RBAFZWERY KT b %
Al

KURENAI

Kyoto University Research Information Repository

Extension of Synthesis Algorithm of Recursive Processes to

Title $\mus-calculus
Author(s) | Kimura, Shigetomo; Togashi, Atsushi; Shiratori, Norio
Citation 000O0OooDooOgg (1995), 906: 146-153
Issue Date | 1995-04
URL http://hdl.handle.net/2433/59449
Right
Type Departmental Bulletin Paper

Textversion

publisher

Kyoto University

oooooooogon
906 O 19950 146-153

Extension of Synthesis Algorithm of Recursive Processes to

p-calculus *

Shigetomo Kimura (A&AF Bift), Atsushi Togashi (E# #) and
Norio Shiratori (H 5 RIRR)
Research Institute of Electrical Communication (BEZEEWFET) / Graduate School of
Information Science (1EHHZMFERL), Tohoku University (RALKE).

e-mail : {kimura,togashi,norio} @shiratori.riec.tohoku.ac.jp

Abstract

In our previous work, we proposed an inductive synthesis algorithm for recursive processes by
a subset of p-calculus. This paper presents an extension of the privious algorithm to a wide class

of p-calculus.

Keywords: Process Synthesis, Inductive Inference, Algebraic Process, CCS, p-calculus

1 Introduction

This paper proposes an extended inductive
synthesis algorithm for recursive processes
which is a proper extension of the previous
algorithm [2, 3]. To synthesize a process,
formulae of p-calculus, which must be sat-
isfied by the target process, are given to the
algorithm one by one since such formulae
exist infinitely many in general. The cor-
rectness of the algorithm can be stated that
the output sequence of processes by the al-
gorithm converges to a process, which is
strongly equivalent to the intended one in
the limit.

Let A be an alphabet, a finite set of actions.
Let C be a denumerable set of process con-

*A part of this study is supported by
Grants from the Asahi Glass Foundation and
Research Funds from Japanese Ministry of
Education.

stants. Recursive terms are defined by the

following BNF:

p:=0ap|p+plc

where ¢ € C and the meaning of ¢ is de-
fined by a defining equation ¢ = p. A pro-
cess ¢ with the equation ¢ ¥ p is abbrevi-
ated as rec c.p. The notions of free, bound,
scope, open and closed are defined in the
same way as in A-calculus. Closed terms
are called (recursive) processes. When ev-
ery free occurrence of ¢ is within some sub-
term a.q of p, cis called guarded in p. When
every constant in p is guarded, p is called
guarded.

Let P denote the set of all processes. Se-
mantics of a recursive term is given by a
labeled transition relation defined as —C
P x A x P. For (p,a,q) €, we normally
write p = g. We use the usual abbrevia-
tions as p — for 3¢ € P such that p = ¢
and p & for -3¢ € P such that p > q.

146

A transition relation on recursive terms is
given by the following transition rules:

p—=p

ap-=>p p+q>p
qg-=>q p{reccp/c} > p
p+qg>q reccp = p'

where p{q/c} is p except any free occur-
rences of ¢ are replaced by g.

A relation R on P is a strong bisimulation
if (p,q) € R implies, for all a € A:

(i) whenever p = p/, then there exists ¢’
such that ¢ = ¢’ and (p',¢') € R,

(ii) whenever ¢ = ¢/, then there exists p’
such that p 5 p’ and (p/,¢') € R.

Recursive terms p and q are strongly equiv-
alent (written by p ~ q) iff (p,q) € R for
some strong bisimulation R [5].

We employ p-calculus [1,4,8] to represent
properties of a process. Formulae in y-cal-
culus are defined by the following BNF where
z € X and a € A:

fuo=tt]a|[fVfI=fl{(a)f|p.f

The notion of freeness, boundness and scope
for formulae in g-calculus are defined sim-
ilarly to the one for A-calculus. A variable
z in a formula f is guarded, if every occur-
rence of z is within some scope of (a). A
formula f is guarded if every variable in f
is guarded.

