

Title	Some Results on the CR property of non-E-overlapping and depth-preserving TRS's (Theory of Rewriting Systems and Its Applications)
Author(s)	Oyamaguchi, Michio; Gomi, Hiroshi
Citation	数理解析研究所講究録 (1995), 918: 150-159
Issue Date	1995-08
URL	http://hdl.handle.net/2433/59669
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Some Results on the CR property of non-E-overlapping and depth-preserving TRS's

Michio Oyamaguchi Faculty of Engineering Mie University

(email: mo@info.mie-u.ac.jp)

Hiroshi Gomi
Faculty of Engineering
Mie University and
Oki TechnoSystems Laboratory, Inc.
(email: gomi@info.mie-u.ac.jp)

Abstract

A term rewriting system (TRS) is said to be depth-preserving if for any rewrite rule and any variable appering in the both sides, the maximal depth of the variable occurrences in left-hand-side is greater than or equal to that of the variable occurrences in the right-hand-side, and to be strongly depth-preserving if it is depth-preserving and for any rewrite rule and any variable appering in the left-hand-side, all the depths of the variable occurrences in the left-hand-side are the same. This paper shows that there exists non-E-overlapping and depth-preserving TRS's which do not satisfy the Church-Rosser property, but all the non-E-overlapping and strongly depth-preserving TRS's satisfy the Church-Rosser property.

1 Introduction

A term-rewriting system (TRS) is a set of directed equations (called rewrite rules). A TRS is Church-Rosser (CR) if any two interconvertible terms reduce to some common term by applications of the rewrite rules. Church-Rosser is an important property in various applications of TRS's and has received much attention so far [1-5,8-15]. Although the CR property is undecidable for general TRS's, many sufficient conditions for ensuring this property have been obtained [1,3,5,8-15]. For example, for noetherian (i.e. terminating) TRS's, the CR property is decidable and reduces to joinability of the critical pairs [5], and for nonterminating and linear TRS's, some sufficient conditions (e.g., nonoverlapping) have been given [3, 11].

On the other hand, for nonlinear and nonterminating TRS's, only a few results on the CR property have been obtained. Our previous paper [9,10,13] may be pioneer ones which have first given nontrivial conditions for the CR property. In [10], it was shown that if TRS's are non-E-overlapping (stronger than nonoverlapping) and right-ground, then they are CR. Here, a TRS is right-ground if no variables occur in the right-hand-side of a rewrite rule. This result is compared with an example given by G.Huet [3], i.e., a nonoverlapping, right-ground and non-CR TRS with the three rules: $f(x,x) \to a, f(x,g(x)) \to b, c \to g(c)$. Here, f,g,a,b,c are function symbols and x is a variable. The above result was extended in [9,13,14,15] and it was shown that if TRS's are non-E-overlapping and simple-right-linear, then they are CR. Here, a TRS is simple-right-linear if for any rewrite rule, the right-hand-side is linear (i.e., any variable occurs at most once in the term) and no variables occuring more than once in the left-hand-side occur in the right-hand-side. Moreover, it was shown that even if simple-right-linear TRS's are E-overlapping, some additional conditions ensure that they are CR [9,13,15].

However, these results were restricted to those on the CR property of subclasses of right-linear TRS's. On the other hand, if we omit the right-linearity condition, then it has been shown that

only the non-E-overlapping condition is insufficient for ensuring the CR property of TRS's. For example, the following non-E-overlapping TRS R_1 is not CR: $R_1 = \{f(x,x) \to a, g(x) \to f(x,g(x)), c \to g(c)\}$ given by Barendregt and Klop. Here, f,g,a,c are function symbols and x is a variable.

In this paper, we consider the CR property of nonlinear, nonterminating and depth-preserving TRS's. Here, a TRS is depth-preserving if for each rule $\alpha \to \beta$ and any variable x appearing in both α and β , the maximal depth of the x occurrences in α is greater than or equal to that of the x occurrences in $\beta([6])$. For example, TRS $R_2 = \{f(x, g(x)) \to h(k(x), x)\}$, where x is a variable, is depth-preserving, since the maximal depths of the x occurrences of the left-hand-side and of the right-hand-side are 2 and 2, respectively.

