-

View metadata, citation and similar papers at core.ac.uk brought to you byj(: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

Title Proper learning algorithm for functions of k terms under
smooth distributions

Author(s) | Sakai, Yoshifumi; Takimoto, Eiji; Maruoka, Akira

Citation O00b0O0DbODbOO0 (1995), 906: 236-243

Issue Date | 1995-04

URL http://hdl.handle.net/2433/59438

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39193097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

goooboooobgon
906 O 19950 236-243

Proper learning algorithm for functions of k£ terms
under smooth distributions

Yoshifumi Sakai Eiji Takimoto Akira Maruoka
Graduate School of Information Sciences, Tohoku University, Sendai 980-77, Japan
Email: { yoshif, t2, maruoka }@ecei.tohoku.ac.jp

Summary: In this paper, we deal with a class written as 7 o Fo¥ = {g(fr(v),..., fr(v)) |
g € F1, fi,..., fx € Fo} for classes Fy and Fy characterized by “simple” descriptions and
study the learnability of 7y o F,F from examples, where F and F, are the classes of functions
from ©F to ¥ and those from ¥" to ¥, where ¥ = {0,1}. Even if both of F; and F; are
learnable, it is hard to learn F; oF,* in general. For example, in the distribution free setting, it
is known to be NP-hard to learn properly k-term DNF, which is represented as {OR} o7, k
where 7, is the class of all monomials of n variables. In this paper, we first introduce a
probabilistic distribution, called a smooth distribution, which is a generalization of ¢-bounded
distribution and product distribution, and define the learnability under this distribution.
Then, we give an algorithm that properly learns Fj o T,* under smooth distribution in
polynomial time for constant k, where F is the class of all Boolean functions of k£ variables.
The class F o0 T,.* is called the functions of k terms and although it was shown by Blum and
Singh to be learned using DNF as a hypothesis class, it remains open whether it is properly
learnable under distribution free setting.

1 Introduction

Since Valiant introduced PAC learning model [4], much effort has been devoted to characterize learnable
classes of concepts on this model. Among such classes are the ones represented by some restricted Boolean
formulas such as DNF, CNF, k-DNF, k-CNF, k-term DNF and k-clause CNF as well as the ones given
by describing Boolean functions such as threshold functions. In each cases, the class is somehow defined
by a “simple” description. In this paper, we deal with a class written as 7, o Fo¥ = {g(fi(v), ..., fr(v)) |
g € Fi, fi,...,fx € Fa} for classes Fy and Fy characterized by “simple” descriptions and study the
learnability of F; o F,* from examples, where F; and F, are the classes of functions from ¥* to ¥ and
those from X" to ¥, where & = {0,1}. When the target function to be learned is g(fi(v), ..., fr(v)) in
F, o Fo* and both of ¢ and fi,..., fr are unknown, in general it is impossible to determine the values
of f1(v),..., fr(v) even if pairs (v, g(f1(v), ..., fr(v))) are given as examples for sufficiently many v’s in
Y7, Hence, even if both of F; and F, are learnable, it is hard to learn F; o F,* in general. For example,
in the distribution free setting, it is NP-hard to learn properly k-term DNF, which is represented as
{OR} o T,*, where 7, is the class of all monomials of n variables (2, 3].

Blum and Singh [1] studied the learnability of the class Fj o T,¥ denoted Fj_term, where Fy is the
class of all Boolean functions of k variables, and showed that, for constant k, Fi _term is learnable by
hypothesis class O(n¥+!)-term DNF in the distribution free setting. Furthermore, they showed that, for
any symmetric function g other than AND, NAND, TRUE, and FALSE, proper learning {g} o Tk is
NP-hard.

In this paper, we first introduce a probabilistic distribution, called a smooth distribution, which 1s
a generalization of ¢-bounded distribution and product distribution, and define the learnability under
this distribution. Then, we give an algorithm that properly learns Fj_term under smooth distribution in
polynomial time for constant k.

236

237

2 Preliminaries

In this extended abstract we follow the standard terminologies in PAC learning model unless otherwise
stated. Obtaining positive and negative examples of a target function f through oracles POS() and
NEG(), a learning algorithm is expected to produce a hypothesis h that approximates the target function
f. A target function f and a hypothesis h are assumed to be Boolean functions of variables z;, ..., z,.