Satisfaction relation of formulae in a valua-
tion V (written by |=y) is defined as follows
where p € P:

() p v .
(i) p v z if p € V().
(111; pEv iV hiifplEy fiorpley fo

(iv) p v ~f if p oy f, where p £y f
means that p does not satisfy f.

147

(v) p [=v (a) f if there exists some ¢ such

that p = q and q =y f.

(vi) p v pa.fifpe Sforall S C P
such that Vg € P.q |=y[s/y) f implies
g€ Ss.

The other logical notations ff (-tt), fiA
(& ~(2fiV=f)), ldlf (¥ —~(a)=f), and
vz.f(z) (£ ~pz.~f(-z)) can be defined as

usual.

Proposition 1 [1] Let f(z) be a guarded
formula, then we have:

(i) ne.f(@) = Viso * ().
(i6) va.f(z) = Ao F5(8). 0

Proposition 2 [1] Processes p and q are
strongly equivalent, i.e. p ~ ¢, iff L(p) =
L(q) where L is the set of all closed formu-
lac and L(p) & {f € L | p = f}. O

In the following, a formula, which expresses
necessary and sufficient properties of a pro-
cess, is defined. Let C be a set of process
constants. Fo : P — L is a function de-
fined in the following way:

(i) Fo(0) = Asealalff
(ii) Fe(a.p)
= (a)fc(P)A[a]fc(P)/\AbeA {ay[OIFF.
(lll) fC(al N +--+a, p’n)
= (Aier{a)J:C(Pi))
A (/\iEI[ai] Va¢=a,' fc(pJ))
A (Aaca-alalff) where n > 2, [=
{1,...,n} and A = {a; | ¢+ € I and
a; € .A}

e Foufe ifcg C
(v) Fo(e) = | Voo Tou y(p) if c ¢ ‘

T, ifceC
where z.. is a fresh variable and ¢ = p.

Proposition 3 [1,3] Let p and q be pro-
cesses:

(1) p = Fu(p)-

(it) p ~ q iff ¢ |= Fo(p). O

Proposition 4 [7] Any formula can be
equivalently converted to a formula with-
out negation, i.e. a formula built up with
tt, ff, A, V, (a), [a], i, and v. O

From now on, we will consider closed for-
mulae without negation.

2 Synthesis algorithm

A synthesis algorithm proposed here is an
inductive one. It generates a process which
satisfies given facts or properties of the in-
tended target process. These facts are rep-
resented as formulae in u-calculus and the
input to the algorithm is an enumeration of
formulae to be satisfied by the target pro-
cess. Let p, be the intended target process.
It should be noted that p, is neither known
initially nor given in a precise manner.

Definition 5 Let U be a set of pairs of
formulae f € L and signs +, —, i.e. {f,+)
(or (f,—)) such that either (f,+) or (f,—)
always belongs to U for every formula f €
L.8={f{f,+)eUIU{-f|({f,—)€
U} is an enumeration of facts if S is con-
sistent in the deductive system STL(X,A)
[1]. An element of S is called a fact. O

Given an enumeration of facts, the algo-
rithm synthesizes a process satisfying those
facts. A process can be represented as a
term p with a set {¢; & p1,...,c0 = pp}
of defining equations. In the algorithm, a
process is represented as an identified pro-
cess constant with a set of process defini-
tions. Each process definition recc.p is as-
sociated with a set C of formulae, denoted
as c:C, which must be satisfied by the cor-
responding process constant ¢. C' can be
omitted when it is not important.

In [2, 3], we proposed the synthesis algo-
rithm which constructed recursive processes
by formulae in p-calculus without -, V nor
u operator. Formulae with V operator are
ambiguous to synthesize processes. Espe-
cially, since a formula with 4 operator (a y-
formula for short) involves infinitely many
V operators (see Proposition 1), it may cause
backtracking infinite many times.

