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Abstract

This paper describes a memory-based SIMD shared-bus parallel processor architecture, which is

called “Functional Memory Type Parallel Processor” abbreviated as FMPP. The FMPP architecture

integrates memory and an ALU closely on a single die. All the PEs are connected with a shared bus

and laid out in a two-dimensional array like memory and perform the same instructions according to

the SIMD manner. The FMPP architecture enables massively parallel computing inside a memory.

It has a capability to break the Von Neumann bottleneck where the system performance is limited by

the bus performance between memory and CPU.

We have developed four LSIs based on the bit-parallel block-parallel architecture, where a PE

consists of several words and a bit-parallel ALU. The first LSI called the BPBP-FMPP with 8 PEs

is designed and fabricated for general purpose. A PE consists of 32bit CAM words and a 32bit

ALU for numerical and logical operations. The following three LSIs called FMPP-VQ are for a

special purpose: vector quantization (VQ). A PE consists of 16 words of 8bit SRAMs and a 12bit

ALU. The FMPP-VQ accelerates the nearest neighbor search where the vector nearest to an input

is extracted among large number of code vectors. The FMPP-VQ4 with 4 PEs is an evaluation LSI

to confirm functionalities. The second FMPP-VQ64 integrates 64 PEs. It performs over 50,000

nearest neighbor searches per second, while its power consumption is 20mW. It can be used for

real-time low-rate video compression. The third FMPP-VQ64M is designed for more powerful and

low-power computation. Its performance becomes almost twice, while its power consumption is half

compared with the FMPP-VQ64. We have also developed a low-rate video compression system using

the FMPP-VQ. The proposed multi-stage hierarchical vector quantization algorithm can transmit 10

QCIF frames per second through a 29.2kbps mobile channel.
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Chapter 1

Introduction

This paper is a summary of a memory-based SIMD (single instruction multiple data stream) shared-

bus parallel processor architecture, which is called the “Functional Memory Type Parallel Processor”

abbreviated as FMPP. Almost all the current computing systems are based on the Von Neumann

architecture, where a CPU and memory devices are connected with a shared bus. All the data

and programs should be transfered between the CPU and memory through the bus. Although the

performance of the CPU is rapidly improving, the performance of the Von Neumann system is

limited by the performance of the bus or the memory, which phenomenon is called “Von Neumann

Bottleneck.” This is because the performance of the memory is not improved faster than that of the

CPU and the width of the bus is limited to be narrow. The bottleneck must be alleviated to perform

processing inside a memory device. The memory device implies parallel computation capability,

since it consists of a two-dimensional array of memory words. All the words can work in parallel.

The two-dimensional regular array structure achieves highly dense layout improving four times every

three years. The FMPP architecture allows parallel processing inside memory devices. A processing

element (PE) consists of some amount of memory cells and an ALU. All the PEs connected with a

shared-bus work in parallel according to a single instruction provided through a central control unit

(the SIMD control method). The FMPP is suitable for operations where communication between

processors or external devices is not so frequent and the same operations are done for huge number

of data set. The processing capability is defined by the processor granuality. Fine granuality makes

the functionality poor. Coarse granuality enlarges the area. A bit-parallel block-parallel (BPBP)

structure is proposed in this paper for middle-grain modest-functional processing. The PE consists

of several words and a bit-parallel ALU. Four LSIs have been developed and fabricated based on the

BPBP structure. The first emerged LSI is called BPBP-FMPP, which contains eight 32bit PEs and

can be applied for general purpose. The following three LSIs called the FMPP-VQ are for a special

purpose: vector quantization (VQ). A PE consists of 16 eight-bit SRAMs and a 12bit ALU. The

FMPP-VQ can search the vector (pattern) nearest to an input among all the vectors stored in PEs.

It is successfully applied to real-time low-rate video compression by VQ. The first FMPP-VQ LSI
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contains four PEs to evaluate its functionalities. The second and third attempts integrate 64 PEs to

be applied for real-time low-rate image compression. We have also developed an algorithm and a

real-time low-rate compression system using the FMPP-VQ.

Chapter 2 gives overview of the functional memory. The functional memory is a memory device

with some functionalities. The FMPP can be categorized to the functional memory. The CAM and

associative processor architectures are also discussed. Chapter 3 explains the FMPP architecture

in detail. The BPBP structure is compared with the other two structures, bit-parallel word-parallel

and bit-serial word-parallel. The performance efficiency on the FMPP-based computing system is

also argued. The BPBP-FMPP is described in Chapter 4. Chapter 5 introduces the FMPP-VQ

architecture, the three LSI implementations and the real-time low-rate video compression system.

Chapter 6 summarizes this paper.



Chapter 2

Overview of Parallel Processor and
Functional Memory

This chapter describes the overview of parallel processor and functional memory. The functional

memory type parallel processor (FMPP) is a parallel processor architecture based on functional

memory. First, we address the Von Neumann bottleneck eliminating the performance of the current

computing system. Several parallel processor architectures are introduced to break the bottleneck.

Then, functional memory and associative processors are described in detail.

2.1 Parallel Processor Architectures to Break the Von Neumann
Bottleneck

The current Von Neumann computer architecture confronts the bottleneck where the system perfor-

mance is limited by the bus performance. This section gives the brief description of the bottleneck

and shows several parallel processor architectures to break the bottleneck.

2.1.1 Von Neumann Computer Architecture

In the Von Neumann architecture, computers are composed of a central processing unit (CPU) and

a memory unit (Figure 2.1). CPU performs operations according to codes (programs) and data in

the memory unit. They are connected with a bus. At the rise time of computers, thousands of relay

switches and vacuum tubes form a computer unit. As the emergence of semiconductor devices, the

memory and CPU are replaced with discrete transistors. Now they are integrated on LSIs (Large Scale

Integrations or Large Scale Integrated circuits). The most popular commercial processor Pentium

integrates over 1 million transistors and its internal clock speed becomes over 300MHz. The largest

commercial DRAM (Dynamic Random Access Memory) has 256 million bits on a single LSI. In

the Von Neumann architecture, all data and codes have to be passed from the main memory to the

CPU through the bus. The bandwidth between them is narrow, since the number of pins pulled

outside LSIs are limited. Pentium has only 64-bit bus. The access time of DRAM is about 50ns
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(20MHz). In these conditions, Pentium can perform 300MIPS (Mega instructions per second), but

the DRAM gives only 160M bytes of data and codes per second to the CPU. The bus degrades the

performance of the CPU, which is so-called “Von Neumann bottleneck.” To compensate the Von

Neumann bottleneck, all of current commercial CPUs have memory hierarchy as shown in Figure

2.1. The memory hierarchy virtually shortens the access time of the DRAM if the accessed data

exists on cache memory (Cache Hit). The actual access time, however, becomes longer because the

actual distance from the CPU to the DRAM becomes longer. That produces severe problems in some

applications. For example, these hierarchical structure of cache memory is not so effective for image

processing. Image processing usually applies the same operations to image data. The image data

of video sequence amounts to huge size. In the JPEG, the famous DCT-based image compression

algorithm, the image data is divided into a block, each of which includes 8 � 8 pixels. Each block

has no relation with others. In this situation, the first cache in the CPU can store a single block data,

which accelerates processing. But the second cache between DRAM and CPU does not contribute

the processing speed. It merely prolongs the access time of DRAM.
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Figure 2.1: Von Neumann computer and its hierarchical memory structure.

