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Abstract

A term rewriting system (TRS) is said to be depth-preserving if for any rewrite rule and any
variable appering in the both sides, the maximal depth of the variable occurences in left-hand-
side is greater than or equal to that of the variable occurrences in the right-hand-side, and to
be strongly depth-preserving if it is depth-preserving and for any rewrite rule and any variable
appering in the left-hand-side, all the depths of the variable occurrences in the left-hand-side are
the same. This paper shows that there exists non-E-overlapping and depth-preserving TRS’s
which do not satisfy the Church-Rosser property, but all the non-E-overlapping and strongly
depth-preserving TRS’s satisfy the Church-Rosser property.

1 Introduction

A term-rewriting system (TRS) is a set of directed equations (called rewrite rules). A TRS is
Church-Rosser (CR) if any two interconvertible terms reduce to some common term by appli-
cations of the rewrite rules. Church-Rosser is an important property in various applications of
TRS’s and has received much attention so far [1-5,8-15]. Although the CR property is undecid-
able for general TRS’s, many sufficient conditions for ensuring this property have been obtained
[1,3,5,8-15]. For example, for noetherian (i.e. terminating) TRS’s, the CR property is decidable
and reduces to joinability of the critical pairs [5], and for nonterminating and linear TRS’s, some
sufficient conditions (e.g., nonoverlapping) have been given [3, 11].

On the other hand, for nonlinear and nonterminating TRS’s, only a few results on the CR
property have been obtained. Our previous paper [9,10,13] may be pioneer ones which have
first given nontrivial conditions for the CR property. In [10], it was shown that if TRS’s are
non-E-overlapping (stronger than nonoverlapping) and right-ground, then they are CR. Here, a
TRS is right-ground if no variables occur in the right-hand-side of a rewrite rule. This result
is compared with an example given by G.Huet [3], i.e.,, 2 nonoverlapping, right-ground and
non-CR TRS with the three rules: f(z,z) — a, f(z,9(z)) — b,c — g(c). Here, f,g,a,b,c are
function symbols and z is a variable. The above result was extended in [9,13,14,15] and it was
shown that if TRS’s are non-E-overlapping and simple-right-linear, then they are CR. Here, a
TRS is simple-right-linear if for any rewrite rule, the right-hand-side is linear (i.e., any variable
occurs at most once in the term) and no variables occuring more than once in the left-hand-side
occur in the right-hand-side. Moreover, it was shown that even if simple-right-linear TRS’s are
E-overlapping, some additional conditions ensure that they are CR [9,13,15].

However, these results were restricted to those on the CR property of subclasses of right-linear
TRS’s. On the other hand, if we omit the right-linearity condition, then it has been shown that



only the non-E-overlapping condition is insufficient for ensuring the CR property of TRS’s.
For example, the following non-E-overlapping TRS R, is not CR: R; = {f(z,z) — a,9(z) —
f(z,9(2)),c — g(c)} given by Barendregt and Klop. Here, f,g, a,c are function symbols and z
is a variable.

In this paper, we consider the CR property of nonlinear, nonterminating and depth-preserving
TRS’s. Here, a TRS is depth-preserving if for each rule @« — 8 and any variable z appearing
in both a and B,the maximal depth of the z ocurrences in « is greater than or equal to that
of the z occurrences in 8([6]). For example, TRS Ry = {f(z,9(z)) — h(k(z),z)}, where z is a
variable, is depth-preserving, since the maximal depths of the z occurrences of the left-hand-side
and of the right-hand-side are 2 and 2, respectively. '

We first show that only the non-E-overlapping and depth-preserving properties are insufficient
for ensuring the CR property. That is, the following TRS Rj is not CR: Ry = {f(z,2) — a,c —
h(c, g(c)), k(z,¢(z)) — f(z,h(z,g(c)))} where z is a variable. Note that Rj is non-E-overlapping
and depth-preserving,but Rj is not CR, since ¢ — k(c, g(c)) —* a and ¢ —* k(a, g(a)), but a and
k(a, g(a)) are not joinable. Note that Rs is also non-duplicating, since for each rule the number
of z occurrences of the left-hand side > that of the right-hand side. Thus, non-E-overlapping,
non-duplicating and depth-preserving conditions do not necessarily ensure CR.

Next, we introduce the notion of strongly depth-preserving property (stronger than the depth-
preserving one). A TRS R is strongly depth-preserving if R is depth-preserving and for each
a — B and for any variable z appearing in a, all the depths of the z occurrences in a are the
same. For example, TRS Ry = {h(g(z), 9(z)) — f(z,h(z,9(c)))} is strongly depth-preserving,
since Ry is depth-preserving and all the depths of z occurrences of the left-hand side are 2.