From this restriction, the limit process of
the output sequence of the algorithm may
not be equivalente to the intended target
one. In fact, the limit process satisfies more
properties than the target process. So, the
formulae including V or u operators show
that an output process of the algorithm
satisfies some undesirable propeties. To
complete the synthesis algorithm, the re-
striction for the input formulae must be
relaxed.

The algorithm in Fig. 1 is an extension
of the one in [2,3]. This algorithm admits
to input formulae involving u or V oper-
ators. Unfortunately, the following restric-
tions remain. First, any p or v operators
must not occurr within the scope of the
u operator. Second, any u operators must
not occurr within the scope of the v opera-
tor. To describe the algorithm, we adopt a
language like Prolog, where I/O predicates
can backtrack as well. For brief descrip-
tion, let ¢; denote process constants asso-
ciating with the process definitions ¢; = i
or ¢;:C; & p; where C; is a set of formulae.
The initial state of a process is always fixed
to co. Thus, a set {co = po, ..., Cn = Py} of
process definitions determines the process
co with its set of process definitions. In the
algorithm, the following abbreviations are
adopted:

/\{fl"")fn}:fl/\.../\fn where /\@d:ef
tt

Sler:Cy & py, oo, exiCr = pi] : The re-
sulting set of process definitions S where

148

the process definitions of ¢y, +-,cx in S
are replaced by ¢;:C; & P,y cpiCr =
Pk, Tespectively, or ¢;:C; & p; is added to
Sifc:Ci=Ep; 8.

S{z/y} : The resulting S where a free
variable y is substituted for z in S.

Algorithm 1 (Synthesis algorithm)

Input: Enumeration of facts fi,fs, --. It
is an enumeration of formulae be satis-
fied by the intended target process. The
order of them is arbitrary.

Output: Sequence of inferred processes p,,
P2, - . Each py satisfies the whole input
formulae f to fy.

Predicates: See Fig. 1. a

In the following, the extended parts of the
algorithm from [2] will be explained. For
the parts of [2], examples are given in Fig.2

One of the extensions is for the operator
V in (g). One of the subformula of V is
applied first to the current process, and if it
happens to be inconsistent to the process,
the other subformula is applied.

The other extension is for u-forumlae in
(c). The formula pz. f(z) says that the tar-
get process satisfies f(z) repeatedly finite
times, but must not execute infinite many
times. When pz.f(z) is input to the syn-
thesis algorithm, it checks that whether or
not the current process satisfies f(z) in-
finitely many times, i.e. whether or not the
process has loops satisfying f(z) infinitely.
If it does, the algorithm backtracks to the
point before one of such loops was made.
But even after backtracking, the synthe-
sized process may satisfy the formula f(z)
infinitely. In such cases, the backtracking
will occur infinitely, so the synthesis al-
gorithm never terminates. The basic idea
for termination is to check the existence of
such fatal loops by drawing colored lines.
Each g or v-formula is given the identi-

149

fication color. When the algorithm makes
branches in a process graph, i.e. an ac-
tion prefix of the process, or traces them
by (a) or [a] oparetors, the formula draws
a line with its own color beside them. In
the former case, solid lines are used. In the
latter case, dashed lines are used. Using
colored lines, the algorithm finds whether
or not backtracking procedure occurs in-
finitely many times. Suppose a formula pz.
f(z) is input to the algorithm. The algo-
rithm traces a current process or makes
new branches to construct a process satis-
fying the input formula. If the traced path
has no loops, f(z) cannot be satisfied in-
finitely many times. More precisely, it can
be the case that f(z) is built up only with
(a), V and A operators, e.g. {(a)(b)z. But
pz.{a)(b)z is logically equivalent to ff. So
such formulae are reduced to ff when these
formulae are input (by remove-consistent-
mu of mp(S) in Algorithm 1). If the traced
path has loops but each loop is not fully
(not partially) drawn by colored solid lines,
then f(z) cannot be satisfied infinitely. But
there is a path drawn fully, then f(z) may
be satisfiable. See Fig.3 and 4 as examples.
In Fig.3, each process (*) and (**) has a
loop satisfying [a][b]z infinitely. The loop
of (*) is fully drawn by a colored solid line
(for a-branch by a thin line and b by a thick
line). So wz.[a][b]z is inconsistent to the
process (*). On the other hand, the (**)’s
loop is not fully drawn, i.e. b-branch is not
drawn by solid line. Thus (**) is backtrack-
able. However any fully drawn loop does
not occur inconsistent. In Fig.4, the pro-
cess (*) has the fully drawn loop. But for-
mulae pz.[b][a][a]z, pz.[b][a]z and pz.[a)z
does not occur inconsistent, since the or-