As for the power dissipation, an off-chip bus to connect the CPU and memory dissipates a large

amount of power. Reference [Wat98] mentions that an external pin-to-pin I/O connection yields 50pF

of stray capacitance, while an internal I/O connection yields only 1pF which is 50 times smaller.

The dissipated power is proportional to the value of stray capacitance. If we implement the CPU

and memory in a single LSI, the power dissipation must be minimized. Recently, such a challenge

called “Merging memory (DRAM) and Logic” becomes very popular. The deep sub-micron process

on the current VLSI technology actualizes a mixture of logic and DRAM on a single LSI. Some

LSI vendors develop commercial products implementing some amount of DRAM and logics on

a single die[INK
�

95, WFY
�

97]. eRAM
	�


by Mitsubishi Electric Corp. stands for “embedded

random access memory”[ERA]. The 3D-RAM[INK
�

95] is one of LSIs of the eRAM architecture.

It integrates Z-compare or � -blend units to be applied to 3D-graphic applications. A single LSI

contains 10Mbit DRAM and an SRAM cache with a single ALU for Z-compare or � -blend. Several
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LSIs simultaneously work to complete 3D-graphic applications.

2.1.2 SIMD Parallel Processor to Solve the Von Neumann Bottleneck

Several approaches can be taken to break the Von Neumann bottleneck. One approach is to have

multiple CPUs work in parallel, which is called “parallel processors.” Pentium now integrates SIMD

processors, which is called MMX extension, which is suitable for image processing or video game.

Parallel processor is a key technology to obtain more powerful and effective computation on LSIs.

Parallel processor is categorized in two by its memory architecture: distributed memory and shared

memory. In the distributed memory architecture, a processor has its own memory, while all the

processors shares common memory in the shared memory architecture. The distributed alleviates the

bottleneck more than the shared, since the bandwidth between memory and processor is extended

according to the number of processing elements (PEs). A complex control method usually makes

it difficult to describe a parallel program and makes the area of the PE larger. General parallel

processors can also be grouped into two major categories by the control method. One is SIMD

that means “Single Instruction Multiple Data Stream.” The other is MIMD that is an abbreviation

of “Multiple Instruction Multiple Data Stream.” On the SIMD, all processors work simultaneously

according to the same instruction. On the MIMD, each processor performs its own instruction. An

SIMD parallel processor can be implemented in a smaller area than an MIMD parallel processor,

since a PE of the MIMD should have its own control logic. All PEs of the SIMD, however, can be

controlled by a common control logic. The number of PEs on a single die should become larger in

the SIMD architecture. Thus, the SIMD distributed-memory parallel processor is a good candidate

to break the bottleneck.

We should consider some more parameters to implement SIMD distributed-memory parallel pro-

cessors. Here, these three parameters are chosen to categorize them : processor granuality, processor

functionality and communication network. They have strong correlation with each other. Fine pro-

cessor granuality usually makes the functionality of a PE poorer. Complex communication network

always makes the area of an LSI larger. We introduce several implementations of SIMD distributed-

memory parallel processors by those three parameters. Table 2.1 shows the three implementations of

the SIMD distributed-memory parallel processors.

Connection Machine[Hil87] is an SIMD parallel processor. In the first system called CM1, each

PE consists of 4kbit memory and a bit-serial ALU, which is very simple. The CM1 consists of 64k

PEs connected with a complex flexible network called “hyper-cube.” A software programmer can

design a network of processors as he want. Connection Machine is developed for general purpose.

Content Addressable Memory (CAM) is a memory device which can associate address from

contents of memory. Detail descriptions are shown later in Section 2.2.1 and Section 3.3.1. It is
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Table 2.1: SIMD distributed-memory parallel processor implementations.

Granuality Functionality Network (Type)

Connection Machine fine poor Complex (Hyper-cube)

CAM very fine very poor Simple (Bus-connected)

IMAP coarse medium Simple (Bus-connected)

usually regarded as memory than parallel processors. But it can be applied to parallel processing

using its associative capability as shown in Section 3.3.1.

IMAP stands for Integrated Memory Array Processor proposed by a group of NEC[FYO92]. It

is an SIMD parallel processor architecture merging SRAM and logic. The IMAP LSI[KNA
�

95]

integrates a 2MB SRAM with 64 PEs. The block diagram is shown in Figure 2.2. A 64kb SRAM

macro is assigned to two PEs. They can directly communicate with the assigned SRAM macro.1

Each PE consists of several 8bit registers and an 8bit ALU. Its peak performance becomes 3.84 GIPS,

but its power consumption is 4W. An image processing system connected to the PCI bus is already

commercially available[NEC].

64kb SRAM x 10

64kb SRAM x 10

PEx16

M
em

ory B
us

Main Bus

Figure 2.2: IMAP LSI.

As described above, various distributed-memory SIMD parallel processor architectures are avail-

able. In the Connection Machine architecture, complex network reduces the integration density. The

18 SRAM macros are redundant.
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progress
 of the current VLSI technology enlarges the integration density year by year. The memory

device enjoys the progress enormously, since its two-dimensional array structure and shared-bus sim-

ple network are very much suited to the VLSI technology. Thus, the parallel processor architecture

based on the memory structure may hugely enjoy the VLSI technology. The CAM has the capability

to perform parallel processing inside memory. But its functionality is too poor. The IMAP integrates

multiple processor and memory devices on a single die. But memory and processor are separately

designed and the processor granuality is relatively coarse.

In this paper, we focus on a memory-based SIMD shared-bus parallel processor architecture called

FMPP. FMPP stands for Functional Memory type Parallel Processor. The FMPP architecture enables

fine-grain highly-functional parallel processing inside memory. It allows numerical operations inside

memory. In the next section, we introduce functional memory and associative processor before

describing the FMPP architecture.

2.2 Functional Memory and Associative Processor

Functional memory can be described as a memory including some simple functions such as content

addressing. It is proposed by Kohonen[Koh87] as “associative memory.” The original associative

memory is some kind of conceptual one. It can associate a target value from several key values

like our brain. Kohonen implemented an optical associative memory to retrieve a full-sized image

from an incomplete image. On the other hand, content addressable memory (CAM) is an actual LSI

implementation of associative memories. Conventional memories like DRAMs or SRAMs associate

data from an address, while the CAM associates an address from data. Associative processor is a

parallel processor architecture to perform processing using its associativity. Here we explain the

CAM and the associative processor in detail. Implementations of the FMPP proposed in this paper

are based on the CAM architecture.