In this paper, we prove that non-E-overlapping and strongly depth-preserving TRS’s are CR.
For example, the following three TRS’s R}, R} and Rj are ensured to be CR:

R,1 = {f(z,z) > a,c— g9(c), g(z) — f(z,2)}
Ry {f(z,2) — a, ¢ = k(c, 9(c)), h(g(2),9(z)) — f(=z,h(z,9(c)))}
Rs = {f(z,z) — h(z,2,2)}
This paper is organized as follows. Section 2 is devoted to definitions. In Section 3, we explain

how to prove the above main theorem. In Section 4, we make concluding remarks about the
strongly depth-preserving property.

2 Definitions

The following definitions and notations are similar to those in [3, 10]. Let X be a set of
variables, F be a finite set of operation symbols and T be the set of terms constructed from X
and F.

Definitions of < O(M), M/u, M{u — N],V(M),0.(M) >

For a term M, we use O(M) to denote the set of occurrences (positions) of M, and M/u to
denote the subterm of M at occurrence u, and M[u «— N] to denote the term obtained form M
by replacing the subterm M/u by term N, V(M) to denote the set of variables in M, O.(M)
to denote the set of occurrences of variable £ € V(M).

Definitions of < O(M) >

O(M) is the set of non-variable occurences, i.e.,

O(M) = O(M) — U,ev(ar)O=(M)
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Definition of < k(M) — height of M >

For a term M, h(M) = Maz{|u| | u € O(M)}. h(M) is called *height of M”.
Example.

h(f(g(z))) =2, h(a) =0, h(g(2)) = 1.
Definition of < TRS >

A term-rewriting system (TRS) is a set of directed equations (calle(i rewrite rules).
Definition of < depth-preserving TRS R >

TRS R is depth-preserving
ifVa— g€ RVz € V(a) Maz{|v||v € 0,(8)} < Maz{|u|| u € O,(a)}

Note

TRS R is depth-preserving if and only if R is locally increasing, i.e., 3l > 0 such thatVa — 8 € R
Vo: X —T,if h(o(a)) < h(a(B)) then h(a(a)) <1

Definition of < strongly depth-preserving TRS R >

TRS R is strongly depth-preserving
if R is depth-preserving and satisfies that Va — 8 € R Vz € V(a) Yu,v € O (a)
|#| = |v| hold.

Definition of < parallel-one-step —— >

M N iff 3IU C O(M)s.t.
Vu,v € U u # v = u|v (disjoint)
VueU M/u& N/u
N=M[u~ N/u,u € U]
where M/u ¢ N/u is one step reduction between {M/u, N/u} = {o(a),o(8)} for some
a—-pf€Rando: X —T.
In this case, let R(M «~=N)=1U.
(Note. U = ¢ is allowed.)
Example.

Let R = {a — c}, then f(c,g(a)) — f(a,9(c)).

We assume that v : My > M; > --- —}> M, in the following definitions.

Definition of < R(y), M R(«), u-invariant >

R(y) = {u; | ui € R(M; —>M;41) (0 < i < n)}
M R(7) is the set of minimal occurrences in R(y).
For u € O(My), if there exists no v € R(7) such that v < u, then 7 is said to be u-invariant.

Definition of < composition, cut of reduction sequence >

Let 6 : No «}> Ny «}> - -+ —}>Ny. I M, = Ny, then the composition of v and 4, i.e.,
My M, - --- M, (= Ny) «}> N, ~ --- > Ny, is denoted by (7; ).

Let v be u-invariant, then the cut sequence of v at u is

v/u=(Mo/u —->M/u > - > My /u).
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Definition of < H(y) — the height of reduction sequence >
H(v) = Maz{h(M;) |0 <i<n}

Example.

Let v : f(c) «+>f(9(c)) ~t>a, then H(y) = h(f(9(c))) = 2.

Definition of < |7|, — the number of parallel reduction steps of v >

[7lp=mn
Note.

If6: M —} M, then |6], = 1.

Example.

Let v : £(c) —£(s(c)) —a, then |yl = 2.

Definition of < net(y) >

net(y) is the sequence obtained from v by removing all M; —> M;,, satisfying M; = M; 4,

0<i<n.
Example.

Let 7 : f(c) ~b>f(9(c)) —f>a —>a, then net(7) : f(c) — f(9(c)) —a.