In the following, we often identify a Boolean formula with the Boolean function that it represents. So
we regard the class of Boolean formulas as the corresponding class of Boolean functions. For a given
Boolean formula (or the corresponding Boolean function) f, let D; denote the set of all pairs (D*, D™)
of probability distribution Dt on the set of all positive examples of f and probability distribution D~
on the set of all negative examples of f. For a class F of Boolean formulas (or the corresponding class
of Boolean functions), let Dx denote |J rer Dy Oracles generate examples independently according
to some probability distributions Dt and D~ for some (D*,D~) in D;. In PAC learning model, the
examples are usually assumed to be generated according to either an arbitrary distribution or a uniform
distribution. In this paper we assume more general setting where the class of distributions according
to which examples are drawn is taken arbitrarily as in Definition 2 below. Let ¥ = {0,1} and let D
be a distribution on subset V of ¥™. For a vector v in £" and a subset V' C ¥”, let D(v) denote the
probability assigned to v under D and D(V') denote)" cyiny D(v). A Boolean function (formula) ¢
also represents the set of vectors v in X" such that g(v) = 1. So D(g) represents Zf(g):l D(v) and
g C ¢’ means {v | g(v) = 1} C {v | ¢’(v) = 1}. For Boolean functions ¢ and ¢’, D(g | ¢') denotes
D(y Ag¢’)/D(g'). The size of a Boolean function ¢ is the number of symbols appearing in the shortest
description of ¢ under some reasonable encoding. Given a class of Boolean functions F, 7, ; denotes
the set of Boolean functions of n variables with size at most s in F.

Definition 1 Let f be a Boolean function, and let (D*,D~) € D;. A Boolean function h e-approzimates
f under (DY, D7) if DY (f — h) < e and D= (h— f) < e hold.

Definition 2 Let F be a class of Boolean functions, and let D be a subsei of Dx. An algorithm L learns
F under D of and only if for any positive integers n, s, any target function f in F, ., any real numbers
g, 0 with 0 < e, § <1, and any pair of probability distributions (D*, D~) in DN Dy, when L is given as
inputn, s, € end & as well as access to POS() and NEG() that generate positive and negative ezamples
independently according to Dt and D~ respectively, L halls in steps at most some polynomial in n,
s, 1/e and 1/6, and outpuls a hypothesis h in F, that, with probability atl least 1 — 6, c-approzimates
f under (D*,D~). Furthermore, if there exists a learning algorithm for F under D, then F is called
learnable under D.

For a vector v in £™ and an integer 1 < i < n, let v; denote the ith component of v. For a vector v,
let true(v) and false(v) denote {i | v; = 1} and {i | v; = 0}, respectively. Let 0™ and 1™ denote vectors
(0,0,...,0) and (1,1,...,1) in ™, respectively. For v and v’ in £, let v < v’ denote the condition that
v; < v for any 1 <i <, and let v < v' denote the condition that v < v’ and v # v'. For any subset V
of X, let Min<V denote a subset of V defined as

MincV={veV |V eV -{v} v £v},
and let Mon (V) denote a monotone Boolean function of n variables defined as

1 eV v <w
Mon(V)(v) = { 0 otherwise.

Let X, denote the set of Boolean variables z,...,z,. Let Y, denote a set X, U {-z; | z; € X, }.
Let F,, denote the set of all Boolean functions of n variables. Let TRUE and FALSE denote constant
functions that take 1 and 0, respectively. A conjunction of literals is called a term. Let 7, denote the
set of all terms of literals Y,,. For a positive integer k, 7, <x denote the set of terms ¢ of n variables with

[lit(t)] < k. For a term ¢, lit(t) denotes the set of literals that appear in t. For any vector v in X", o,
and 7, denote terms of n variables defined as '

o, = /\ T; A /\ T,
i€true(v) i€false(v)
T, = /\ z; (e.g., 7o» = TRUE),
i€true(v)
respectively.
For a Boolean function g of k variables and k-tuple T = (¢1,...,1;) of terms of n variables, g(T')
denotes a Boolean function of n variables that takes value g(t1(v),...,tx(v)) for a vector v in £*. A
Boolean function that can be represented as g(7T') for some ¢ in Fj and for some T' = (ty,...,1;) in

T,.* is called a function of k terms, and Fj_term denotes the class of functions of £ terms. For example,
the class Fy_term includes the function (21 A —z2) @ (23 A 4 A 25), where @ denotes the exclusive OR
function. A function ¢(T') in Fj _term can be represented as the composed function g o T' of function g
from £* to ¥ and function 7" from £" to £*. Similarly, in the following, we use notations such as o, (7),
(1), 0y 0T and 7, 0 T'.