We first show that only the non-E-overlapping and depth-preserving properties are insufficient for ensuring the CR property. That is, the following TRS R_3 is not CR: $R_3 = \{f(x,x) \to a, c \to h(c,g(c)), h(x,g(x)) \to f(x,h(x,g(c)))\}$ where x is a variable. Note that R_3 is non-E-overlapping and depth-preserving, but R_3 is not CR, since $c \to h(c,g(c)) \to^* a$ and $c \to^* h(a,g(a))$, but a and h(a,g(a)) are not joinable. Note that R_3 is also non-duplicating, since for each rule the number of x occurrences of the left-hand side \geq that of the right-hand side. Thus, non-E-overlapping, non-duplicating and depth-preserving conditions do not necessarily ensure CR.

Next, we introduce the notion of strongly depth-preserving property (stronger than the depth-preserving one). A TRS R is strongly depth-preserving if R is depth-preserving and for each $\alpha \to \beta$ and for any variable x appearing in α , all the depths of the x occurrences in α are the same. For example, TRS $R_4 = \{h(g(x), g(x)) \to f(x, h(x, g(c)))\}$ is strongly depth-preserving, since R_4 is depth-preserving and all the depths of x occurrences of the left-hand side are 2.

In this paper, we prove that non-E-overlapping and strongly depth-preserving TRS's are CR. For example, the following three TRS's R'_1 , R'_3 and R_5 are ensured to be CR:

$$R'_{1} = \{f(x,x) \to a, c \to g(c), g(x) \to f(x,x)\}$$

$$R'_{3} = \{f(x,x) \to a, c \to h(c,g(c)), h(g(x),g(x)) \to f(x,h(x,g(c)))\}$$

$$R_{5} = \{f(x,x) \to h(x,x,x)\}$$

This paper is organized as follows. Section 2 is devoted to definitions. In Section 3, we explain how to prove the above main theorem. In Section 4, we make concluding remarks about the strongly depth-preserving property.

2 Definitions

The following definitions and notations are similar to those in [3, 10]. Let X be a set of variables, F be a finite set of operation symbols and T be the set of terms constructed from X and F.

Definitions of
$$< O(M), M/u, M[u \leftarrow N], V(M), O_x(M) >$$

For a term M, we use O(M) to denote the set of occurrences (positions) of M, and M/u to denote the subterm of M at occurrence u, and $M[u \leftarrow N]$ to denote the term obtained form M by replacing the subterm M/u by term N, V(M) to denote the set of variables in M, $O_x(M)$ to denote the set of occurrences of variable $x \in V(M)$.

Definitions of
$$<\bar{O}(M)>$$

$$\bar{O}(M)$$
 is the set of non-variable occurences, i.e., $\bar{O}(M) = O(M) - \bigcup_{x \in V(M)} O_x(M)$

```
Definition of < h(M) — height of M >
```

For a term M, $h(M) = Max\{|u| \mid u \in O(M)\}$. h(M) is called "height of M". Example.

$$h(f(g(x))) = 2, h(a) = 0, h(g(x)) = 1.$$

Definition of < TRS >

A term-rewriting system (TRS) is a set of directed equations (called rewrite rules).

Definition of < depth-preserving TRS R>

TRS R is depth-preserving

if
$$\forall \alpha \to \beta \in R \ \forall x \in V(\alpha)$$
 $Max\{|v| \mid v \in O_x(\beta)\} \leq Max\{|u| \mid u \in O_x(\alpha)\}$

Note

TRS R is depth-preserving if and only if R is locally increasing, i.e., $\exists l \geq 0$ such that $\forall \alpha \rightarrow \beta \in R$ $\forall \sigma : X \rightarrow T$, if $h(\sigma(\alpha)) < h(\sigma(\beta))$ then $h(\sigma(\alpha)) \leq l$

Definition of < strongly depth-preserving TRS R >

TRS R is strongly depth-preserving

if R is depth-preserving and satisfies that $\forall \alpha \to \beta \in R \ \forall x \in V(\alpha) \ \forall u, v \in O_x(\alpha) \ |u| = |v| \ \text{hold.}$

Definition of \langle parallel-one-step $\longleftrightarrow \rangle$

$$M \longleftrightarrow N$$
 iff $\exists U \subseteq O(M)$ s.t.
 $\forall u, v \in U \quad u \neq v \Rightarrow u | v \text{ (disjoint)}$
 $\forall u \in U \quad M/u \Leftrightarrow N/u$
 $N = M[u \leftarrow N/u, u \in U]$

where $M/u \Leftrightarrow N/u$ is one step reduction between $\{M/u, N/u\} = \{\sigma(\alpha), \sigma(\beta)\}$ for some $\alpha \to \beta \in R$ and $\sigma: X \to T$.