- der of the traced path by each formula dif-

fers from the one of colored line. Therefore
the algorithm must also check whether or
not the orders of them are identified. This
is why the dashed lines are needed. Some
pair of p-formulae can also construct in-

mpstart - mp({co:{tt} o H-
% The initial process is 0 .
mp(S) - % S is a set of process definitions.
read- formula(f),
% Input a formula.
convert-formula(f, f'),
% pe.([alz A (a)(b)tt)
—— px.([a]e A (a)(z A (b)it))
% va(allb}s A (a) (b))t
%~ veialien (@) A e (0
remoue-conszstent-mu(f ,),
% If a subformula of f’ is of a form px.g and g
% has (a), V and A operators and variable z
% but not others, then uzr.g is modified by fI.
% e.g. [a]uz.(a)(b}r — [a]ff.
makeproc(co, S, f",X),
% Modify the current process according to
% the new fact f'/, the result is set to X.
write-process(X), % Output the result.
mp(X).
% Continue the synthesis for the next fact.
% program clauses of makeproc(c, S, f,X)
% c: the current process constant
% S: the current set of process definitions
% f: the current formula to be satisfied by ¢
% X: inferred process(set of process definitions)
% Note c,S,f are meta variables.

3 (a)
makeproc(ci, S,tt, S).
% z; : a bound variable corresponding to the
% formula v f(2;) «oooiiiiii i (b)
makep’roc(c‘,S z;,X) -
~ is-nu-variable(z;),
% Is x; a variable of a v-formula?
makeproc-nu(ci, S,z;,X).
makeproc-nu(ci, S, z;, S).

makeproc-nu(c;, S, z;,X) :- % Where ¢ £ 5.

 (Sley: C, = pi +pj] -
e C = p,}){:l!,/x.}{c,/c,},

makeproc(cj, S, ACi,X). ...ooiiiiiiiiiii (b*)
makeproe-nu(c;, S, z;,X) -

is-remake, % can backtrack?

makeproc(ci, S, F(%;),X). cooiiiiiiii (b**)
% z; : a bound variable corresponding to the
% formula px; f(x;) ..o (<)

makeproc(c;, S, z;,X) :-
is-mu-variable(x;),
% Is x; a variable of a p-formula?
makeproc-mu(e;, S, z;,X).
makeproc-mu(ci, S, x;,X) :- fail.

150

makeproc-mu(ci, S, ;,X) :-
no-colored-cycle,
no-overlapped-mu-path,

% Where 7 # j.

makeproc(ci, S, f(£;),X). coeiiiiii i (c*)
N () 5 (d)
makeproc(ci, S, (a}f,X) =

transit(cj, a,¢;), % Je¢; such that ¢; 5 5.
free-variables(f,C),
% get free variables of f to C.
Full-coloring(a, ¢, ¢;,C),
% draw lines colored by every color of C
% beside the a-branch from ¢; to ¢;
makeproc(cj, S, f,X).

makeproc(ci, S, (a) f,X) -
get-new-process-constant(c;),
free-variables(f,C),
Ffull-coloring(a, ¢, c],C),

def

makeproc(c;, S[ei: c; & ! pi + a. .cj,c5:{tt} =0],
FANF | [alfr €CiHX)e cvvviniiiiiiii s (d*)
b3 0 RN (e)

makeproc(ci, S,[a]f, S) -
is-valid(AC; D [a]f). % = AC; D [alf

def

makeproc(ci, S, [a]f, S[ci:(Ci U {[a}f}) = pi]) =-
not-transit(ci,a). % c;
makeproc(ci, S, [a] f,X) -
free-variables(f,C),
broken-line-coloring(a, ¢, ¢;,C),
% draw dashed lines colored by every color of C

% beside the a-branch for all ¢;.c; B cj-
def

forall(c,,c.,S[c. C; U{[e]lf} = pi], £ X).