2.2.1 Content Addressable Memory

Ogura et al. implemented a 4kb content addressable memory[OYN85] in early 80’s as shown in

Figure 2.3. Its memory cell is shown in Figure 2.4 along with a memory cell of a conventional

6-transistor SRAM. The two pass transistors denoted by dashed circles work as a pass-transistored

XNOR (exclusive-nor) logic. Let the CAM cell store � and supply � and � to the two bit lines b0

and b1 respectively. Note that the supplied value is inversed: b0 � � and b1 ��� . The output node�
becomes logic high if ����� 1 � & ����� 0 � or ����� 0 � & ����� 1 � . It means ����� (XOR). To obtain

words matched to a key value, the multiple bits of a CAM cell form a single match line that works as

a wired-NOR of all results from the XOR gates (See Figure 2.5). In the initial condition, the Match
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line is precharged. A key value is supplied to the CAM word, then the � ��! is activated. If �"�#� ,

the match line keeps logic high, or it is discharged since an XNOR gate where �%$'&)(+*���,$ &)( becomes

true. The search flag connected to the Match line stores the search result. We call the operation

“search operation.” The search operation may have multiple search flags become true. The multiple

response resolver resolves the lowest address among CAM words search flags of which are true. The

signal -/. becomes false if there is no true search flag. The garbage flag invalidates the search result.

It is usually used to read all the addresses search flags of which are true. When the lowest word

(the word address of which is the lowest of all) is read out, its garbage flag becomes true. Then, the

multiple response resolver produces the second-lowest address. Such an operation is called “Multiple

Response Resolution.” The CAM also has a functionality of parallel write operation: writing all the

words whose search flags are true.
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Figure 2.3: Block diagram of a 4kb CAM.

The mask register located at the top of the CAM cell array in Figure 2.3 masks specified bits. The

two bit line b0 and b1 become logic low at the masked bit. Thus, the XNOR gate of the bit always

generates the false output regardless of the bit data. Thus, the specified bit is masked on the search

operation. The mask signal in the CAM cell is also connected to the mask register. It is used to

prohibit the write operation to the specified bit.

They applied the CAM to Prolog machines[NO90]. The CAM accelerates the back-track scheme.

The garbage flags support the garbage collection in Prolog. They have been developing high-density

CAM LSI implementations[FOT93, ONB
�

96, ON97]. The latest CAM LSI in [ON97] integrates
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Figure 2.4: Memory cells of a CAM(left) and a conventional 6-transistor SRAM(right).
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Figure 2.5: Match line on a CAM cell.

366k-bit on a 16.5 � 16.5 mm2 die, which is applied to image processing.

2.2.2 Associative Processors

S.S. Yau and H.S. Fung surveyed associative processors in Reference [YF77]. An associative

processor can generally be described as a processor which has the following two properties:

1. Stored data items can be retrieved using their content or part of their content (it is called content

addressing).

2. Data transformation operations both arithmetic and logical can be performed over many sets

of arguments with a single instruction (it is called parallel computation).

Although, the CAM has only the former property, we can regard the CAM as an associative

processor. Almost all implementations to be categorized into associative processors are based on

the content addressing capability of the CAM. In the rise time of associative processors, they were

applied to various fields, for example, geometrical problems[SKO90], a database accelerator[WS89],
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a Prolog engine[NO90] and etc. But current target applications tend to image processing. This

may be because advantages obtained by these embedded associative processors are soon supposed

by commercial micro processors which have remarkably been improving. In the area of image

processing, however, these associative processors get a great advantage over the micro processors on

the processing speed and power dissipation.

The architecture of associative processors can generally be classified into three categories ac-

cording to the processor granuality. The three categories are bit-oriented, word-oriented, and block-

oriented associative processors. The bit-oriented associative processors is the most fine grain one,

which PE consists of a single-bit memory cell with an ALU. A single word with an ALU forms

the PE of the word-oriented associative processors. The block-oriented associative processors are

implemented as the bit-parallel block-parallel FMPP in this paper. It consists of several words of

memory cells and an ALU. Comparison of these three architectures is discussed in Section 3.2. The

word-oriented architecture is the most widely-spread and famous, since it can easily be implemented

to add a specific word-oriented ALU to a CAM word as shown in Figure 2.6. The ALU retrieves the

single bit data through the match line of a CAM word.

1word=1PE

CAM Array

Word-oriented
Logic Unit

Figure 2.6: General bit-serial associative processors.

2.2.3 Implementations of Associative Processors

Here, several implementations of associative processors are introduced.

A group of Waseda University[Was] proposed a CAM-based hardware engine for geometrical

problems[KNK
�

92]. They developed a 4kbit CAM to accelerate threshold search, extremum search

and parallel numerical operations. Numerical operations are done in bit-serial in an ALU attached to

a word.

A group of Tohoku University[Toh] develops a multiple-valued CAM [HAK97]. A cell of the

CAM is a floating-gate MOS transistor similar to EEPROM cells (Figure 2.7). The floating-gate MOS
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transistor stores 4 states by controlling the threshold voltage. They just propose a circuit diagram of

the CAM. They will apply it to fully parallel template-matching operations. They carry out another

research of intelligent vehicles, where a ROM-type CAM is applied to collision avoidance[HK96].

Match line

Digit line

Floating gate

Word line

Figure 2.7: Multiple-valued CAM cell.

A dynamic associative memory processor has been proposed by Sodini et. al. in [HS92]. As shown

in Figure 2.8 a two-dimensional network connects all the PEs. A PE consists of associative parallel

processors which can be word-oriented or fully-parallel. A memory cell is called a dynamic content-

addressable parallel processor cell as shown in Figure 2.9. Image processing such as smoothing is

introduced as an effective application on the dynamic associative memory processor, with each PE

assigned to a single pixel. They fabricated a 256-element associative parallel processor LSI[HS95].

Currently, they have proposed and fabricated a pixel-parallel image processor based on the DRAM-

merged logic architecture[GS97]. A PE has the similar structure in the dynamic associative memory

processor. But a memory cell is replaced with a conventional DRAM cell. It integrates 128 � 128

processors on a 78.6mm2 die.

Processed
images out

Analog-to-digital
converter

Associative processor array

Host computerPE  Processing element
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Processor

Imager

PE PEPE

PE PEPE

PE PEPE

Figure 2.8: A pixel parallel image associative processor[HS92, GS97].
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Figure 2.9: Dynamic content addressable memory cell.

Computational RAM (C � RAM ) is a memory-SIMD hybrid architecture where each column of

memory has an associated processing element[ESS92]. Figure 2.10 shows an implementation of

C � RAM. There are 64 bit-serial PEs. A 1kbit memory column is assigned to each PE. It is applied

to several image processing application including vector quantization. The detail description of

applying vector quantization is explained in Section 5.7 compared with the implementation of the

FMPP.
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2.3 Summary of the Chapter

Here, parallel processor and functional memory are briefly discussed. Von Neumann architecture

has been used in the current computer system. At the emergence of the computer, the CPU and the

memory are separately fabricated. But now both can be integrated on a single die. The challenge to

merge memory devices and processors on a single LSI has just started recently owing to the current

rapid progress of integration density. It extends the bandwidth between memory and processors

considerably. But the speed gap between DRAMs and processors still remains. The gap should

be compensated by memory hierarchical structure. But it prolongs the bus length. If some amount

of processing can be done on memory devices, the system performance will be promoted. The

functional memory architecture attaches simple processing capability to memory devices to enable

on-memory processing. The CAM, the most famous widely-used functional memory can detect an

address from its content. It can be regarded as a parallel processor where each word becomes a

processor. Its two-dimensional structure is very much suited to the current VLSI technology. The

functional memory type parallel processor, FMPP architecture described in the next chapter can be

categorized to the functional memory. It is a memory-based SIMD shared-bus parallel processor. The

FMPP integrates fine-grain memory-based PEs in a two-dimensional array. The features of SIMD

and shared bus enhances the integration density. Huge number of processors on a single LSI perform

massively parallel computing.
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Chapter 3

Functional Memory Type Parallel Processor:
FMPP

In this chapter, we introduce the Functional Memory Type Parallel Processor (FMPP) architecture

in detail. Three structures are available for the FMPP architecture: fully-parallel (bit-parallel word-

parallel), word-oriented (bit-serial word-parallel) and block-oriented (bit-parallel block-parallel).