In this case, let $R(M \longleftrightarrow N) = U$.

(Note.
$$U = \phi$$
 is allowed.)

Example.

Let
$$R = \{a \to c\}$$
, then $f(c, g(a)) \longleftrightarrow f(a, g(c))$.

We assume that $\gamma: M_0 \longleftrightarrow M_1 \longleftrightarrow \cdots \longleftrightarrow M_n$ in the following definitions.

Definition of $< R(\gamma)$, $MR(\gamma)$, u-invariant >

$$R(\gamma) = \{u_i \mid u_i \in R(M_i \longleftrightarrow M_{i+1}) (0 \le i \le n)\}$$

 $MR(\gamma)$ is the set of minimal occurrences in $R(\gamma)$.

For $u \in O(M_0)$, if there exists no $v \in R(\gamma)$ such that $v \le u$, then γ is said to be u-invariant.

Definition of < composition, cut of reduction sequence >

Let
$$\delta: N_0 \longleftrightarrow N_1 \longleftrightarrow \cdots \longleftrightarrow N_k$$
. If $M_n = N_0$, then the composition of γ and δ , i.e., $M_0 \longleftrightarrow M_1 \longleftrightarrow \cdots \longleftrightarrow M_n (= N_0) \longleftrightarrow N_1 \longleftrightarrow \cdots \longleftrightarrow N_k$ is denoted by $(\gamma; \delta)$. Let γ be u -invariant, then the cut sequence of γ at u is

$$\gamma/u = (M_0/u \longleftrightarrow M_1/u \longleftrightarrow \cdots \longleftrightarrow M_n/u).$$

Definition of $\langle H(\gamma)$ — the height of reduction sequence \rangle

$$H(\gamma) = Max\{h(M_i) \mid 0 \le i \le n\}$$

Example.

Let
$$\gamma: f(c) \longleftrightarrow f(g(c)) \longleftrightarrow a$$
, then $H(\gamma) = h(f(g(c))) = 2$.

Definition of $< |\gamma|_p$ — the number of parallel reduction steps of $\gamma >$

$$|\gamma|_p = n$$

Note.

If $\delta: M \longleftrightarrow M$, then $|\delta|_p = 1$.

Example.

Let
$$\gamma: f(c) \longleftrightarrow f(g(c)) \longleftrightarrow a$$
, then $|\gamma|_p = 2$.

=

 T

Definition of $\langle net(\gamma) \rangle$

 $net(\gamma)$ is the sequence obtained from γ by removing all $M_i \longleftrightarrow M_{i+1}$ satisfying $M_i = M_{i+1}$, 0 < i < n.

Example.

Let
$$\gamma: f(c) \longleftrightarrow f(g(c)) \longleftrightarrow a \longleftrightarrow a$$
, then $net(\gamma): f(c) \longleftrightarrow f(g(c)) \longleftrightarrow a$.

Definition of $< |\gamma|_{np} >$

$$|\gamma|_{np} = |net(\gamma)|_p$$

Definitions of $\langle left(\gamma, h), right(\gamma, h), width(\gamma, h), ldis(\gamma, h), rdis(\gamma, h) \rangle$

$$left(\gamma,h) = Min\{i \mid h(M_i) = h\}$$
 if $\exists i \ (0 \le i \le n) \text{ s.t.}$
$$h(M_i) = h \text{ and } \forall j (0 \le j < i) \ h(M_j) < h$$
 otherwise
$$right(\gamma,h) = Max\{i \mid h(M_i) = h\}$$
 if $\exists i \ (0 \le i \le n) \text{ s.t.}$
$$h(M_i) = h \text{ and } \forall j \ (i < j \le n) \ h(M_j) < h$$
 otherwise
$$left(\gamma,h) \downarrow \qquad \stackrel{def}{=} \qquad left(\gamma,h) \neq \bot$$

$$right(\gamma,h) \downarrow \qquad \stackrel{def}{=} \qquad right(\gamma,h) \neq \bot$$

$$left(\gamma,h) \uparrow \qquad \stackrel{def}{=} \qquad left(\gamma,h) = \bot$$

$$right(\gamma,h) \uparrow \qquad \stackrel{def}{=} \qquad right(\gamma,h) - left(\gamma,h)$$
 if $left(\gamma,h) \downarrow \land right(\gamma,h) \downarrow$
$$\qquad right(\gamma,h) - left(\gamma,h) \qquad \text{if } left(\gamma,h) \uparrow \land right(\gamma,h) \downarrow$$

$$\qquad \qquad h' = Min\{h' \mid h' > h \land right(\gamma,h') \downarrow\}$$
 if $left(\gamma,h) \downarrow \land right(\gamma,h) \uparrow$
$$\qquad \qquad h' = Min\{h' \mid h' > h \land right(\gamma,h') \downarrow\}$$
 otherwise