Definition 3 For positive integer n and real number 0 < p < 1, probability distribution D on X" s p-
smooth if, for any vectors v and v’ in T™ with Hamming distance 1, D(v)/D(v') > p holds . For a Boolean
function f of n variables and real number 0 < p < 1, a pair of probability distributions (D*,D~) in Dy
is p-smooth if there exists a p-smooth probability distribution D on X" such that D*(v) = D(v)/D(f)
for any positive vector v of f, and D~ (v) = D(v)/D(—f) for any negative vector v of f. Let Sy, denote
the class of all p-smooth pairs (DY, D~) of Dy. Furthermore, for a class F of Boolean functions, let
Srp denote the class U,fe]-' Sip, and Sxp 1s simply writlen as S, when no confusion arises.

3 Learning algorithm

A learning algorithm is assumed to get information about a target function ¢ o 7" through positive and
negative examples of g o T. But, in general, it is impossible to know the value of T'(v) by observing
the examples of g o T'. To overcome the difficulty, the learning algorithm presented in this paper finds
an c-approximation of g o T as follows. Instead of trying to find 7', the algorithm seeks for a k-tuple
of terms, denoted TW%T, which can be found by observing sufficiently many examples of g o T. The
k-tuple TW,g,T is determined by W C ©F, g € F, and T = (¢y,...,1;) € T,*. As Lemma 2 states, it
turns out that there exists a function, denoted gw 4, in F. such that gw 4o Tw,g,ﬁr e-approximates goT.
The fact that function gy ,, which takes the same value as ¢ on W (Proposition 1), is represented as the
exclusive OR of at most (k+ 1) monotone Boolean functions, guarantees that the learning algorithm can
find Twyg,T in feasible time. Actually, the learning algorithm finds gw 4 o TW,g,T that ¢/2-approximates
goT. In the following, since g, T' and smooth distribution (D%, D7) are assumed to be fixed arbitrarily,
we may drop suffices such as g, T and (D*,D"), e.g., jw,y and Tw,, 1 are simply written as gw and
Tw, respectively. The learning algonthm first finds a set U* of k- tuples of terms that includes TW for
appropriate W such that gw o Tw ¢/2-approximates g o T, and then finds ¢’ in F; and U in Uu* by
exhaustive search such that ¢’ o U approximates g o T' with sufficient accuracy.

In this section, we first define jy and Ty mentioned above, and then explain how the algorithm finds
these functions.

A Boolean function g in Fj, k-tuple T = (1,...,t) in 7,* and p-smooth distribution (Dt, D)
in Dyor are assumed to be fixed arbitrarily. —Let W be any subset of XF. Let subsets
Mwo, Mwa,..., Mw k41 of T* be defined as

MW,O = {Ok }a

238

239

and for 1 <1< k+1,

MWJ:MZ"ILS {'LUIEW 1 EIwEMW’I—I }

w<w, g(w) # g(w')

)
Furthermore, let dw,; be defined to be Mon(Mw,;) for 0 < I < k+ 1. It is clear that there exists
1 S ! S k + 1 such that TRUE = dW,O 9 dW,l ; ; dWJ/ = dW,I’+1 == dW,k+1 = FALSE, and
hence, W is partitioned into the blocks

{W n (dW,O — dW,l); wn (dW,1 — dwyg), L, WN (dW,l’-l - dwyll)}.

Furthermore, by definitions, it is easy to see that g takes the same value on each block and the opposite
values on any neighboring blocks. Let gy denote the Boolean function of k variables defined as

gw =9(0) & P dw,.
1<I<Lk

Then since, for any 0 < j <1’ — 1 and any vector w in W N (dw; — dw,j+1),

J
N ' o
jw(w) =g(0") & P dwi(w)=g(0")@1@ &1 =ygw),
1<I<j
the following proposition holds.
Proposition 1 For any vector w in W, g(w) = gw(w).
J

Let sign, denote the function defined as szgng(]) =g(0")®1@ ---@1for 1 <j < k. Then sign ()
represents the value that g takes on the region W N (dw; — dw j+1)-
Let My denote |J, ;< Mw ;. For 1 <i<k, t~W}i denotes a term defined as

tw,; = /\ Y, where Y = ﬂ lit(ry (T)).
yeY we]\lyiy
wi=

In the above definition, fw,f; denotes FALSE when w; = 0 for any vector w in My . Let

Tw = (tw.1, .- tw).
Proposition 2 For any vector w in My, 7,(T) = 1, (Tw).