This paper focuses on the block-oriented implementations. Finally, we compare the performance

efficiency between a conventional Von Neumann computer and an FMPP-based computer.

3.1 Features of the FMPP

The FMPP is a memory-based SIMD share-bus parallel processor which can enjoy some direct benefit

from memory VLSI technology. The FMPP architecture is schematized in Figure 3.1.

The features of FMPP are summarized as follows[YWST91, Yas91].

Memory-Based Simple Structure. The FMPP has a memory-based simple two-dimensional array

structure like an LSI memory. Each processor contains a bit, a word, or a group of words. We

can obtain a very large parallel computation space by the FMPP. A multi-chip construction is

easily implemented as same as for an LSI memory. The memory-based structure enables a

word of the FMPP to be accessed same as a conventional memory. I/O pins are required for

address, data and control. The number of data and control pins is constant at any number of

PEs, while the number of address pins is proportional to the log to the base 2 of the number of

processors. Thus, total number of IO pins slowly increases as the number of PEs.

SIMD control method. All the PE of the FMPP are controlled by a single instruction. It is an SIMD

(Single Instruction Multiple Data stream) machine, where all processors work simultaneously

by a single broadcast instruction. The silicon area required by control logics is slightly smaller

than MIMD approaches.
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Figure 3.1: Functional memory type parallel processor architecture.

Simple communication network through a shared bus. The shared-bus is the most simple way to

connect multiple PEs. It enhances the layout density, while applications on the FMPP should

remove inter-processor communication and reduce communication between processors. An

outer control logic or CPU can access the content of each word on the FMPP through read/write

operations word by word like a conventional memory.

Massively parallel computing on huge number of processors. Memory-based simple structure

realizes massively parallel computing. The number of processors can be increased year by

year as progress of memory VLSI technology.

Easy to achieve highly dense layout. Processors of today contain too complex circuits and net-

works. Now, they are semi-automatically implemented by logic and layout synthesizers paying

the cost of silicon area. The two-dimensional regular array structure and simple communica-

tion network of the FMPP allows highly dense layout. All we have to do is to design a layout

pattern of a PE and to put it into array, which can be implemented by interactive manual design

strategies.
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Low power computing. Chandrakasan mentions that parallel processing must decrease power

dissipation[CSB92]. Suppose that two processors work in parallel. The clock frequency

of them may be half of that of a single processor if the same through-put rate is assumed.

On that condition, the supply voltage can be dropped. The power dissipation of such a two-

processor system is 0.36 of that of a single processor system. Thus, the FMPP must decrease the

power dissipation considerably. In the Von-Neumann system, data transfer between processor

and memory consumes large power. The FMPP also reduces power to perform processing

inside memory to decrease communication between memory and a processor.

3.2 FMPP Architectures According to the PE Granuality

Here we discuss three FMPP architectures according to the granuality of a PE: the bit-oriented

structure called Bit-Parallel Word-Parallel, BPWP: Figure 3.2(a), the word-oriented one called

Bit-Serial Word-Parallel, BSWP: Figure 3.2(b) and the block-oriented one called Bit-Parallel

Block-Parallel, BPBP: Figure 3.2(c).

(a)BPWP (bit-parallel word-parallel)

(b) BSWP (bit-serial word-parallel)

1bit

1wordPE

PE1word

(c) BPBP (bit-parallel block-parallel)

1word

PE

memory logic

Figure 3.2: Several FMPP architectures according to PE granuality.

In the BPWP architecture, each PE consists of a one-bit memory cell and an ALU. We can expect

a large amount of parallel computing in this architecture with the expense of a large amount of

hardware required for all the PEs. This is suitable for algorithms which require the same operations

on every bit.

In the BSWP architecture, each PE consists of one word of memory cells and a bit-serial ALU.

An operation on every word is processed in a word-parallel but bit-serial manner. We can treat a
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conventional content addressable memory (CAM) as a BSWP FMPP[YWST91], where each word is

considered as a PE. The amount of hardware for a BSWP FMPP is much the same as that for a CAM,

thus integration density can be relatively high.

The BPWP and BSWP architectures have the following drawbacks. As for the BPWP architecture,

the integration density is not high since the same number of ALUs as that of memory cells are

required. The area of each PE should be minimized, which situation makes it difficult to enhance

the functionality of the ALU. In the BSWP, the area of a PE is less severe than that of the BPWP.

We can realize an ALU with various functionalities. However, computation time is getting longer

as the bit width of words increases. Another problem on the BSWP is the lack of ability for inter-

word operations such as an addition on two words. If we perform an operation that requires multiple

operands in the BSWP, both operands and the result should be stored in a single word and the operation

should be performed all the way in a bit-serial manner which consumes much longer processing time

than in a bit-parallel manner (See local addition described in Section 3.3.1).

A block-oriented implementation called Bit-Parallel Block-Parallel (BPBP:Figure 3.2(c)) is pro-

posed to achieve both high parallelism and highly dense layout. A PE called a block consists of a

group of words and an ALU. A block corresponds to a small processor with several registers and

an ALU. It is faster than the BSWP, while the amount of hardware is expected to increase slightly

compared with that of the BSWP FMPP. The BPBP architecture merges high parallelism of the BPWP

and high density of the BSWP.

The BPBP allows logical and numerical operations on two words. We must carefully define the

number of words in a block. If we save both operands and the result at an operation on two words,

at least three words should be included in a PE. Too many words in a block may spoil the degree of

parallelism. The suitable number of words in a block depends on applications. The more complex

operations we require, the more word should be included in a block in order not to spoil the high

integration density of the BPBP. As for the BPBP-FMPP introduced in the next chapter, a PE has four

words. This is because at least four words are required for numerical operations on two words in the

BPBP-FMPP; two words for the operands, one word for the result and one word for the carry. An

application specific FMPP called the FMPP-VQ in Chapter 5 has 16 words in a PE which is defined

by the dimension of the vector.

3.3 Implementations of the FMPP Architecture

Here, several implementations of the BSWP and BPBP architectures are briefly described. Among

these implementations, the BPBP-FMPP and the FMPP-VQ are explained in detail in Chapter 4 and

Chapter 5.
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3.3.1 Bit-serial Word-parallel Architecture

At the beginning phase of the research on the FMPP architecture, we regard the CAM described in

Section 2.2.1 as a bit-serial word-parallel FMPP. The CAM has functionalities of search operation,

multiple response resolution and parallel write operation. Of course, we can find words whose

contents are matched to a key in the CAM. In addition to that, we can find the minimum or maximum

(i.e. extremum) value among all the word. It is done to repeat the search operation from MSB to

LSB. The search operation also enables threshold search where all the word above or below some

threshold value can be detected. Numerical operations such as addition or subtraction can be done

on the CAM owing to its search and parallel-write capability.