In fig.1, we illustrate width, ldis and rdis with examples.

Fig.1 Definitions of ldis, rdis, width.

Example.

Let
$$\gamma: f(c) \longleftrightarrow f(g(g(c))) \longleftrightarrow f(g(c)) \longleftrightarrow f(g(g(c)))) \longleftrightarrow f(f(c)) \longleftrightarrow g(c)$$
. Then $left(\gamma, 1) = 0$, $left(\gamma, 2) \uparrow$, $ldis(\gamma, 1) = 5$, $ldis(\gamma, 2) \uparrow$, $right(\gamma, 1) = 5$, $right(\gamma, 3) \uparrow$, $right(\gamma, 0) \uparrow$, $rdis(\gamma, 1) = 5$, $rdis(\gamma, 3) \uparrow$, $width(\gamma, 1) = right(\gamma, 1) - left(\gamma, 1) = 5$, $width(\gamma, 2) = 3$, $width(\gamma, 3) = 2$, $width(\gamma, 4) = 0$

Definition of $< K(\gamma), W(\gamma) >$

$$K(\gamma) = \{(h, ldis(\gamma, h)) \mid ldis(\gamma, h) \downarrow\}$$

$$W(\gamma) = \{(h, width(\gamma, h)) \mid width(\gamma, h) \downarrow\}$$

Notation

We denote by $\gamma[\delta'/\delta]$ the sequence obtained from reduction sequence γ by replacing the subsequence or cut sequence δ of γ by sequence δ' .

3 Assertions

In this section, we explain how to prove that non-E-overlapping and strongly depth-preserving TRS R is CR. For this purpose, we need the following five assertions S(k), S'(k), P(k), Q(k), Q'(k) for $k \ge 0$.

Assertion S(k)

Let $\gamma: M_0 \longleftrightarrow M_1 \longleftrightarrow \cdots \longleftrightarrow M_k$ where $|\gamma|_p = k, M_0 = \sigma(\beta), M_1 = \sigma(\alpha), M_{k-1} = \sigma'(\alpha), M_k = \sigma'(\beta)$ for some rule $\alpha \to \beta \in R$ and mappings σ, σ' and $\bar{\gamma}: M_1 \longleftrightarrow {}^*M_{k-1}$ is ε -invariant.

Then $\exists \delta : \sigma(\beta) \longleftrightarrow \sigma'(\beta)$ such that

- (i) $|\delta|_p \leq k-2$
- (ii) If β is a variable, then $H(\delta) < H(\gamma)$. Otherwise, δ is ε -invariant and $H(\delta) \le H(\gamma)$.
- (iii) $\forall h \geq 0 \text{ if } ldis(\delta, h) \downarrow$, then $\exists h' \geq h \text{ such that } ldis(\gamma, h') \downarrow \text{ and } ldis(\delta, h) < ldis(\gamma, h').$

Assertion S'(k)

Let $\gamma: M_0 \longleftrightarrow M_1 \longleftrightarrow \cdots \longleftrightarrow M_k$ where $|\gamma|_p = k$, $M_0 = \sigma(\beta)$, $M_1 = \sigma(\alpha)$, $M_{k-1} = \sigma'(\alpha)$, $M_k = \sigma'(\beta)$ for some rule $\alpha \to \beta \in R$ and mappings σ, σ' and $\bar{\gamma}: M_1(=\sigma(\alpha)) \longleftrightarrow {}^*M_{k-1}(=\sigma'(\alpha))$ is ε -invariant.