% Vej.¢i = ¢j,
def

makeproc(c,,S[c. C;i U {[a]f} = pi], £, X).
I AN 7 f)
makeproc(ci, S, f1 A f2,X) =

makeproc(c;, S, f1,Y),

makeproc(c;,Y, f2,X).
/30 1R 7 (g)
makeproc(ci, S, f1 V f2,X) =-

makeproc(ci, S, f1,X).
makeproe(ci, S, f1 V f2,X) -

makeproc(ci, S, f2,X).
F R) O N (h)
makeproc(ci, S,vz.f(x),X) -

get-fresh-color(C),

coloring-to-variable(z,C),

makeproc(ci, S, f(x:),X).
b T2 A € 1P @)
makeproc(c;, S, px. f(z),X) -

get-fresh-color(C),

coloring-to-variable(z,C),

makeproc(ei, S, f(x:).X).

Fig. 1. The synthesis algorithm

finite branches. See Fig.5. In such cases,
each colored line by u-formulae are over-
lapped, and if one p-formula draws a solid
line, the others draw dashed lines. In the
rest of paper, these pairs of lines are called
overlapped p-paths. In Fig.5, the process
(*) has overlapped p-paths. Each a-branch
is drawn by thin solid line and thick dashed
line. And the b-branch is drawn by reverse

order of the above. The process (**) is the
same case, though starting points of each
lines are difference.

Theorem 6 Assume that there exists a pro-
cess satisfying initial segments f1, -+, fu
of an enumeration of facts, where n > 1.
Assume Algorithm 1 outputs a set of pro-
cess definitions S,—1 for the n — 1 facts,

example 1:

—_———_

@t <a>it zt <a>(tt A [elfp)
—_————

example 2:
@‘ <a>tt vx. <a>x
—_——— —_——— -
a
14
Q [bl<a>x,

tt '
—_—_a = b
123
(&)

<a><c>tt
—_——_———
c]ﬁ’
t
b a
t

[bilallalff

————

151

vx. [bl<a>x

————

[bj<a>x, A\ [alff

Fig. 2. Examples for the synthesis algorithm.

@t vx.[a]x vy. <a>[bly
—_a

@ la]x,
1
|
|
|
|
1

|
1la]T

e @[a]T vy. <a>[bly

—_———-—

—-_————

lalx, 2. [a]fb]z
----> fai

la]T
(9
a

[alT uz. [allbjz e ly, [blz,

—-_————

b

Fig. 3. An example for colored line.

Jis0++, fae1 also. For the n-th fact, f,, the
followings are satisfied:

(1) The algorithm terminates and outputs
a set of process definitions S, with the
process constant ¢ (the initial state of
Sn)-

(ii) co with S, satisfies f,.

(iii) co with S, satisfies fi, -+, fu_1.

Proof.[sketch of proof] (i) When the pred-
icate makeproc calls itself recursively, let f
be a given formula to it, and ¢ be a formula
to call itself. Then, the size of ¢ — the num-
ber of operators constructing the formula
— can be greater than the size of f, only
in the clauses (b*), (b**), (c*) and (d*)
in Algorithm 1. Without using the above
clauses, the algorithm terminates. There-

vx.<a><a>x

———— 3

m

[a]vy. [bl<a>y

-Z-=%" 0

———_———

(2. [bllallalz
1or pz. [bjlajz
lor pz [alz

|
|
2. [allbllaz

—===> i

Fig. 4. An example for colored line.

t ux. <a>[blx i

Wy.laly

1
"""""""""""""""""""""] b
colored line by pux. <a>[bjx Pl

colored line by jy./ajy
or py.[bj<a>y

[a]|y0
[a]uy.[b]<a>y a :
0]-ko
lb]xo b:
falxb>y,
1 2
| el
[a] b>y, al,
Jk,
a|l @ :

Fig. 5. An example for overlapped p-paths

fore, it is sufficient to consider them only.
Suppose the algorithm dose not terminate
for some input formulae. Then the follow-
ing seven cases must be considered.