Extremum and Threshold Search on the CAM

Let us introduce the procedure to search the minimum value stored in the CAM. Figure 3.3 explains

the data flow of the minimum value search using 4bit CAM words. Figure 3.4 shows the procedure for

the minimum value search. The value X shows the masked bit. The minimum value search repeats the

search operations from MSB to LSB. The signal - . is supplied from the multiple response resolver

in the CAM. If it becomes false, the target bit of the key value turns to true(1). The extremum search

is done in O( 0 ). The parameter 0 means the bit width of the CAM word. It does not depend on the

number of words.
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Figure 3.3: Flow chart of the minimum value
search.

1 &32 =XXXX #(every bit is masked)
for & � 3 downto 0 # Iteration1 &324$ &)(5� 0

search( 1 &32 )
if -/.6� 0 then1 &324$ &)(5� 1
endif

end

Figure 3.4: Procedure for the minimum value
search.

The threshold search is done to iterate the search operation similar to the extremum search. But the

logical-OR functionality is required to the search flag, which is not implemented in the conventional
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Figure 3.5: Threshold search on CAM.

4kbit CAM[OYN85]. The data flow of the threshold search is schematized in Figure 3.5. The

computational complexity is O( 0 ).

Numerical Operations on the CAM.

The CAM can be applied to numerical operations[YWST91]. We introduce two numerical operations.

One is parallel addition between an outer value and all the words in the CAM (global addition). The

other is parallel addition between all the inner words (local addition). These numerical operations

are performed to iterate the search and parallel write operations from LSB to MSB. Figure 3.6 and

Figure 3.7 show the procedure and flow chart of global addition. A word (PE) stores an operand �
and a carry bit

�
. An iteration consists of two search operations and two parallel write operations.

The procedure and flow chart of local addition are depicted in Figure 3.8 and Figure 3.9. An iteration

consists of four search operations and four parallel write operations. A word stores two operands �
and � and a carry bit

�
. These numerical operations are done in O( 0 ).

Functional Memory for Parallel Addition

As in the previous section, the CAM has capability of numerical operations. It has some drawkbacks.

1. Operands should be placed in the same word in local addition.

2. A single-bit computation consists of several search and parallel write operations, which con-

sumes processing time.

To compensate such drawbacks, a bit-serial word-parallel FMPP designed for parallel numerical

operations has been proposed, which is called “Functional Memory for Parallel Addition.” All the

PEs are laid out in a two-dimentional array (Figure 3.10). A PE consists of multiple words and a

bit-serial ALU (Figure 3.11(a)). A memory cell is a DRAM cell shown in Figure 3.11(b). The ALU

has functionalities of addition and logical operations between two words. It is implemented in a
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for &7� 0 to 098 1
if �,$'&)(5� 0

if ���:$ &)(3; � �4����� 0 ; 1 � # search���:$ &)(3; � �4��� 1 ; 0 � #parallel write
else if ���%$'&)(); � �<��� 1 ; 1 � # search���:$ &)(3; � �4��� 0 ; 1 � #parallel write
endif

else if �,$'&)(=� 1
if ���:$ &)(3; � �4����� 1 ; 0 � # search���:$ &)(3; � �4��� 0 ; 1 � #parallel write
else ���:$ &)(3; � �<��� 0 ; 0 � # search���:$ &)(3; � �4��� 1 ; 0 � #parallel write
endif

end

Figure 3.6: Algorithm for global addition.
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Figure 3.7: Data flow-chart of global addi-
tion.

0.5 � m CMOS process. Figure 3.12 shows a layout pattern of the PE. The layout pitch of the ALU is

exactly matched to the height of the two words. The PE has multiple words, which strucutre may not

be in the category of BSWP. But it is cassified to BSWP, since the ALU is bit-serial.

3.3.2 Bit-parallel Block-parallel Architecture

The first FMPP architecture appeared in 1989 [NYT89] has the bit-parallel block-parallel (BPBP)

structure for image processing. Here, we call it a functional memory type parallel processor for

image processing (FMPP-IP). Figure 3.13 shows its structure. PEs are connected only to the adjacent

ones, which does not come under the definition of the FMPP. A PE consists of multiple words and

an ALU (Figure 3.14). An ALU complies so-called carry-save adder where addition is done in every

bit in parallel, but the carry is propagated bit by bit. Addition is done in a bit-serial manner. In the

bit-serial ALU as in the BSWP FMPP, multiplication consumes too many operations in proportion to

the square of bit-length (O( 0 2)). Multiplication by the carry-save adder, however, can be completed

in O( 0 ). The PE of the FMPP-IP is designed with a standard cell library in a 2 � m CMOS process.

Since the final layout pattern is automatically generated, its area becomes large. They mention that

18 PEs can be implemented in a 1cm2 die.

This thesis explains two implementations of the BPBP architectures in detail. One is called “Bit-

parallel Block-parallel Function Memory Type Parallel Processor (BPBP-FMPP).” Its PE complises

four CAM words and a bit-parallel ALU. The other is called “Functional Memory Type Parallel

Processor for Vector Quantization (FMPP-VQ).” Its PE consists of 16 SRAM words and a bit-parallel
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for &7� 0 to 098 1
if ���%$'&)();>�,$ &)(3; � �4����� 0 ; 0 ; 1 ����:$ &)(3; � �4��� 1 ; 0 �
else if ���:$'&)();>�,$ &)(3; � �4���?� 0 ; 1 ; 1 ����:$ &)(3; � �4��� 0 ; 1 �
else if ���:$'&)();>�,$ &)(3; � �4���?� 1 ; 1 ; 0 ����:$ &)(3; � �4��� 0 ; 1 �
else if ���:$'&)();>�,$ &)(3; � �4���?� 1 ; 0 ; 0 ����:$ &)(3; � �4��� 1 ; 0 �
endif

end

Figure 3.8: Algorithm for local addition.
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Figure 3.9: Data flow-chart of local addition.

ALU. Both ALUs have a carry-propagate adder which can computes addition in O(1). To achieve

highly dense layout, they are implemented in a full-custom method. The layout pitch of the ALU

is exactly matched to the width of the word. A PE is implemented in a square region. The PE of

the BPBP-FMPP is 32bit wide and has rich functionalities of all the logical operations, addition and

multiplication, which enlarges the area of the PE. As the result, An implementation of the BPBP-

FMPP has only 8 PEs laid out in a one-dimensional array. In the FMPP-VQ, a PE is 12bit wide

and designed for a specific application, “nearest neighbour search” of vector quantization. We can

implement 64 PEs laid out in a two-dimensional array.
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Figure 3.10: Whole structure of the functional memory for parallel addition.
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3.4 Parallel Computation Efficiency on the FMPP

Here we address the parallel computation efficiency on the FMPP compared with a conventional Von

Neumann computer in Figure 2.1.