Then $\exists \delta : \sigma(\beta) \longleftrightarrow \sigma'(\beta)$ such that

- (i) $|\delta|_p = |\gamma|_p, |\delta|_{np} \le |\gamma|_{np} 2$
- (ii) If β is a variable, then $H(\delta) < H(\gamma)$. Otherwise, δ is ε -invariant and $H(\delta) \le H(\gamma)$.
- (iii) $\forall h \geq 0$ if $left(\delta, h) \downarrow$, then $\exists h' \geq h$ such that $left(\gamma, h') \downarrow$ and $left(\gamma, h') \leq left(\delta, h)$. If $right(\delta, h) \downarrow$, then $\exists h' \geq h$ such that $right(\gamma, h') \downarrow$ and $right(\delta, h) \leq right(\gamma, h')$.

Assertion P(k)

Let $\gamma : \sigma(\beta) \leftarrow \sigma(\alpha) \longleftrightarrow^* M$ for some rule $\alpha \to \beta \in R$ and mapping σ where $H(\gamma) = k$ and $\bar{\gamma} : \sigma(\alpha) \longleftrightarrow^* M$ is ε -invariant.

Then, if β is not a variable, then $\exists \delta: \sigma(\beta) \longleftrightarrow^* N \longleftrightarrow^* M$ for some N such that $H(\delta) \leq k, M \to^* N$ and $\delta': \sigma(\beta) \longleftrightarrow^* N$ is ε -invariant. If β is a variable, then $\exists \delta: \sigma(\beta) \longleftrightarrow^* N \longleftrightarrow^* M$ for some N such that $H(\delta) \leq k, M \to^* N$ and $H(\delta') < k$ for $\delta': \sigma(\beta) \longleftrightarrow^* N$

Assertion Q(k)

Let $\gamma: M \longleftrightarrow^* N$ where $H(\gamma) \leq k$. Then, $\exists \delta: M \longleftrightarrow^* L \longleftrightarrow^* N$ such that $H(\delta) \leq k$, $M \to^* L$ and $N \to^* L$.

Assertion Q'(k)

Let
$$\gamma_i: M \longleftrightarrow^* M_i$$
, where $H(\gamma_i) \leq k$, $1 \leq i \leq n$.
Then, $\exists \delta: M \longleftrightarrow^* N$ such that $H(\delta) \leq k$ and $\forall i \ (1 \leq i \leq n) \ M_i \to^* N$.

The assertions S(k) and S'(k) are similar to the Elimination lemma in [7]. For any reduction sequence $\gamma: \sigma(\beta) \leftarrow \sigma(\alpha) \longleftrightarrow^* \sigma'(\alpha) \rightarrow \sigma'(\beta)$ for some rule $\alpha \rightarrow \beta$ and mappings σ, σ' where $\bar{\gamma}: \sigma(\alpha) \longleftrightarrow^* \sigma'(\alpha)$ is ε -invariant, S(k) ensures that there exists $\delta: \sigma(\beta) \longleftrightarrow^* \sigma'(\beta)$ such that $|\delta|_p \leq |\gamma|_p - 2$, $H(\delta) \leq H(\gamma)$ (where δ is ε -invariant or $H(\delta) < H(\gamma)$) and $K(\delta) \ll K(\gamma)$. Here, \ll is the multiset ordering of a lexicographic ordering <. And S'(k) ensures that there exists $\delta': \sigma(\beta) \longleftrightarrow^* \sigma'(\beta)$ such that $|\delta|_p = |\gamma|_p$, $|\delta|_{np} \leq |\gamma|_{np} - 2$, $H(\delta) \leq H(\gamma)$ (where δ is ε -invariant or $H(\delta) < H(\gamma)$) and $W(\delta) \stackrel{\text{def}}{=} W(\gamma)$. Here, $\stackrel{\text{def}}{=}$ is \ll or =.

To prove these assertions, we use the following properties for left, right, width.

Property 1

Let
$$\gamma: M_0 \longleftrightarrow M_1 \longleftrightarrow \cdots \longleftrightarrow M_k$$
, $\delta: N_0 \longleftrightarrow N_1 \longleftrightarrow \cdots \longleftrightarrow N_k$.

- 1. Assume that for h > 0, $left(\delta, h) \downarrow$ and there exists j such that $j \leq left(\delta, h)$ and $h(M_j) \geq h$.

 Then, there exists $h' \geq h$ such that $left(\gamma, h') \downarrow$ and $left(\gamma, h') \leq left(\delta, h)$.
- 2. Assume that for h > 0, $right(\delta, h) \downarrow$ and there exists j such that $right(\delta, h) \leq j$ and $h(M_j) \geq h$.

