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A NUMERICAL APPROACH TO THE DISCRETE MORSE SEMIFLOW
HipETOSHI YOSHIUCHI! (FHP %#]) SEIRO OMATA? (/MR IEB)

0. Abstract

In this paper, we treat a numerical analysis of discrete Morse semiflows for energy minimizing
harmonic mapping. Discrete Morse semiflows were introduced by Rektorys and Kikuchi for ap-
proximating solution of heat equations associated to variational problems. Inspired by Kikuchi’s
results, several authors use this method for constructing weak solutions of parabolic equations.
We apply this flow to the numerical ana.lyms and develop energy minimizing algorithm for solving
approximate heat equation.

1. Introduction

In this paper, a numerical analysis of discrete Morse semiflows for harmonic mapping from B3
to S2 is studied. This is considered to be the approximation of the heat flow of the following elliptic
problem: Minimize the functional;

I(d) =/ |Vul?dz, ulops = ¢ in H,(B? 52).
B3 S

Some authors have studied this problem from a numerical point of view. (See [Al] for example.)
Here, we present an new algorithm which use the discrete Morse semifiow for solving heat
equation. For this purpose, we introduced the following time-semidiscretized functional;

TR (w) = l_’f_—_um_"l_lidgn T _
(1) = . % + Z(u), (m=1,2,.--) (1.1)

The procedure of determining sequence is as the following: Let uo be a given initial data satisfying
ug € K, and Z(ug) < 00,

where K is an admissible function space of the original functional Z (In this case K = H(B?; 5?)).
Taking uo as um—1 (m = 1 is assumed) in K, we define a minimizer u; of J;. Inductively we define
U, by the minimizer of J,, in K. We will call {um} the discrete Morse semiflow.

Since the minimizers {u,,} depend on the positive constant h, we should write {ul}. But
sometimes we use the notation {u,,} when no confusions may occur.
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Using this approach, Kikuchi constructed solutions of parabolic equations associated to a varia-
tional functional of harmonic map type in [K]. Nagasawa and Omata have studied the asymptotic
behavior of this flow on some free boundary problems: (See [NO1] and [NO2].) On the other hand,
Bethuel, Coron, Ghidaglia and Soyeur ([BCGS]) also showed the existence of the Morse semiflow
associated to relaxed energies for harmonic mapping by this procedure.

2. Main property of the discrete Morse semiflow

Apart from the harmonic mapping, we here mention the basic property of the discrete Morse
semiflow. Among almost all quadratic functional F(u), we can determine the discrete Morse semi-
flow is the same way as in section 1 and they have the following property:

g (um)—/ I—“—.—m_lsz+f(u,,,)<Jh (Wb )= Fluh ),

therefore

h _ .,k 2 )
[mmtmal s - F. ()
Q

Summing up from m =1 to N, the following estimate holds:

F(uh) + Z/ = - P = U ° dz<}”(u0) (2.2)

This is a basic and important estimate of this flow. Many properties is to be obtained from (2.2).

We can regard such sequences of minimizers as approximate solutions of the heat equation. For
this, we will introduce following two functions.

DEFINITION 2.1. We define functions @* and u* on  x (0,00) by

@ (z,t) = up, (2)

e,y = SO Gy s P2 L )

for (z,t) € 2 x ((m — 1)h, mh].

It is easy to see that the functions above satisfy the following relations:

b, 0o
W = 6Fat(z,t) in some weak sense in Q x liz((m — 1)h, mh)
a*(z,t) = uh(e,t) =uo(z) on 80
u*(z,0) = uo(z) in Q.

Here, we investigate the convergence theory when h tends to zero. ‘We can easily obtain' the
following results. -
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THEOREM 2.3. If F is corecive, then the following norms are uniformly bounded with
respect to h.

|| llm((o w)xq)y IV |[Leo((0,00)22(02))s 1Vt Low (0,00):23¢0))»
||u” ”L°°((0,oo);L3(ﬂ)); l@*||zeo(o,005z2¢0)y  1utllwrao,ryxqy (forall T >0).

THEOREM 2.4. There exists a subsequence, such that

@" —u weakly starin L*°((0,00); L*(£2)) (2.3)
uw* —»u  weaklyin WY2((0,T) x Q) (2.4)
u* —>u strongly in L?*((0,T) x Q) (2.5)

h —u strongly in L?((0,T) x ). (2.6)

These properties follow from the basic estimate (2.2) and the following theorem.