3.4.1 Von Neumann Bottle Neck on the Conventional Computer

As described in Section 2.1.1, the current conventional computer has a Von Neumann bottleneck

between CPU and main memory. The Processor-DRAM Gap has been becoming larger and larger

as shown in Figure 3.15[Fro98].
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Figure 3.15: Processor DRAM gap[Fro98].

In this situation, the CPU can not display its peak performance as already mentioned in Section

2.1.1. Here, several simulations on a current commercial PC are done to show the Von Neumann

bottleneck. Parameters are shown in Table 3.1. The second column values are taken from the PC

system Toshiba PortegeTM 620CT. The spec of 620CT is described in Table 3.2.

Two programs are executed on the PC. One adds an operand on the main memory with a constant

value on a register and stores the result on the main memory (Program A). The other adds two

operands on the main memory and stores the result on the main memory (Program B).
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Table 3.1: Parameters for a conventional Von Neumann computer.

Name Value Synopsis@�A
10ns. processor clock cycle@CB
50ns. main memory access timeD
64 bus widthE
8 F 32 bit width to be processed

Table 3.2: Spec of Portege 620CT.

CPU Pentium 100MHz

Data Bus Width 64

D-Cache Size 8kB

I-Cache Size 8kB

Main Memory EDO DRAM

Size 40MB

Access Time 50ns.

OS Linux 2.0.32 (a famous UNIX compatible OS for PC/AT)

C Compiler gcc 2.7.2.3

Option –O2 (Highly optimized)

Program A : GIHJHJGLKNM=O'PRQ5STGIHJHJGLKUG O P)QLVWMYX5Z�[]\ ;
Program B : GIHJHJGLKNM=O P)Q5S^G_HJHJGLK=G�O'P)Q`VaGIHJHJGLKcbdO'PRQ ;

To execute Program B, the CPU should access the main memory three times: twice to load

operands and once to store the result. Similarly, Program A accesses the main memory twice. Thus,

to use above parameters, total execution time for these two programs are described by Equation (3.1)

and (3.2) respectively.

[Exec Time of Program A] S 2 e @CB V @RA S 110ns f (3.1)

[Exec Time of Program B] S 3 e @gB V @RA S 160ns f (3.2)

In Portege 620CT, Program A takes 102ns., while Program B takes 160ns. Note that these are
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average values of huge number of iterations. They are almost equal to the values obtained from

Equation (3.1) and (3.2). These results clearly show the Von Neumann bottleneck. The processor

has capability to complete addition in 10ns, while each data transfer between the processor and the

main memory takes 50ns. It is no use to increase the processor clock frequency on the Von Neumann

computer. The execution time is limited by the DRAM access time.

3.4.2 Parallel Computation on the FMPP

Figure 3.16 depicts a parallel computing system using the FMPP, which structure is similar to the

conventional Von Neumann computer. Some part of the main memory, however, consists of the

FMPP. We assume that the FMPP has a capability to perform numerical operations between two

words simultaneously in all the PEs. Parameters are defined as follows.

h number of clock cycles for numerical operations on the FMPP@ji
FMPP clock cycle

CPU
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D
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he
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e

Instruction
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Figure 3.16: A computer system using an FMPP as a part of main memory.

We compare the total execution time on the FMPP system and the Von Neumann system. The

operation performs a numerical operation denoted by k to a large number of data l on the memory

as follows.

for P7S 0 to l m 1

mem[ Pnk 3] = mem[ Pok 3 V 1] k mem[ Pnk 3 V 2]

end
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Figure 3.17: Total execution time on the Von-Neumann computer and on the FMPP.

The total execution time on the Von Neumann model for a single iteration becomes lperq 3 @CB V @RAJs .
The FMPP simultaneously performs the same operation for all l data within the constant time oft e @ui . The FMPP gets better performance than the Von Neuman computer even when l is small.

Figure 3.17 shows the total execution time for l where
@ui

is assumed to be 50ns as the same value of

the DRAM access time. When
t S 100 and l S 1000, the FMPP outperforms the Von Neumann

computer by 32 times. Note that we can neglect the time to prepare data structure on the FMPP. It is

becase the same data structure must be prepared on the conventional main memory.

Operations on the FMPP are not always superior to the Von Neumann computers, since all the

current commercial CPUs have cache memory. Once data come to cache memory, CPU can quickly

access the data. If the CPU executes a group of operations for the data size of which is smaller

than the cache size, the CPU can access the data directly from the cache memory. It improves the

performance of the Von Neuman system. But once a cache misse occurs, the performance is degraded

considerably. Several novel cache architectures have been proposed and developed to decrease the

cache miss count.

Here, we compare the performance between a Neumann computer system with a cache memory

and an FMPP system. A series of v A operations is performed to a huge number ( l ) of groups of

data, each of which includes the number w of data. Figure 3.18 depicts two systems. We suppose the

following conditions.

1. A CPU can access its cache memory in h clock cycles.

2. The size of cache memory xny{z|w
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Figure 3.18: Von Neumann system with cache memory and FMPP-based system.

3. The CPU can access all the data from its cache memory besides the first load and the last store

operations for the main memory.

4. A PE of the FMPP has w words.

5. The FMPP can complete the same operations in v i S t eJw�eJv A cycles.

Under the above condition, the CPU can complete the operations in the following period.

@C�3�����5� S @ q access and store time for DRAM
s V @ q Command execution time on the CPU

s
S 2 e�w�e @CB V h e @�A e�w�e�v A (3.3)

On the other hand, the FMPP can complete them
t

times slower than the CPU as follows.

@C�3�r�_� �_� S t eJv A e @ui eJw (3.4)

The performance efficiency ¡�¢ i£i¥¤ is defined as follows.

¡ ¢ i]i>¤ S
@C�3���_�=�

@C�3���_� �_��� S q 2 eJw�e @CB V h eJw�e @�A eJv A¦s eJlt eJv A e @ji e�w
S q 2 e @CB V h e @RA eJv A¦s e�lt eJv A e @ui (3.5)

The parameter l denotes the number of PEs of the FMPP. There are so many parameters in

Equation (3.5). Some actual values are given in Table 3.3. Using these parameters, Equation (3.5) is

simplified as follows.

¡ ¢ i§i>¤ S
@C�3���I�U�

@j�3���I� �_�I� S q 5 V 2 e�v A¦s eJl
5 e t e�v A S 5 V 2 e�v A

5 eJv A e l t (3.6)
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T
¨

able 3.3: Parameters to compare a Neumann Computer system with an FMPP system.

Parameter Synopsys Value@CB�©u@ji
DRAM/FMPP access time 5

@�A
h Cache access clock count 2

Figure 3.19 shows the performance efficiency according to l«ª t and v A . As v A becomes larger,

the performance efficiency asymptotically approaches to 0 f 4 l«ª t . It suggests that an FMPP system

outperforms the Neumann computer by 40 times with l S 1000,
t S 10. The condition l S 1000

means that we prepare 1000 PEs, while
t S 10 means that the required number of clock cycles on the

FMPP can be 10 times bigger than that on the CPU. Note that
t

is the number of clock cycles. The

above condition assumes that the clock cycle of the FMPP is 5 times longer than that of the CPU. If

the CPU working at 100MHz can complete the operations within 100 clock cycles (1 ¬ s.), the FMPP

working at 20MHz must complete the same operations within 1000 clock cycles (50 ¬ s.). The FMPP

is 50 times slower than the CPU.
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Figure 3.19: Performance efficiency of an Neumann Computer system / an FMPP system.
(M=Number of PEs, f=Number of clock cycles on the FMPP system.)

