z), M) = T, &(Torf (4/(z), M)).

§6. Serre DK (S, V]). (4m) 2 A—2BHBI,J ¥ AD AFT7LETB.
i(I,J; A) = (= 1) 4(Tor (A/LLAJI) 2 T £ T D A TORERE WS . BEAZMIC
BELZOIZ AN SHARCIX,,..,. XN 2HBEAFTNV P TRAELLEZLODL &
THE. ZDLE CXy,... XN DAFTN I, JTCICP, JCP bzl V()
EV(J) D V(P) icB->ToORARIT (I, J;A) THE2Zons. 22T I BERT
5 ADATFTNERT.
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EH. (Am) 2 2~ BHRM 2HRER A-WE, (2) = (z1,..,2,) ¥ A/T © X7
A—ZAFTNETSE. 2Dk & e((z),A/]) = i((z),]; A).

87. R/NEEHNMEARBBENR (B, §19]). (4, m) 2BHBLT5. FMER A-m
BMIEIHLEEs® (P) P8 h4 8 (minimal free resolution) T#H 2 L 3 RDF
HEHlTEEZT WS,

(i) % P i3 EBREsmE A% CEE.
(ii) B A% = Py — Ppoy = A1 2FFIRTLE 5 ZOFFDERFIE A DA
4AF7N m DIT.

#HE AFA—SRRRT M PERER A-MBELZLEM ZRNEENEEZ L.
#HE AP XA—FEHRT M PRNEHFBEZLD A-NPL LT
(i) bk = dim 4m Torf (M, A/m).
(i) pd(M) = sup{s : Tor{*(M, A/m) # 0} < pd(A/m).
gl.dim(A) := sup{pd(M) : Miz A-m% } £ <.
EH. A—YBFR A CHL, AR <= gldim(A4) = dim(A) <= gl.dim(4) < co.
RIEFEBOBEHI B EREEIE (FFR) L Wi, A- B M BPEREHIE

0— Abn — Aln-1 oy gl g —>M—+O

£4oLE x(M) = Y,(-1)'b # M o Buler Bk 5.
SEH. A BB T A-ME M 5 FFR % 4 TiF x(M) > 0.
SEE. ANA—SBET AME M 2 FFR % 4 TE x(M) = 0 <= ann(M) #0.

§8. EMIFI. A # BT 1 2 bOTHE, M % AMBET2. a€ A5 M-ER 213 fF
BEOMEM ZHLam =045 m=05%2L5%0n>. 0> M5 M =25
LHBEELEVEBITLIV. a,....a, BED2EEEFHRTTEE M-BE NS,

(i) i=1,..,7 {Z2WT a; » M/(a1,...,a;—1 )M-TEA.
(i) (a1, . ar)M % M.

A% =3B M rERER AME, [ 2 ADAFTAETS. I oA M-FlO
Ex% dpy(I, M) & »<.

8. dp,(I, M) = inf{i : Ext},(A/I, M) # 0}.

(Am) 2 2A— S BB, M 2HBER A-MBOL %5, dpy(M) = dp,y(m, M) L8
T3 AFarEny—8

Hi,(M) := lim Ext’,(A/m", M)

n

¥AWS L dp (M) =inf{i: H (M) #£0} Th 5.
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HE ((AK, III, (3.16)]). #—% B8 (4,m), (B,n), O§ f : (4, m) — (B,n) #
f(m)Cn %A HEEEDFRER B-MFEICO>WT dpy(M) =dpg(M) B4 D izo

£/, A—FBHR (A,m) L EBER A-MB M (2DWT dpy(M) < dim(A/P),VP €
Ass(M) T, pd4(M) < co 7 i pd4(M) + dp 4(M) = dp4(4).

grade(M) = inf{i : Exty, (M, A) # 0} % A-Jn% M o grade £\ 3.
28, grade(M) < pd(M), grade(A/I) =dp,(I,A) < ht(I).

grade(I) := grade(A/I) L <. grade(M) = pd(M) % 3% A-WiF M zRL£mE
(perfect module) X\ 5. A/ BREMBOLE A FT7N I ERETHIEWVD.

§9. Cohen-Macaulay B ([ix#1,817]). A % 2 — S BFMBR M 2 FRER A-MPL I
3. dp(M) = dim(M) »r & M % Cohen-Macaulay(CM) i L \W5. /2 AN
A-MBELXr LT CM D E 2% dp(A) = dim(A) D & A 2 Cohen-Macaulay(CM)
BRREWD.