 Then, there exists $h' \geq h$ such that $right(\gamma, h') \downarrow$ and $right(\gamma, h') \geq right(\delta, h)$.

Property 2

If $H(\gamma) > H(\delta)$, then $K(\gamma) \gg K(\delta)$ and $W(\gamma) \gg W(\delta)$. Here, \gg is the multiset ordering of a lexicographic ordering >.

These proofs are obvious by the definitions of left, right and width, etc.

We first prove S(k) and S'(k) by induction on $k \geq 0$, where k is the number of parallel reduction steps of γ . In the case of k > 2, we prove S(k) and S'(k) by induction on $weight(\gamma)$ which is defined as follows:

$$\begin{split} weight(\gamma) &= \sum_{\gamma_i \in \Gamma} |\gamma_i|_{np} \\ \text{where } \Gamma &= \{\gamma_i \mid \gamma_i = \bar{\gamma}/u_i \text{ for some } u_i \in MR(\bar{\gamma}) \cap \bar{O}(\alpha)\}, \\ \bar{\gamma} : \sigma(\alpha) &\longleftrightarrow^* \sigma'(\alpha). \end{split}$$

- 1. Basis, i.e., the case of $weight(\gamma) = 0$ The proof is straightforward.
- 2. Induction step, i.e., the case of $weight(\gamma) > 0$ Let $\gamma_1 = \bar{\gamma}/u_1 : L_1 \longleftrightarrow L_2 \cdots \longleftrightarrow L_{k-1}$ where $\gamma_1 \in \Gamma$ and $L_i = M_i/u_1$, $1 \le i \le k-1$. Then, there exist i, j such that $1 \le i < j < k-1$ and $\delta_1 : L_i \longleftrightarrow L_{i+1} \cdots \longleftrightarrow L_j \longleftrightarrow L_{j+1}$ where $L_i = \theta(\beta')$, $L_{i+1} = \theta(\alpha')$, $L_j = \theta'(\alpha')$, $L_{j+1} = \theta'(\beta')$ for some rule $\alpha' \to \beta'$ and mappings θ, θ' .

By the induction hypothesis S(k'), where $k' = |\delta_1|_p$, there exists $\eta_1 : L_i \longleftrightarrow {}^*L_{j+1}$ satisfying the conditions (i), (ii) and (iii). Let $\eta'_1 = ((L_i \longleftrightarrow L_i \cdots \longleftrightarrow L_i); \eta_1)$ where $|\eta'_1|_p = |\delta_1|_p$.

Let $\gamma' = \gamma[\eta'_1/\delta_1]$. Then, obviously $weight(\gamma) > weight(\gamma')$ holds. Hence, by the induction hypothesis that S(k) holds for γ' , it follows that S(k) holds for γ .

The proof of S'(k) is similar to that of S(k).

We then prove that $Q(k) \Rightarrow Q'(k)$ for all $k \geq 0$. Using these results, we can prove $P(k) \wedge Q(k)$ by induction on $k \geq 0$.

Outline of the proof of $P(k) \wedge Q(k)$.

We first prove P(k). Basis: k = 0. The proof is obvious.

Induction step: Let $\gamma: M_0 \longleftrightarrow M_1 \longleftrightarrow M_2 \cdots \longleftrightarrow M_n$ where $H(\gamma) = k$, $M_0 = \sigma(\beta)$, $M_1 = \sigma(\alpha)$ and $M_n = M$. Let $\bar{\gamma}: M_1 \longleftrightarrow M_2 \cdots \longleftrightarrow M_n$. We prove P(k) by induction on the following $weight(\gamma)$.

$$weight(\gamma) = \bigsqcup_{\gamma_i \in \Gamma} K(net(\gamma_i^R))$$

where $\Gamma = \{ \gamma_i \mid \gamma_i = \bar{\gamma}/u_i \text{ for some } u_i \in MR(\bar{\gamma}) \cap \bar{O}(\alpha) \}$. Here, γ_i^R is the reverse sequence of γ_i . Note that if $\Gamma = \phi$, then $weight(\gamma) = \phi$.

1. Basis: the case of $weight(\gamma) = \phi$, i.e., all the reductions of γ occur in the variable parts of $\sigma(\alpha)$.

We can prove P(k) by using the induction hypothesis Q(k-1) and the strongly depth-preserving property.