In the above discussion, we assume conditions as follows. On the FMPP computing system, all

the operations are done in the FMPP. On the Neumann computing system, all the data can be obtained

from the cache memory besides the first load and the last store operations. It takes 2 clock cycles
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to access the cache. Actually, some part of required data can be directly obtained from registers. It

takes a single clock cycle to access the registers. Thus, the comparison may not be accurate. But,

even if all the data could be directly retrieved from registers, the FMPP system with a large number

of PEs is superior to the Von Neumann computers.

The current commercial CPU has various functionalities. Almost all operations such as mul-

tiplication can be done in a single clock cycle. In the FMPP, however, a high-performance ALU

enlarges the PE area and makes the circuitry complicated. In this paper, we introduced several FMPP

implementations which have a capability to complete addition of two words within a single clock

cycle. Adders can be implemented with a small number of transistors, while multipliers cost too many

transistors. The functions of the FMPP must be defined considering a trade-off between performance

and circuit area. In the FMPP-based computing system in Figure 3.16, operations are done both in

CPU and FMPP. They have to cooperate to complete a job. Operations must be assigned to the CPU

or the FMPP so as to minimize the total operation period.

3.5 Summary of the Chapter

In this chapter, we introduce the FMPP architecture. FMPP is a memory-based SIMD shared-bus

parallel processor which enjoys the current remarkable progress of semiconductor memory devices.

The density of the LSI is doubled every 18 months predicted from the famous Moore’s law. The

performance gap between the CPU and the memory device, however, becomes larger and larger. The

performance of the current computer system is limited by the bandwidth between the CPU and the

memory. The FMPP alleviates the performance gap, since operations can be done inside the memory.

As mentioned here, if SIMD operations can be done inside a memory, the performance will improve

considerably. The performance of the FMPP is linearly improved according to the number of PEs.

The structure of the FMPP similar to that of the memory allows highly dense layout. Communication

between PEs, however, is limited. Therefore we must choose the suitable operations for the FMPP.

The FMPP can be utilized as two ways. One is as a part of main memory on a conventional Von

Neumann computer. The other is used as an application-specific processor. In the former style, an

FMPP device can work as both main memory and co-processor. In the latter style, an FMPP device

work as a processor independently of the CPU.

Here, three FMPP architectures are shown: bit-parallel word-parallel (BPWP), bit-serial word-

parallel (BSWP), bit-parallel block-parallel (BPBP). In the BPWP architecture, every PE attached to

every bit and word consumes hardware cost. No implementation have been found of the BPWP. The

hardware cost of the BSWP architecture is less severe than the BPWP. Lots of associative processors

can be found based on the BSWP architecture. A CAM is one of the most popular functional
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memory devices. Its word-oriented structure can be regarded as the BSWP FMPP. Extremum search

or numerical operations are successfully applied to the CAM. A BSWP FMPP for parallel addition

is introduced. It has an ALU for every two words. Here, we mainly focus on the BPBP architecture.

It enables operations between two words and operations are done in bit-parallel. We introduce two

implementations: the BPBP-FMPP and the FMPP-VQ in the following two chapters. The BPBP-

FMPP is designed to utilize as a part of main memory. The FMPP-VQ is developed to implement a

low-rate image compression system by vector quantization. It can work independently of the CPU.

The performance efficiency of the FMPP-based system is also discussed here. The FMPP-based

system where a part of main memory is replaced with the FMPP shows better performance than the

conventional Von Neumann computing system, if the same operations are applied to huge number of

data sets. If we can prepare an FMPP with 1000 PEs which has a capability of numerical operations 50

times slower than the CPU, it can perform series of operations 40 times faster than the Von Neumann

system. In the FMPP-based system, we must assign operations to the FMPP or to the processor in

order to minimize total execution time.



Chapter 4

An Implementation of the Bit-Parallel
Block-Parallel FMPP

In this chapter we describe an implementation of the bit-parallel block-parallel FMPP architec-

ture. We have designed and fabricated a prototype LSI[KOT95] BPBP-FMPP based on the BPBP

architecture[KTYO93].

The BPBP-FMPP LSI has functionalities of bit-parallel numerical and logical operations on

internal two words. Since a CAM cell can execute logical operations on an external data and contents

of words, we adopt the structure of a CAM cell as that of a FMPP cell. Using contents of another

word as an external data, logical and numerical operations on two words can be performed.

We realize bit-parallel addition in combination with logical operations and a carry propagation

using a Manchester carry chain[WE85] which propagates the carry in bit-parallel manner. The

structure of a CAM cell enables search operations (content addressing) on the FMPP same as that of

CAMs.

Primary operations on the BPBP-FMPP are summarized as follows.

® Bit-parallel block-parallel computations such as logical operations, addition, subtraction and

multiplication.

® Search operation.

® Logical operations on flags.

® Parallel write operation.

® Multiple response resolution.

4.1 BPBP-FMPP

The BPBP-FMPP can perform parallel numerical operations on internal two words simultaneously

on all PEs. It has various functionalities as a RAM, a CAM and a parallel processor. It performs
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addition of two words in a PE in O(1). Multiplication is done in O( ¯ ) ( ¯ stands for the number of

bits of a multiplier). These operations are simultaneously done in every PE. Each PE contains four

32bit words. A single LSI chip contains eight PEs.

4.1.1 Logical Operations on the CAM Cell

We utilize the structure of a CAM cell as that of an FMPP cell, since the CAM cell has a possibility

of logical operations on an external operand and contents of words. Logical operations on two words

can be done on the CAM cell if a content of another word is given as an external operand as shown

in Figure 4.1. Suppose that the CAM cell stores ° and an external data is given through b0 and b1.

The complemental signals ± and ± from b0 and b1 produce ±³²´° , which is within the original CAM

functionality. If one of the bit lines b0 or b1 is dropped to the ground level, logical AND (±µe¦° ) or

logical NOR (±·¶ ° ) operation can be done.

b0 b1

OL

q q ¸ 0 ¸ 1 ¹³º
± ± ±³²W°
± 0 ±»e�°
0 ± ±�¶r°

Figure 4.1: Logical operations on a CAM cell.

4.1.2 Block Diagram

Figure 4.2 shows a block diagram of the 1kbit BPBP-FMPP LSI. There are eight PEs, address IO,

data IO and other components such as sense amplifiers or control logics.

Figure 4.3 depicts the structure of a PE, which comprises a memory block, various flags, a multiple

response resolver(MRR) and control logics. The memory block is the essential part of the FMPP,

where addition, multiplication and logical operations among two words are performed. The number

of words in a single PE is four in this implementation, since at least four words should be required

for addition: two words for operands, the other two words for temporary values and the result. They

are connected through a shared bus inside the PE called the “local data bus.” The word in a memory

block is hereafter called “an operand word.” A memory block comprises four 32bit operand words

of FMPP memory cells (w0 F w3), two 32bit buffers of SRAMs (P, G) and a carry chain. These

SRAMs and the carry chain form an arithmetic logic unit (ALU). The global data bus connect all the

memory blocks.
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Figure 4.2: Block diagram of the BPBP FMPP LSI.

