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In this paper we describe the long-time behavior of the solutions to the
viscous Magneto-Hydrodynamic equations. We will only mention the results
obtained. The details of the proofs and corresponding references can be

found in (3].
We study the Magneto-Hydrodynamic equations
a .
-é-t-u-}-(u-V)u—(B-V)B-}—Vp = Au+ f,
0
(MHD) —B+(u-V)B—(B-V)u = AB,

ot
V.u=0, V-B = 0,

supplemented with the initial lconditions
u(z,0) = uo(z), B(z,0) = Bo(z),

forz € R*, 2 <n<4,t>0. We assume that the forcing function f is
divergence free; i.e., that V - f(¢t) = 0 for all ¢ > 0. We show that solutions
to the MHD equations, unlike solutions to the underlying heat equation, will
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generically decay algebraically at a slow rate of (¢ 4+ 1)™*,where o = n /2 or
n/2 — 1, with n equal to the spatial dimension. The idea is that the non-
linear terms will produce slow modes which will launch long waves preventing
a too rapid decay. In other words, even if the data is highly oscillatory, the
convection term will produce some mixing of the modes which will introduce
long waves slowing down the decay.

More precisely, we show that weak solutions to the MHD equations, sub-
ject to large initial data outside a class of functions with total radially equidis-
tributed energy, decay algebraically (rather than exponentially). In particu-
lar we prove that, for such solutions, the total energy (kinetic plus magnetic)
and the magnetic energy have slowly decaying algebraic lower bounds. More-
over, we show in which cases the lower bounds are valid for the kinetic energy
alone or the magnetic energy alone. Thus, our results reinforce mathemati-
cally the observation made by Chandrasekhar [1] that “the magnetic field in
systems of large linear dimensions can endure for relatively long periods of
~ time”.

We study upper and lower bounds. For the upper bounds we improve the
results obtained by [2]. We show that
THEOREM [A]. Let the initial datum (uo,Bo) € H x H and assume f €
Ll (0, e o L2(Rn)n) N An/4+1 N B4 N C(n+3)/2'

a) Ifn =2 and not all components of 4(0) or Bo(0) are zero (in the sense.

defined at the beginning of Section 2), then

l[u(t) — uo(B)12 + || B(t) — Bo(t)||2 < Cpy(t + 1)7"/271/%;

b) ifn >3, or if n = 2 and (ug, Bo) € [H N L}(R™)"]?, then

lu(t) — wo())I2 + 1B() = Bo(®)l3 < C, (¢ + 1)/,

For the lower bounds we show ‘
THEOREM [B]. Let (uo, Bo) € [Wo N HJ?, f € L*(0,00; L*(R™)*) N Anjag1 N
By N Cnyay/2, and let (u(z,t), B(z,t)) be a weak solution of the MHD equa-
tions with initial datum (u(z,0), B(z,0)) = (uo(z), Bo(z)).
a) If 4(0) # 0 or By(0) # 0, then

Colt + 1) < [lu( 1)l + I B@IIZ < Cat +1)72
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b) If (uo,Bo) € [Won HN[LY(R™)]"]? (so that
20(0) = (20)™? [ uo(a)dz = 0, Bo(0) = (2m)™" [ Bo(z)dz =0,
by Borchers’ Lemma) and (u, B) ¢ Moy,then
Ca(t+ 1) < Jlu( )15 < Colt +1)™/27,

where Borchers’ lemma was

LEMMA. Let u € L}(R™)*N H. Then

/"udxz().

We have used the following notation . H™(R™) denotes the Hilbertian
Sobolev space on R™ of index m, m > 0; LP(R") stands for the Lebesgue
space equipped with its standard norm || - ||,, 1 < p < o0;

V={ve|[CPR")]": V-u=0}, H =closureof V in [LZ(R")]".

Wi={o: [ lafh(e)lds<oo), Wa={v: [ lelio(e)Pdz < oo},
Moreover, if p,v,0 € R, we say

a f € A, if there exists C > 0 such that

IF )l Ct+1)"* for t>0.

b f € B, if there exists C > 0 such that

If(&,t) < Clel” for t>0,6 € R™

c f € C, if there exists C > 0 such that

IfB)]lee < C(t+1)"" for t>0.
Finally, gGiven u = (u1,...,ta) and B = (B, ..., By) in [L*(0, 00; L*(R™)]",

let E o
.Aij = / / (u,-uj - B;Bj)dx,
0 Rn



C,'j = A /Rn(u,-Bj b B,uJ)da:
Then, introducing the matrices A = [4;j] and € = [C;], we define
Mo = {(u, B) € [L*(R™)]** : Ais scalar and C = 0}.

The idea of the proof is to compare the decay of the solutions to MHD
with the decay of the solution to the underlying heat system. It is first
shown that solutions to the heat equation such that the Fourier transform
of the initial data has a zero of order k at the origin, decay at most like
(t 4+ 1)~k/2=n/4; that is, if ’

[io(€)] = Col¢l + O(lEI**),

then the solution v of v; = Av, v(z,0) = uo(z) satisfies
(1) Co(t +1)—n/2 — k < |jv(;,1)]13 < Co(t +1)—n/2 -k

for t > 0. By an argument similar to Wiegner’s for solutions to the Navier-
Stokes equations, it is easy to show that if V satisfies V; = AV, V(z,0) =
(uo(z), Bo(z)) and W =V — (u, B(, then

(2) W ()2 < Cw(t +1)/2~/

where 8 = 1/2 or # = 1 depending on whether n = 2 or n > 3, respectively.
Thus, for the casein which frn uo dz # 0; i.e., 14o(0) # 0, it is immediate from
(1) and (2) that
lu())15 + 1 B3 = C(t +1)72.

When the Fourier transform of the initial data has a zero of higher order
the conditions from the theorem are such that a long wave is always present.
That is, we can compare the solution to the MHD equations with data at a
large time T with the the corresponding solution V7 to the heat system with
data at time 7. In this case, because of the long wave, it follows that

IVe(, Ol = Cr(t+ 1)/,

Setting Wr(-,t) = Vr(-,t) — (u(-,t + T), B(-,t + T)), we’ll have our lower
bounds if we can show that Cr > Cy,.. Since Cyw, will depend on the L?
norm of the data (u(T'), B(T)), T sufficiently large, it will follow that Cw.,.

is as small as needed. Combining once more the lower bound of V7 with the -

upper bound of Wr, we get
lu(®)2 + IBGEIE > Ot + 1)/,
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