EH. (Am) 2 F—EMB M 2HEBRER A-MFELT 5.
(i) CM m#E M & P e Ass(M) izxt L, dim(A/P) = dim M = dp(M).
(ii) @1y...,ar € m H M-Fl% 51, M : CM <= M/(ay,...,a,)M : CM.

EHM. (Am) 2 CMA—9RFRLT 2. 1 2 ADEDATFTAETHE M) =
dp (I, A) = grade(I), ht(I) + dim(A/T) = dim(A).

EH. (A m) % CM?f\'—ﬁ’FJﬁﬁ&“ﬁ‘% a1,y ap € M 23 U RIZHEE.
ai,...,ar ¥ A-5 < ht(ay, ... ar)—'l"(:)al, ,0p N T A —F RD—E.

EE. (Am) % A—SBHEM FERER AMEL T, KIZAE.

(i) M iz CM m#E.
(i) FEBOM DINFA—F A4 FT7N (z) = (21, ..., %) K L e((x), M) = {(M/(z)M).
(i) 2 M DISFTA—F 4 FT7N (2) = (21, ..., Za) IH L e((z), M) = {(M/(x)M).

A—FBR AP IXRTCOBKAF7V miIZHLTm TORHFL Am BCMROL &
Cohen-Macaulay(CM) RTH 2L W5, F—F R A Lo MM B §XTHOEKS
F7hVm iz L Tm TORFN My 75 CM Ap-TiED &£ & Cohen-Macaulay(CM)
MBTHEEWVI.

8 ([BV,16.C]). A % CMB, M 2 HBER A-MBLT 5.
(i) A[X1,..., Xa] i CM B
(i) 554 A-WB M i3 CM A-JIEE.
(iii) pd(M) < oo % 3 CM A-JuEt M T Supp(M) #3E#E% 5iF M 13552 A-ME.
Bic A BERBREL 5 CM A-MBIIEE A-ME.

§10. Cohen-Macaulay B type ([HK, 1}). (4,m) # n XTA—2RAHR, M 2 &
RAeER CM mEt L 35, ra(M) :=dima)m Ext}(A/m, M) % CM A-li M o type
LWV,
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ﬁgfg d=dps(M) £ Bk, ra(M) = dimy Torp,_ (M, A/m) = dim g/ m He(M).
EH.
(i) A= A" 5% o ra(M) =ra(M).
(i) a € A 8 M-FERI% & ra(M) = ra(M/aM).
(iii) ra(A) < e(A) T, FHRI <= ATFHL
(iv) FBDO M 085 X—24F7L (2) 2L, ra(M) = dimaymy(M/(z)M).

22T Y M/(2)M) iZ M/(z)M o socle L BiZh 3L DTY(M/(z)M) = {y €
M/(z)M : my =0} TERIN 5.
§11. Buchsbaum fuft ([SV]). (A, m) % A — Y FHR, M 2 FBRER A-MBL T 3.
RDGZEE AT EE M 12 Buchsbaum JifTH2 VI FBED M DINSTA—%
AF7N (z) =(21,...,20) 1L LM/(2)M) —e((z), M) # (2) ZEELTWEHR.
M 7% n &It Buchsbaum 7% SIFXRMPRIL ([SV, 1.2.6]).

n—1

—-1 )
(M @M) = el(@),2) = 3 () et o).
1=0
s ([SV, IV.3.2]). dp(M) #0 0 & & KizFE.
(i) M % Buchsbaum in#.
(i) M DEBDNF A—5 4 F7 L (z) (28 L, KEE R = R((2); M) == ¥\ (2)'M
¥EBED P € Proj(@, (z)") TRHFLL 7L DI CM Ap-IE.

§12. Koszul #itk ([EN], [HE]). A 28, 21, ...z, €A LT LS, Bk K. 2 RN L3
2EHTS. Ko=A L 1<p<n L TR K, i3 {eii, 11 <61 <+ <ip <}
PERETHBE () OHEME K, =@ Ae;,.., LLO<p<n LD picsfLT
K, =055 MAERARd: Ky — Kpoy i dleiys,) = L (-1)2ie, o,
p=1%56d(e)=z;) ICL>TEDS. |

(i) grade(]) <n T, EERU% 51 K. 13 A/] DBESRT A/] 3L ME.
(i) A PRHFBRTLETESRY, »o% o; € m % 5IF 2 WIZE/NE B R,

§13. FFHRA F7N. F— VB ADTERNETE m T o HOFH X = (z;:) 2%
25 00X ot RINGHRDERT 24 F7A% L(X) TERT.

w8 (HE]). X 2 mFnfoFHET5. 2ok %, grade(Ty(X)) < (m—t+1)(n—t+1)
<, EERY L 5 A/L(X) 125 .