Proof: It suffices to show that lit(r,(T)) = lit(‘rw(fw)). Recalling T = (t1,...,t;), we have
Tw(T) = Ny,=1ti- Since lit(t;) C lit(,(T)) holds for any 1 < i < k and any w’ in ¥ with w! = 1,
we have lit(t;) C lit(tw;), which implies lit(r, (T)) = U, =1 8t(t:) € Uy, =1 lit(tw,) = lit(r (Tw)). On
the other hand, since w € Mw , we have lit(7(T)) 2 (e pyy o' =1 lit (7w (T')) = kit (fw,;) for any i with
w; = 1. Therefore, lit(, (1)) 2 U,,,, lit(tw ;) = it (1w (Tw). ' o

Since g and jw take the same value on W, jw o Ty s-approximates g o T when W mentioned above
includes all vectors w with DI ({v | T(v) = w}) > ¢/2* (Lemma 2), where D' and D° denote D*
and D7, respectively. In order to show this, we need to define some notations as follows. Let range(T')
denote set {w € L* | Jv € T* w = T(v)}, and let ranget(T) = range(T) U g and range™(T) =
range(T)N(—g). Then range(T) is partitioned into range*(T') and range (7). Let ranges, (1) denote the
subset {w € range(T) | DIW)(a,(T)) > ¢}, where DY) (o, (T)) denotes DY) ({v € T | T(v) = w}).
Let mnge;q(T) = rangey ,(T) N g and range3 (T) = rangey,(T) N (=g). Then it is easy to see the
following lemma.

Lemma 1 If a Boolean function h satisfies (g 0 T)(v) = h(v) for any w in rangey o (T) and any v in
¥ with T(v) = w, then h c-approzimates g o T under (D, D7),

Using Propositions 1, 2, and Lemma 1, we can show the following lemma.
Lemma 2 If ranges/sx (T) C W, then gw o Tw c-approzimates g o T under (DT, D7).

Proof: Let w be any vector in W and let j be a suffix such that w € dw; — dw jt1, that is,
dwj(w) = 1 and dw,j+1(w) = 0. Since w € W, we have g(w) = gw(w) by Proposition 1. Therefore,
since jw takes the same value on dw,; — dw j4+1 and w € dw ; — dw j+1, we have g(w) = gw (w') for any
w in dw; — dw j41.

Therefore, if T'(v) = w implies Tw (v) € dw j — dw j+1, then (go T)(v) = (§w oTw)(v) for any v in X"
with T'(v) = w. That is, for any w in W (and hence, for any w in ranges, o+ (1)), goT and gw oTw take
the same value on {v | T(v) = w}. Thus, by Lemma 1, gw o Tw e-approximates g o T under (Dt,D7).
In the following, we show that T'(v) = w implies Tw (v) € dw,; — dw j+1-

Since w in Mon(Myy,;), there exists w' in Mw ; such that w' < w. From Proposition 2, we have

7w (T) C 1 (T) = Tw:(T~w) C Mon(Mw j) o Tw = dwj o Tw .
On the other hand,
dwjt10T =dwgig10(t1,. - tx) 2dwjr0 (w1, twk) = dwjp10 Tw
since, for any 1 < i <k, lit(t;) C lz't({wﬂ:), that is, t; D fwy,:. Therefore we have

Tw)=w = (rwoT)(v)=1and (dw;t10T)(v)=0
= (dw,; oTw)(v) = 1 and (dwj11 0 Tw)(v) = 0
= ((dw; —dwjs1) o Tw)(v) =1
= Tw(v) € (dw; — dw,j+1)

O

Let f = go T be a target function and let W be any subset of % such that rangescjortr C W.
Lemma 2 says that, in order to obtain TW = (t~W’1, o ,fka) such that gw o Tw ¢/2-approximates f, it
is sufficient to find 7, (T") for each w in My, because twi = A (N enryy wi=1 (7w (T)))