2. Induction step: the case of $weight(\gamma) \gg \phi$ i.e., some reduction occurs in the non variable part.

By the definition of γ_1^R , then there exists an ε -reduction. Let $\delta = net(\gamma_1^R) : (L_0 \longleftrightarrow L_1 \cdots \longleftrightarrow L_m)$ where $m \le n, L_0 = M_n/u_1, L_m = M_1/u_1$. There are two cases depending on whether there exists $\xi : L_i(=\sigma'(\beta')) \longleftrightarrow^{\varepsilon} L_{i+1}(=\sigma''(\alpha')) \longleftrightarrow^{\varepsilon} L_{j+1}(=\sigma''(\beta'))$

for some $i, j \ (1 \le i < j < m)$, where $L_{i+1} \longleftrightarrow^* L_j$ is ε -invariant.

- (a) The case in which δ includes such ξ . By $S(|\xi|_p)$, there exists $\xi': L_i \longleftrightarrow^* L_{j+1}$ satisfying the conditions (i), (ii), (iii). Let $\delta' = \delta[\xi'/\xi]$ and $\gamma' = \gamma[\gamma_1'/\gamma_1]$ where $net(\gamma_1'^R) = \delta'$ and $net(\gamma_1^R) = \delta$. By $weight(\gamma) \gg weight(\gamma')$, the induction hypothesis for γ' ensures that P(k) holds for γ .
- (b) The case in which δ does not include such ξ.
 In this case, δ includes ε-reductions, but the direction of the ε-reductions is left-to-right by the non-E-overlapping property.
 Using a finite number of the induction hypothesis P(k'), k' < k, we can prove that there exists η: L₀ ←→*N ←→*L_i for some term N and i (0 < i ≤ m) such that H(η) ≤ H(δ), L₀ →* N and either i = m and η': N ←→*L_i is ε-invariant or H(η') < H(δ_i) holds where η': N ←→*L_i and δ_i: L₀ ←→L₁ ··· ←→*L_i.

Let $\bar{\delta} = \delta[\eta'/\delta_i]$. Then, $\bar{\delta}$ is ε -invariant or $K(\delta) \gg K(\bar{\delta})$ holds. Let $\gamma' = \gamma[\gamma_1'/\gamma_1]$ where $\bar{\delta} = net(\gamma_1'^R)$ and $\delta = net(\gamma_1^R)$. Then, $weight(\gamma) \gg weight(\gamma')$ holds, so that the induction hypothesis P(k) for γ' ensures that P(k) holds for γ .

Next, we prove Q(k) by induction on $(H(\gamma), W(\gamma), \varepsilon(\gamma))$, where $\varepsilon(\gamma)$ is the number of ε -reductions in γ and $W(\gamma) = \{(h, width(\gamma, h)) \mid width(\gamma, h) \downarrow \}$.

If $H(\gamma) \leq k-1$ or γ has no ε -reductions, then the proof can be reduced to that of Q(k-1). So, let $H(\gamma) = k$ and γ has ε -reductions.

There are two cases depending on whether there exists a subsequence $\gamma_1: N_1 \leftarrow^{\epsilon} N_2 \leftarrow \stackrel{}{\longmapsto} {}^*N_3 \rightarrow^{\epsilon} N_4$ of γ for some $N_i, 1 \leq i \leq 4$, where $N_2 \leftarrow \stackrel{}{\longmapsto} {}^*N_3$ is ϵ -invariant.

1. The case in which γ includes such γ_1 .

In this case, we apply $S(|\gamma_1|_p)$ or $S'(|\gamma_1|_p)$ and obtain $\delta_1: N_1 \longleftrightarrow {}^*N_4$ satisfying the conditions (i),(ii) and (iii).

Let $\gamma' = \gamma[\delta_1/\gamma_1]$. Then, either $W(\gamma) \gg W(\gamma')$ or $W(\gamma) = W(\gamma')$ and δ_1 is ε -invariant. In either case, the induction hypothesis for γ' ensures that Q(k) holds for γ .

2. The case in which γ does not include such γ_1 . We can prove this case by using P(k) and Q(k-1). But, the details are omitted.

Since Q(k), k > 0, ensures that TRS R is CR, we have the following our main theorem.

Main Theorem

A TRS R is CR if R is non-E-overlapping and strongly depth-preserving.