CHEBTEHEBRINEL & L(X) 37K 4 77 (determinantal ideal) £ 413,

w8 (K]). X # n XABFHETZ. 20L&, grade(I(X)) < L(n—t+1)(n—t+2)
T, BERYL 6 A/L(X) R E.

INLDERTIIZEMBTH S Z L DEIRITITXREANVTWVWS.
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#i# ([HE, Proposition 18]). A % *—% 8, P,Q #3IZ gradek ® A DL FT I
LL,PZQQZP LTS,

(i) grade(P+ Q)< k+1%5iE PNQ i3 gradek D%£4 F7 L.

(ii) grade(P+Q)=k+1 % 56X, PNQ I%L < P+Q i3%=.

§14. Eagon-Northcott #k ([EN],[HE[,[BV,2.C]). A~ A DTERH LTS m
FnFlOFH X = (z;;) 2£25. (m<n). Sg ¥ {X{* - XIr ji+- - +im=qJk 2
0} 2HELT2RE (T1777) DB A-ME S, = B, 4pjn = AXT - Xim, Kp 3
{eioi, 1 1S <+ <ip<n} 2EELTHEHE () DHENE K, =@ Aej,..;, &
5. COLE BER FRNDEIICEHETS. Ryy1 = K1 q®45, (¢=0,1,...,n—m),
Ro=A 8L MHEAFRd: Ry — Ry (¢>0) i3

m+q
o g1, xim) — —1)?+i,,. ~ Ji, L xae—l, Jm
d(ell"'1m+q ®X1 Xm)— Z Z( 1) xk’reil---i,,---im+q®X1 Xk "Xm
k:jx >0 p=1

TEHTSE. WAtEHEd R =K, ®4S - Re=AlZ

T1iq T1iqg .o T1ipm

1‘.211 mQ’iz e x2‘lm
d(ei1~--im ® 1) =

xmil xm’iz .- xmzm

TEHETEE R EEEKIZK 5. _
FH. m<n rTs X=(z5) 2mfAnFofFil l=I,X) L&<.

(i) grade(I) <n—m+1 T, FERI%L 5T, R 13 A/l DHAEFET A/l BRL

InEE.

(ii) A PRIFBTLEOESRY, »2% zj; € m Lo I3/ MEHTRE.
§15. Gulliksen-Negard #tk ([BV, 2.D]). X = (z;5) ¥ ADTEZRF LTS n KIE
FEMY =(y:;) 2 X n&ETFANETS. Mp(A) 2 ADTERTET S n KES
ek 5.

AL Mo (A)® My(A4) 5 A

¥ ua) = (aE,aE) (E 88455, n(U,V) = te(U - V) TEHT 5. F = Kerr/Imu
rBLE FdBER 202 -1) 0BH AMBETH 5.

(L(X)) 0= AU M (A B FB M(A)B A A/L_1(X) =0
% dy(M mod An(A)) = tr(Y M), do(U, V) & class) = UX - XV, ds(W) = (XW, W X)
0 class, dy(a) = aY TEHET S & LX) I3WETH 5.

. X =(x;;) ¥ n REFFAEL, [ =L (X) £5<.
(i) grade(]) < 4 T, BER %L 51 L(X) id A/ DEBHET A/] 352 ME.
(i) A BEHRBTLOBESRY, » % £ji € m %& b 2 IIE/NE iy .
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§16. Jozefiak #tk ([J]). X = (zij) 2 A DRERHP LT B n XHHTH, ¥ = (y;5)
* X 0fREFTNETS. Ma(A) 2 ADTERSET S n REFTH LK, A.(A) %
ADTERTET S n REAHITH LMK LT 5.

(L(X)) 0— A,(4) & Ker{M, (A) } (A)/An(A) A— A/l _1(X)— 0

ZZTdi(M mod Ay(A)) =tr(YM), da(N) = XN mod An(X),ds(S)=SX L%
35 L RITEE.

EH. X =(z;) 2 n WABFHEL, T=T1,_1(X) £5<.
(i) grade(I) < 3 T, BHRL% 51 L(X) i3 A/I OE MM BT A/T 35S ME.
() A BRFBRTLOESRY, 5 & o € m % bIF = AU/ E H5 .

§17. WiR. 8§13 » 2 FEW T grade ZOWITHENRILT 5H4, [L],[PW],[JPW] TEXK
0 DHBEHER—BBRERORFEZHANWT A/LX) o/ EEYBEZEANICERLTWS
B, GHBEREOBEAFR I VHABREW:. BERICRBOEZRL V.
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