(1) (b*)and (b**) occur infinitely, but none

of other cases do.

(2) (c*) does, but none of other cases do.

(3) (d*) does, but none of other cases do.

(4) (b*),(b**) and (c*) do, but (d*) does
not.

(5) (b*),(b**) and (d*) do, but (c*) does
not.

(6) (c*) and (d*) do, but not (b*) and
(b*%).

(7) The whole cases do.

The impossibility of cases (1), (2) and (4)
is already proved in [3]. The one of other
cases is checked by the following predicates.

(3) by convert- formula(f, f') and remove-
consistent-mu(f’, f) in mp(S).

(5) by no-overlapped-mu-path in (c*).

(6) by no-colored-cycle in (c*).

(7) by no-colored-cycle in (c*) and remove-
consistent-mu(f’, f) in mp(S).

(i1) and (iii) The proof of them are almost
same as in [3]. o

152

The algorithm is a non terminating pro-
cedure. Therefore, we show its correctness
by using the concept of convergence in the
limit, which has been a key idea in induc-
tive learning paradigm [6].

Definition 7 Assume an algorithm reads
in an enumeration of facts, and returns
processes sequentially. After some time, if
the output process is always p, then the in-
ferred sequence by this algorithm converges
in the limit to p over the enumeration of
facts. :]

Lemma 8 Assume p is an intended pro-
cess, and the inferred sequence of processes
by the Algorithm 1 converges in the limit
to a process p'. Then p ~ p'. O

The validity of Algorithm 1 is also shown
by the following theorem. =

Theorem 9 Under the assumption of al-
gorithm 1, if there exists a process p satis-
fying an enumeration of facts, the inferred
sequence of processes by Algorithm 1 con-
verges in the limit to a process p' such that

p~p.

Proof. By Proposition 3, Theorem 6 and
Lemma 8. o

3 Conclusion

This paper presents the synthesis algorithm,
which is extention of the algorithm in [2,3],

for a recursive process. We show the out-

put sequence of the algorithm converses to

a process which is strong equivalent to the

target one in the limit.

153

References

[1] Graf, S. and J. Sifakis: “A Logic for
the Description of Non-deterministic
Programs and Their Properties”, Inf.
and contr., 68, pp.254-270(1986)

[2] Kimura, S., A. Togashi and N. Shiratori:
“Synthesis Algorithm for Recursive
Processes by u-calculus”, Lecture Notes
in Artificial Intelligence, 872, pp.379-
394(1994)

[3] Kimura, S., A. Togashi and N. Shiratori:
“Inductive
Synthesis of Recursive Processes from
Logical Properties”, Information and
Computation, (submitted)

[4] Kozen, D.: “Results on the Propositional
p-calculus”, Theoret. Comput. Sci., 27,
pp-333-354(1983).

[5] Milner, R.: “Communication and
Concurrency”, Prentice-Hall(1989).

[6] Shapiro, E.Y.: “Inductive Inference of
Theories From Facts”, Technical Report
192, Yale Univ(1981).

[7] Stirling,
C.: “Modal Logics For Communicating
Systems”, Theoretical Computer
Science, 49, pp.311-347(1987).

[8] Stirling, C.: “An Introduction to Modal
and Temporal Logics for CCS”, Lecture
Notes in Comput. Sci. 491, Springer-
Verlag, pp.2-20(1991).

[9] Togashi, A. and S. Kimura: “Inductive
Inference of Algebraic Processes based
on
Hennessy-Milner Logic”, Trans. IEICE,
E77-A-10, pp.1594-1601(1994).