To find 7, (T) for each w in My, the algorithm finds sets {r(T) | w € Mwy,} for I = 0,1,...,k,
repeatedly. More precisely, to find 7,(T) for each w’ in My,, the algorithm uses 7, (T') previously
found for w in My ;—1 with w < w’. Since w < w’ holds,

lit(r (T)) = lit(r (TY)U | lit(:).
1<i<k
‘lu;:(),wi:l

In order to find 7,/(T), the algorithm tries to find a set V consisting of sufficient number of vectors
generated according to DI with oy (T)(v) = 1 (that is, T(v) = w'), and to compute A{y € Yy |
Vv € V' y(v) = 1}. There is, however, no obvious way to know the value of T'(v) for vector v. So we
explore conditions such that T(v) = w’ holds for some w’ satisfying the conditions mentioned above.
The conditions have to be expressed in terms of v and 7,/(T") without referring to 7'(v). The conditions
we notice consist of three conditions. The first condition is 7, (T")(v) = 1. The second condition is the
one that guarantees t;(v) = 0 for all i with w/ = 0. Provided that y; is chosen from () — Lt (e (1)
for each i with w} =0, let r = A;¢ forse(r) Wi~ The second condition we adopt is r(v) = 1 for such y;’s
which are found by exhaustive search. Then, if v satisfies these two conditions, we can easily see that

240

241

w < T(v) < w' holds. The third condition we take is f(v) = g(w’). When w' is the minimal vector
among w” in range(T) such that g(w") # g(w) and that w” > w, it follows that f(v) = g(T(v)) = g(w’)
for T'(v) > w implies T'(v) > w’. Thus the third condition, together with the first and second conditions,
guarantees that T'(v) = v’ (Lemma 3).

Using these three conditions, the algorithm finds a set V of sufficient number of v’s such that T'(v) = w’
and computes set {y € Y, | Yo € V y(v) = 1}. Literals in {y € Y, | Vo € V y(v) = 1} are
candidates for literals corresponding to 7,:(T), i.e., those appearing in /\ziewue(w')ii' Since there may
be a literal —y; appearing in » but not in /\iet,rue(w,) b it is necessary to remove all such literals from
{yeY, |VveV y(v) =1} to obtain k(1 (T)). In algorithm LEARN given in Figure 1, a possible
set of such literals is denoted by p.

The argument above suggests to take as W the set, denoted W, which is defined as follows.

W = {wé€ranget(T)| I € ranye;/,zHl(T) w < w'}

U{w € range™ (T) | 3w’ € rangege/gk“(T) w < w'}.

Let child ;, (w) denote Min<{w' € W | w' > w,g(w') # g(w)}. Then clearly, for any w’ in My, |, there
exists w’ in childy, (w) such that w € My, ,_;, where 1 <1 < k. Note that if w' € childy, (w), then
T (1) G 7w (T) holds. Let R,, be defined as

Ryx = {TRUE},

and for w in TF — {1*},

Ry =71 €Tnck |r#FALSE,r= \ -y, w € lit(t:) — lit(ru (T))
1€ false(w)

Then, we can show the following lemmas.

Lemma 3 For any vector w in My, , any vector w' in childy (w) and any term r in Ry,
Tw(T)ANT = (g0 T)g(“’l) AT(T) AP

holds, where (g o T)* and (g o T)° denotes goT and =(goT), respectively.

Note that the above lemma implies that DY) (7, (T) A) = D) (7, (T) A7), and hence DI (y |
1w (T) Ar) = 1 for any y in lt(r, (T) A 7).

Lemma 4 Let (DY, D7) € Syor,p. For any w in W, any W in childy (w) and v in Ry,
D (ry (T) A7) 2 8
holds, and for any ; with {z;, -z} N (1w (T)A?) = 0,
v < DI (@i | m (T)AP) < 1=
holds, where B = ep* [22¥+! and v = p/2.

We are now ready to construct Algorithm LEARN to learn F}, o T,,* under p-smooth distributions. An
outline of the algorithm is given as follows. Algorithm LEARN first obtains samples St of m positive
examples and S~ of m negative examples by calling POS() and NEG() m times, respectively, where m
is a sufficiently large number. Then, LEARN puts Uy = {TRUE}, and computes the sets Uy, ..., Uy
such that {r,(T) | w €]VIW,,} C U; for 1 <1 <k, repeatedly. For 1 <! < k, U; is computed by using
U;_, as follows. Assume that LEARN has U;_; such that {7, (T) | w € MW,I—l} C U;_; holds, and