Definition of < |y|np >

|7|np = lnet(7)|P

Definitions of < lefi(v, k), right(y, k), width(y, k), ldis(y, k), rdis(y, k) >

left(v, b)

right(v, k)

left(v, k) 1
right(y,h) |
left(v,h) 1
right(y,h) 1

width(y, b)

Min{i| h(M;) = h}
L
Maz{i | h(M;) = k}

L

Jeft(1,h) # L
right(y,h) # L
left(v,h)= 1
right(y,h) = L1

right(y, h) — lefi(y, h)
right(v, h) — lefi(y, k')

right(v, k') — lef(y, h)

1

if 3 (0<i< n)s.t.
h(M;)=hand Vj(0<j<i) h(M;)<h
otherwise

if3¢ (0<i< n)s.t.
h(M;)=handVj (1 <j<n)h(M;)<h
otherwise

if left(y, k) | Aright(v,h) |

if left(y, k) T Aright(y,h) |

k' = Min{h' | k' > h Nleft(v, k') |}
if left(y, k) | A right(v,h) 1

k' = Min{h' | k' > h \right(v,h') |}

otherwise



154

Idis(y, k) = n —left(y, k) if left(y, ) |
= 1 otherwise

rdis(y,h) = right(vy, h) if right(y, k) |
= 1 otherwise

. def .

ldis(v,h) | = ldis(v,h) # L

rdis(y,h) | © o rdis(y,h) £ L

ldis(v, k) 1 Y ldis(y,h)= L

rdis(7, k) 1 Y rdis(v,h)= L

In fig.1, we illustrate width, ldis and rdis with examples.

reduction sequence ¥ reduction sequence §
h h

height

— ldis(y,h) — ' — ldis(6,h) ———*

+~— rdis(y,h) — ~—width(6,h) —
«~—width(y,h) — right(6,h) T,rdis(6,h) T
Fig.1 Definitions of 1dis, rdis, width.

Example.

Let v : f(c) 4= f(9(9(c))) > flg(c)) 4= f(f(9(g(c)))) > f(f(c)) ~+>g(c). Then
left(v,1) =0, left(7,2) 1, ldis(v,1) = 5, ldis(v,2) 1,

right(y,1) = 5, right(v,3) 1, right(y,0) T, rdis(v,1) = 5, rdis(v,3) T,

width(y,1) = right(y,1) — left(v,1) = 5, width(v,2) = 3, width(y,3) = 2, width(y,4) =0

Definition of < K(v), W(y) >

K(v) = {(h,1dis(y,h))|1dis(y,k) |}
W(v) = {(k,width(v,k)) | width(v,h) |}
Notation

We denote by v[6'/6] the sequence obtained from reduction sequence ¥ by replacing the sub-
sequence or cut sequence § of v by sequence §'.
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3 Assertions

In this section, we explain how to prove that non-E-overlapping and strongly depth-preserving
TRS R is CR. For this purpose, we need the following five assertions S(k), S'(k), P(k), Q(k), Q'(k)
for k > 0.

Assertion S (k)

Let v : My «—p My «p --- —b M where |yl = k,Mp = o(8),M1 = o(a),My_, =
o'(a), M} = o'(B) for some rule a— p € R and mappings o,0' and ¥ : My > *Mj, is
e-invariant.
Then 36 : o(B) <> *0'(B) such that
() |6l < k-2
(ii) If B is a variable, then H(8) < H(¥).
Otherwise, § is e-invariant and H(8) < H(7).
(iii) Vh > 0if ldis(8,k) |, then
3k’ > h such that Idis(v,h’) | and Idis(6, k) < ldis(y, h').

Assertion S'(k)

Let v: Mo My o - o M,
where ||, = k Mo = g(B), M; = o(a),My_, = a"(a),Mk = o'(B) for some rule « — f € R
and mappings 0,0’ and 7 : My(= o(a)) —>*My—1(= ¢'(a)) is e-invariant.

Then 36 : o(8) < *o'(f) such that

() 16lp = s Blnp < [1lnp — 2

(i) If B is a variable, then H(6) < H(7).
Otherwise, § is e-invariant and H(6) < H(7).

(iii) VA >0ifleft(6,h) |, then
3h' > h such that left(v,h’) | and left(v, h') < left(s,h).
If right(6, k) |, then
3k’ > h such that right(y,h’) | and right(§, k) < right(y,h’).

Assertion P(k)

Let v : 0(8) — o(a) —*M for some rule @« — § € R and mapping o where H(‘y) =k and
¥ : o(a) «}>*M is e-invariant.