THEOREM 2.5. The function @* and u® converge to the same function u in the following
sense for any T':

" —u weakly in L*(Q x (0,T))
uh — u v‘t'eakly in HY(Q x (0,T))
and strongly in  L*(2 x (0,T)).
. Proof. From (2.2), we have

Nh h
/ (Vah(z, Nh)[2dz + / / 125 (2, 1) de
Q o Ja Ot

It implies that {@*}n50 and {u*}nso are bounded sets in L2(Q x (0,T)) and HY(Q x (0,7T))
respectively for any 7 > 0. Therefore we can extract a subsequence {h;} such that A; | 0 and

@ >y weakly in L*(9 x (0,T))
ut — v weakly in HY(Q x (0,T))
and strongly in  L?(Q x (0,T))

as j — 00.
h
It follows from |u® — @*| <|‘9L that

/ /|u —uh|2dzdt<h2/ /|—| dzdt

<h?F(ug) -0 as k|0,
which shows u = v. R
3. Recent results on the Harmonic Mapping into Sphere

Bethuel, Coron, Ghidaglia and Soyeur constructed weak heat flows related to the Harmonic
mapping from B3 to 52 by using this flow. We here only mention their result related to this paper.
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THEOREM 3.1. Let uy and vy belong to H(B3;S?) with uo = v on dB3. There exists a
weak solution to

%—Q: — Ay = u|Vul? (3.1)
u(z,t) =y(z), t>0, z¢€IB> (3.2)
u(z,0) = uo(z), = € B3 (3.3)

4. Numerical analysis

We mention here a minimizing algorithm used in this paper. The minimizing algorithm means
some procedure that determine sequence of comparison function which will converge to the min-
imizer. Our method is based on the simplex search method which is one of the finite element
method. The scheme of the simplex search method is as follows: (1) Discretize the domain into the
suitable elements which is called finite element. (We will assume that the domain is divided into M
elements with N nodes.) (2) Approximate the comparison function by using the piecewise linear
function which is coincide with original comparison function on nodal points. By this approxima-
tion, we can regard the elements of RV as the approximate comparison function. (3) Generate a
simplex in R¥. The simplex consist of N + 1 vertices. (4) Calculate the value of the functional at
each vertex of the simplex, and find the maximizer(the vertex where the value of the functional is
the largest). Then, move the maximizing point to the opposite side of hyperplane which is spanned
by another vertices. By this procedure, we can make a new simplex. (5) Repeat this step up to
satisfy the given terminate conditions.

. Throughout these procedures, we expect to find an approximate minimizer.

We proceed discretization along to this algorithm using finite elements. Firstly, split B® into
M small finite elements(tetrahedron) with N nodes. In order to use the simplex search method,
we choose values of all nodal points. Secondly, approximate a comparison function u by the linear
function,

U= {&1"&2;'&3}
u; =A;z1 + Biza + Cizaz + D;,

in an finite element, which coincide with the given data on the nodal point. (4;, B;, C;, and D; are
uniquely determined by the value at each nodal point.)

Thirdly, calculate the value of the functional for the approximate function. For calculation, we
introduce the following penalized variational problem: Minimize

7" (w) = /B 3 ("‘—“ih""—l’2 + VU + 2 (Juf? - 1)2) ds, (4.1)

in u € H,(B*R3).
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We use the following discretization for j’;(u)

sl 15 (55 (3 (uiyh)® x (voli /16 4.2
/Bs h ’”‘EZ_:I 2 > “i,k,t) X (volx/16) (4.2)

t =1

M /3
=) (Z (A2 + B2, +Cy) x UOIk) (4.3)

/ 1(lul2 —1)%dz = ﬁ:i 1 ((ui,j)2 - 1)2 (4.4)
B3 € 3

Jj=1li=1

where u; ; and i jm—1 denote the value of the function ui(z) and u;m-1(z) at the jth node
respectively, volx denotes the volume of the kth element and A; x, Bi x,Cix denote the coefficients

of the approximated function %;(z) on kth element. For the term (4.2), we divide an element into

16 subelements and assume that the function |u — w;,—1|? is linear on the each subelement. uf,';c':,

denotes the the value of the approximated |u; — %; m—1|2(i = 1,2,3) on the Ith subelement in the
kth element. :

5. Result

We calculate, here, both linear(without term 4.4) and nonlinear cases. In the linear case, we
adopt the following conditions. :

(1) Initial data:
Cup(z) = f7Hz)  where  fi(z)=(Q-l|z])z +z, 3z € B2

(2) Boundary condition:
um(:z:)laBs = 1.d. (m = ],2,"')

(3) Parameters:
(e = +00), h=0.1 z = (0, 0, 0.9).
Figure 1 and 2 denotes up and u; respectively in the linear case. In figures, arrows denotes

vector field inside of B3. (Boundary data are omitted.)

In the nonlinear case, we calculate this under the following conditions.

(1) Initial data:

uo(z) = p(f-i(z))  where  fu(z)=(1-|z)z+z, Fe€B® p(z)= TET
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(2) Boundary condition:
Un(T)|ops = 1d. (m=1,2,---)

(3) Parameters: . ‘ :
=001, h=01 2z=(0,0,0.9).

Figure 3, 4 and 5 denotes uo, u; and u; respectively. Also, arrows denotes vector field.

Because h relatively is large, the singular points moves very fast in the first time step. It is
very natural to consider that the motion of the singular points depends on the parameter A and «.
Thus, we should calculate carefully changing these parameters. But unfortunately, we do not have
enough computer power. Up to now, we only calculate the case when & = 0.1 and ¢ = 0.01. We
are now proceeding this research in this point of view.



Figure 1

Initial Data

(Linear)
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Figure 2 - u(x) :m=1 (Linear)
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