242

Algorithm LEARN(n, ¢, é): (* 8= eph [228-1 v = p/2)
begin :
32 4 24 (2n)2" "k
StT,57 —0; (+ multiset *)
for m times do
begin
v — POS();
St — Stu{v};
v — NEG();
S~ «— S~ U {v}
end;
Uy — {TRUE};
ul,...,Uk *“@,
for [— 1 step 1 until £ do
for each (z,s,7) € {+,—} xUj_1 x Ty <} do

m «— Imax {

begin
V—{ve s |(sAnr)(v) =1} (* multiset *)
if V| > 28m then
begin

u—MyeY, |[YveV y(v)=1}
U — U {/\(lit('u.) — p) l pC lit(r)}
end
end;

U — U Uu;

1<I<k

U— {/\ (ﬂ Iit(u))
u€eU’ N
H—{g(U) |y € F,UeU;
for each h € 'H do
if [{v € ST | h(v) =0} < 3em and |[{v € S~ | A(v) = 1}| < Zem then
output h
end.

U cu,u'l < 2’“-1} U{FALSE};

Figure 1: Algorithm LEARN

243

let w’ be any vector in My, ;. There exists w in My, ,_, such that w' € childy, (w). If the parameter
(z,s,7) of for sentence is (sign (1), T (T), 1) for 71 € Ry, then, by Lemma 4, the set V of vectors
v in S99 () with (Tw(T) A ryr)(v) = 1 satisfies, with sufficiently high probability, |V| > %ﬂm. Then,
LEARN computes the set {y € Y, | Vv € V y(v) = 1}. Since by Lemma 4, for any literal y not
in lit(r/(T) A ryr), both of the probabilities of y(v) = 1 and y(v) = 0 are lower bounded by some
constant (given as v = p/2) when v is generated according to D-f(“"/), a literal in lit(ry (T) A 7401),
with high probability, does not appear in {y € ¥, | Vv € V' y(v) = 1} when |V] is sufficiently large,
which implies {y € Y, | Vv € V' y(v) = 1} C lt(ry(T) A) with high probability, and hence
{yeYn|VveV y(v) =1} = lit(ry/(T) Aryr). Putting p a possible set of literals in &it(r,) but not
in lit(r,(T)), LEARN produces A{y € Y, | Vv € V' y(v) = 1} — p) and adds it to U;. Therefore,
since for sentence is executed for all the possible combinations of parameters z, s, r in the sets given
in the algorithm, we have that, with high probability, {7, (T) | w' € My} € U; holds. Since we start
with {ry(T) | w € My, o} = {TRUE} = Uy, it follows that {r,(T) | w' € My, ,} C U; holds with

high probability for 1 <1 < k. Let U = [J; <<, Us. Then, since tw; = A (nweMw,w,-:l lit(Ty (T))) for
1 <<k, {Vi/,z’ is represented as A(nueu' lit(u)) for some appropriate set U’ of at most 2¥~1 terms

in U. Let U be the set of all possible terms AN ey lit(u)) for such U’’s. Finally, LEARN obtains the
desired hypothesis by checking all the combinations ¢’ in F and (f1,. .. ,fk) in U* until g o(ty,..., 1)
approximates g o T with sufficient accuracy.

4 Correctness
The correctness of algorithm is verified by the following lemmas, which immediately implies Theorem 1.

Lemma 5 With probability at least 1 — 6/2, H that Algorithm LEARN computes includes an €/2-
approrimation of g oT in Fy_term under (D+,D‘) in Sp.

Lemma 6 If H that Algorithin LEARN computes includes an ¢/2-approzvimation of g o T in Fy term
under (DY, D7) in Sy, then LEARN outputs. with probability ot least 1 — /2, h in Fi_term that e-
approzimates g o T. under (DT, D7),

Lemma 7 Algorithm LEARN halts in time O((n? 7'¥* Jep*+1) In(n/6)).

Theorem 1 Ifk is constant and p is bounded from below by the inverse of some polynomial in n, F, term
is learnable under S,.

References

(1] A. Blum, M. Singh, Learning functions of k terms, in Proceedings of the 3rd Annual Workshop on
Computational Learning Theory, Morgan Kaufmann, 1990, pp.144-153.

[2] M. Kearns, M. Li, L. Pitt and L. G. Valiant, On the Learnability of Boolean Formulae, In proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, pp.285-295.

[3] L. Pitt and L. G. Valiant, Computational limitation on learning from examples, Journal of the ACM,
Vol.35, No.4, 1988, pp.965-984.

[4] L. G. Valiant, A theory of the learnable, Communications of the ACM, 27(11), 1984, pp.1134-1142.