Then, if 8 is not a variable, then

36 : o(B) —}>*N —>*M for some N such that

H(6) <k,M —* N and ¢ : 0(B) —}>*N is e-invariant.

If B is a variable, then 36 : 0(8) —*N «}>*M for some N such that
H(8) <k,M —* N and H(§') < k for §' : 6(B) —>*N

Assertion Q(k)
Let v: M —*N where H(v) < k.
Then, 36 : M —~>*L «}>*N such that H(6) <k, M —»* L and N —" L.

Assertion Q'(k)
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Let v; : M «}>*M;, where H(y;) <k,1< i< n.
Then, 36 : M —*N such that H(6) < kand Vi (1<i<n) M;—>*N.

The assertions S(k) and S’(k) are similar to the Elimination lemma in [7]. For any reduction
sequence ¥ : 0(8) « o(a) —>*d'(a) — o'(B) for some rule @ — B and mappings 0,0’ where
¥:0(a) «}>*0'(a) is e-invariant, S(k) ensures that there exists 6§ : 0(8) —}>*0'(8) such that
16l < |7|p—2, H(6) < H(7) (where § is e-invariant or H(6) < H(7) ) and K(6) < K(7). Here,
« is the multiset ordering of a lexicographic ordering <. And S’(k) ensures that there exists
§' : a(B) —>*o'(B) such that |6], = |7lp, [6lnp < |7Inp — 2, H(6) < H(vy) (where § is e-invariant
or H(8) < H(y)) and W () € W (). Here, € is « or =.

To prove these assertions, we use the following properties for le ft, right, width.

Property 1

Let v: Mo —> My > -+ > My,
6: No «>Ny > - > Ny

1. Assume that for b > 0, left(6,h) | and there exists j such that j < left(6,h) and
h(M;) > h.
Then, there exists b’ > h such that left(v,h’) | and lefi(y, k') < left(6, k).

2. Assume that for 2 > 0, right(6,h) | and there exists j such that right(6,h) < j and
h(M;) 2 h.
Then, there exists A’ > h such that right(y, k') | and right(y, b') > right(6, k).

Property 2

H H(y) > H(8), then K(v) > K(6) and W(v) > W(5).
Here, > is the multiset ordering of a lexicographic ordering >.

These proofs are obvious by the definitions of left, right and width, etc.

We first prove S(k) and S’(k) by induction on k£ > 0, where k is the number of parallel
reduction steps of ¥. In the case of k > 2, we prove S(k) and S’(k) by induction on weight(vy)
which is defined as follows:

weight(y) = ) |%lnp

i€l
where T' = {¥; | % = 7/u; for some u; € M R(7) N O(a)},
¥ :o(a) —"d'(a).

1. Basis, i.e., the case of weight(v) =0
The proof is straightforward.

2. Induction step, i.e., the case of weight(y) >0
Let i =9/uy : Ly «}>Ly--- > Lj—y where vy €T and L; = M;/u;, 1 <i<k-1.
Then, there exist ¢, such that 1 < i< j<k—1and
br:Li 4 Ligr-- L — Lj
where L; = 0(8'), Liys = 0(a’), L; = 6'(a’), Lj41 = 0'(8') for some rule o’ — B’ and
mappings 6, ¢’
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By the induction hypothesis S(k’), where ¥’ = |61 |ps there exists gy : L; > *Lj4; sat-
isfying the conditions (i), (ii) and (iii). Let n; = ((L —b L;--- b L;);n) where

|71y = [61p-
Let ¥/ = v[n{/61]- Then, obv1ously weight(vy) > wezyht(-y') holds. Hence, by the induction

hypothesis that S(k) holds for v, it follows that S(k) holds for 7.

The proof of S/(k) is similar to that of S(k).

We then prove that Q(k) = Q'(k) for all k > 0. Using these results, we can prove P(k) A Q(k)
by induction on k > 0.

Outline of the proof of P(k) A Q(k).
We first prove P(k). Basis: k = 0. The proof is obvious.
Induction step: Let v : My =+ My «}> M, --- M, where H(y) = k, Mo = o(8), My = o(a)
and M, = M. Let ¥ : M; < M5 --- +}> M,,. We prove P(k) by induction on the following
weight(y).

weight(y) = Ll K(net('y )

where T = {¥; | % = 7/u; for some u; € M R(¥) N O(a)}.
Here, 7,3 is the reverse sequence of +;.
Note that if I' = @, then weight(y) = ¢

1. Basis: the case of weight(y) = ¢, i.e., all the reductions of v occur in the variable parts of

o(a).

We can prove P(k) by using the induction hypothesis Q(k — 1) and the strongly depth-
preserving property.