Matsuura et al.[6] showed that if a TRS R is non- ω -overlapping and depth-preserving, then R is non-E-overlapping, so that we have the following corollary.

Corollary

A TRS R is CR if R is non- ω -overlapping and strongly depth-preserving. Note

Whether R is non- ω -overlapping or not can be checked efficiently.

4 Concluding Remarks

In this paper, we have shown that there exists a non-E-overlapping and depth-preserving TRS which is not CR, but all the non-E-overlapping and strongly depth-preserving TRS's satisfy the CR property.

Finally, we make a comment on the strongly depth-preserving property. This property is defined by the depth-preserving property and the condition that for each rule $\alpha \to \beta$ and for any $x \in V(\alpha)$, all the depths of the x occurrences in α are the same. By replacing the restriction on α by that on β , we can define an analogous property. That is, this new property is defined by the depth-preserving property and the condition that for each rule $\alpha \to \beta$ and for any $x \in V(\beta)$, all the depths of the x occurrences in β are the same. However, this new property and non-E-overlapping do not necessarily ensure CR. For example, TRS $R_6 = \{f(g(x), x) \to a, c \to h(c, g(c)), h(x, g(x)) \to f(g(x), h(x, g(c)))\}$ is non-E-overlapping and satisfies this new condition, but R_6 is not CR.

It will be a next step following the work of this paper to study the CR property of E-overlapping and strongly depth-preserving TRS, that is, to find restriction conditions that E-critical pairs must satisfy for ensuring the CR property of strongly depth-preserving TRS's.

References

- [1] M.Dauchet, T.Heuillard, P.Lescanne and S.Tison, Decidability of the Confluence of Finite Ground Term Rewrite Systems and of Other Related Term Rewrite Systems, Inform. Comput. 88. pp.187-201(1990).
- [2] N.Dershowitz and J.-P.Jouannaud, Rewrite Systems, Handbook of Theoretical Computer Science, Vol.B,ed. J.van Leeuwen, pp.243-320, North-Holland, Amsterdam (1990).
- [3] G.Huet, Confluent reductions: abstract properties and applications to term rewrite systems, J.ACM,27, pp.797-821(1980).
- [4] G.Huet and C.Oppen, Equations and Rewrite Rules: A Survey, Formal Language Theory: Perspectives and Open Problems, ed. R.V.Book, pp.349-393, Academic Press, New York (1980).
- [5] D.Knuth and P.Bendix, Simple word problems in universal algebra, Computational Problems in Abstract Algebra, ed. J.Leech, pp.263-297, Pergamon Press, Elmsford (1970).
- [6] K.Matsuura, M.Oyamaguchi and Y.Ohta, On the E-overlapping property of nonlinear term rewriting systems, LA symposium(Winter)(1994).
- [7] M.Ogawa and S.Ono, On the uniquely converging property of nonlinear term rewriting systems, Technical Report of IEICE, COMP 89-7, pp.61-70(1989).
- [8] M.Oyamaguchi, The Church-Rosser property for ground term rewriting systems is decidable, Theoret. Comput. Sci.49, pp.43-79(1987).
- [9] M.Oyamaguchi, On the Church-Rosser property of nonlinear and non-terminating term rewriting systems, LA Symposium(Summer)(1992) and Hatoyama Workshop on Rewriting(1992).
- [10] M.Oyamaguchi and Y.Ohta, On the Confluent Property of Right-Ground Term Rewrting Systems, Trans, IEICE Japan, J76-D-I, pp.39-45(1993).
- [11] B.K.Rosen, Tree-manipulating systems and Church-Rosser theorems, J,ACM, 20, pp.160-187(1973).
- [12] Y.Toyama, On the Church-Rosser property for the direct sum of term rewrting systems, J.ACM 34, pp.128-143(1987).
- [13] Y.Toyama and M.Oyamaguchi, Church-Rosser Property and Unique Normal Form Property of Non-Duplicating Term Rewriting Systems, LA Symposium(Winter) (1993) and 4th International Workshop on CTRS(1994).
- [14] Y.Ohta, M.Oyamaguchi and Y.Toyama, On the Church-Rosser property of simple-right-linear TRS's, Trans. IEICE Japan, J78-D-I, pp.263-268(1995).
- [15] M.Oyamaguchi and Y.Toyama, On the Church-Rosser property of E-overlapping and simple-right-linear TRS's, Technical Report of IEICE, COMP 94-29, pp.47-56(1994).