2. Induction step: the case of weight(y) > ¢ i.e., some reduction occurs in the non variable
part.

By the definition of vf, then there exists an e-reduction.
Let 6 = net(vf) : (Lo «t> L1 -+~ L) where m < n,Lo = Mu/uy, Ly = M1/ u;.

There are two cases depending on whether there exists
£: Li(= o'(8) = Lin(= o'(e) " Li(= 0"(a) —* Lisa(= a"(8")
for some ¢,j (1 < i< j < m), where L;j4; «}>*L; is e-invariant.

(a) The case in which § includes such ¢.
By S(|¢]p), there exists &' : Ly —}>*L;j41 satlsfylng the conditions (i), (ii), (iii).
Let &' = 6[¢'/¢] and 7' = 7[7}/71] where net(yiE) = 6’ and net(7f) = 6.
By weight(y) 3> weight(7'), the induction hypothesis for v’ ensures that P(k) holds
for «.

(b) The case in which 6 does not include such &.
In this case, 6 includes e-reductions, but the direction of the e-reductions is left-to-
right by the non-E-overlapping property.
Using a finite number of the induction hypothesis P(k’),k’ < k, we can prove that
there exists 5 : Ly «f>*N > *L; for some term N and i (0 < ¢ < m) such that
H(n) < H(6),Lo —* N and either i = m and 5’ : N «—p *L; is e-invariant or
H(y') < H(§;) holds where ' : N «}=*L; and §; : Lo «> Ly - - > L;.



158

Let § = 6[y'/6;]. Then, & is e-invariant or K(8) > K(5) holds. Let 7' = 7[7{/m]
where § = net(7?) and 6 = net(y). Then, weight(y) > weight(y') holds, so that
the induction hypothesis P(k) for 7' ensures that P(k) holds for ¥.

Next, we prove @(k) by induction on (H(7y), W(7),€(7)), where () is the number of -
reductions in ¥ and W () = {(k, width(«, b)) | width(vy,h) 1}.

If H(y) < k=1 or v has no e-reductions, then the proof can be reduced to that of Q(k — 1).
So, let H(y) = k and v has e-reductions.

There are two cases depending on whether there exists a subsequence
7 : Ny «* Ny «=*N3 —=° N,
of v for some N;,1< ¢ < 4, where Ny —}-*Nj is e-invariant.

1. The case in which v includes such +;. »
In this case, we apply S(|11lp) or S'(|71lp) and obtain 6; : Ny > * N, satisfying the
conditions (i),(ii) and (iii). ’
Let v/ = v[61/71]. Then, either W(y) > W(v') or W(y) = W(¥') and 6, is e-invariant. In
either case, the induction hypothesis for 4/ ensures that Q(k) holds for 7.

2. The case in which ¥ does not include such ;.
We can prove this case by using P(k) and Q(k — 1). But, the details are omitted.

Since Q(k), k > 0, ensures that TRS R is CR, we have the following our main theorem.

Main Theorem ‘
A TRS R is CR if R is non-E-overlapping and strongly depth-preserving.

Matsuura et al.[6] showed that if a TRS R is non-w-overlapping and depth-preserving, then
R is non-E-overlapping, so that we have the following corollary.

Corollary

A TRS R is CR if R is non-w-overlapping and strongly depth-preserving.
Note

Whether R is non-w-overlapping or not can be checked efficiently.

4 Concluding Remarks

In this paper, we have shown that there exists a non-E-overlapping and depth-preserving TRS
which is not CR, but all the non-E-overlapping and strongly depth-preserving TRS’s satisfy the
CR property.

Finally, we make a comment on the strongly depth-preserving property. This property is
defined by the depth-preserving property and the condition that for each rule @ — # and for
any z € V(a), all the depths of the z occurrences in « are the same. By replacing the restriction
on a by that on 8, we can define an analogous property. That is, this new property is defined
by the depth-preserving property and the condition that for each rule « — # and for any
z € V(8), all the depths of the z occurrences in # are the same. However, this new property
and non-E-overlapping do not necessarily ensure CR. For example, TRS R¢ = {f(9(z),z) —
a, ¢ — h(c, g(c)), h(z,9(z)) — f(9(z),h(z,9(c)))} is non-E-overlapping and satisfies this new
condition, but Rg is not CR.

It will be a next step following the work of this paper to study the CR property of E-overlapping
and strongly depth-preserving TRS, that is, to find restriction conditions that E-critical pairs
must satisfy for ensuring the CR property of strongly depth-preserving TRS’s.
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