4.1.3 Primary Operations

Table 4.1 summarizes primary operations on the BPBP-FMPP. In the memory block, addition,

subtraction, multiplication and logical operations are available as a parallel processor. They are

explained in detail in Section 4.2. As a CAM, the BPBP-FMPP searches for the operand words

matched to a given key data, which functionality is called the search operation. The result from the

search operation is stored into master or slave flags. The state of these two flags defines a “selected

word.” The multiple response resolver(MRR) resolves a single operand word among the selected

words, which is called multiple response resolution. The BPBP-FMPP can perform read/write

operations similar to conventional RAMs. In addition to that, the parallel write operation is also

available. The FMPP writes data to all the selected words, or to multiple words defined with the

address masked by the address mask register located at the address IO.

The block flag (BF) prohibits operations of the block on multiplication. The overflow flag(C32)
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Figure 4.3: Structure of a PE.

stores an overflow value from addition. The temporary flag(TF) temporarily stores a result from the

search operation.

The operation called the block transfer is used to communicate between blocks (PEs). A block

can communicate with its two adjacent blocks. As for interchip communication, however, the BPBP-

FMPP has data and address buses for both input and output in order to decrease the number of IO

pins. Processors on separated LSIs should communicate with each other one by one.

4.1.4 Data Mask and Address Mask Operations

Two mask registers, the address mask register (AMR) and the data mask register (DMR) define masks

on address and data portions respectively. The mask on the address portion is used to select multiple

words. For example, if all bits without LSB are masked, we can choose all the odd or even words by

LSB of the address. It is used on the parallel write operation and the search operation.

The mask on the data portion is used in three different ways. One is the mask on the search

operations. The masked bits becomes the “don’t care” state. These masked bits are always matched.

It is used on the multiplication explained in Section 4.2.5. On the search operation, a key data stored

in the DR masked by the DMR is compared with the content of a word in the PE. If the address mask

is set, only the specified PEs perform the search operation. The other is used on the partial write
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Table 4.1: Primary operations on the BPBP-FMPP.

operation comment #step

Operations as a parallel processor in a block

logical operations W Pjk W¼¾½ W ¿ 2

addition/subtraction W PgÀ W¼¾½ W ¿ 6

shift/rotate left ÁÂP<Ã�Ã 1 ½ÄÁÅ¼ 5

multiplication W P�Æ W¼¾½ W ¿ 9 ¯
Operations as a CAM

search operation Results are stored in temporary flags 2

multiple response resolution Select a single word from multiple selected words. 1

Operations as an RAM

read/write Read or write a single word. 1

parallel write Write multiple words in parallel. selected words or
address mask registers define target words.

1

partial write write data only to the specified bits. 2

Communication between blocks

block transfer transfer data in a word into the upper or lower block. 2

k is one of logical AND, NAND, OR, NOR, XOR, XNOR operations.

P © ¼ © ¿ÈÇ 0 F 3.

¯ denotes the number of bits.

operation. The content of the masked bits does not change on the partial write operation.

4.1.5 Detailed Structure of the Memory Block

The detailed schematic diagram of the memory block is shown in Figure 4.4. It shows a four-bit slice

of the memory block including four operand words (W0 F W3), two buffers (P and G) and a carry

chain connected through the local data bus (LP and LN). The detailed structure of each component is

discussed here.

Figure 4.5 shows a memory cell of the operand word, which is designed based on a conventional

CAM cell[OYN85]. When the data shown in the right side of Figure 4.5 are given, we can get

results on OL through three logical operations such as XNOR (exclusive-nor), AND and NOR. In the

memory block, one word provides a key data through Tr2 and/or Tr3 and another word receives the

data through Tr0 and Tr1. Figure 4.6 shows two buffers P and G. They receive the result from OL,
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and then rewrites it to any word in a memory block through LP. A four bit slice of the Manchester

carry chain is shown in Figure 4.7[WE85]. It propagates a carry in bit parallel from P and G for

numerical operations.

Carry Chain

W0

W1

W2

W3

P0 P1 P2 P3G0 G1 G2 G3

C0 C1 C2 C3

Match Line

OL OL OL OL

LP LP LP LPLN LN LN LN

C0 C4

Figure 4.4: Detailed schematic structure of a memory block.

refin

mask wr0 wr1

LP LN

OL

we

we

q

q

Tr0 Tr1

Tr2 Tr3

LP LN OL

± ± ±³²W°
± 0 ±»e�°
0 ± ±�¶r°

Figure 4.5: An FMPP memory cell and logical operations.

4.2 Detailed Operation Strategies

Here, operaion strategies on the BPBP-FMPP are described in detail, such as logical operations,

addtion, search operation, multiplication and multiple response resolution.
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Figure 4.7: Manchester carry chain.

4.2.1 Logical Operations

The BPBP-FMPP has functionalities of all available logical operations such as AND, NAND, OR,

NOR, XOR and XNOR between any conbination of two operand words. The result can be written in

any operand word.

The XOR operation w0 ² w1 ½ w2 is done in two steps as follows.

Step 1. ÉËÊÌ²aÉÎÍÎ½ Ï
Step 2. Ï,ÐÒÑËÓ : through wr1 in P.

On the XNOR operation, the signal wr0 in P is activated instead of wr1 at Step 2. Then the

complemental value is written to w2. Other logical operations can be done to fall one of local data

bus into the ground level accoding to Figure 4.5.

4.2.2 Addition and Subtraction

In the BPBP-FMPP, numerical operations are performed by the comibination of logical operations

and a carry propagation accoding to Equations (4.1)-(4.4).

Ô<ÕcÖT×�ÕÙØ|Ú�ÕUÛJÔÜÕÞÝ
1 (4.1)×ßÕoÖTà/ÕUÛ�áÎÕ

(4.2)ÚNÕnÖTà/Õuâ áÎÕ
(4.3)ã5ÕoÖäÔÜÕÞÝ

1 å ÚNÕ
(4.4)
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The Manchester carry chain as shown in Figure 4.7 propagates the carry(
Ô

) from the carry

propagate (
Ú#Öäà å á ) and the carry generate (

×#ÖäàæÛCá
) in parallel. Note that

à
and

á
denote two

operands of numerical operations. The result
ã7ç_è

is given as
Ú å Ôêé)Ö�Ú å Ô³ë . Four FMPP memory

cells are required so as not to destroy two operands stored in two operand words. The other two words

temporarily store
Ú

and
Ô

, and one of them finally stores
ã·çUè

. The two buffers P and G store
Ú

and
×

respectively. Eight 4-bit Manchester carry chains are connected in serial to propagate a 32bit

carry. We use no carry-lookahead scheme, since complex wires from the carry-lookahead unit may

break the regularity. Thus, the operation for propagating carry must be critical. Carry-propagation

time is derived as 170ns. from the worst-case simulation. To shorten the time for addition, carry

propagation and another operation are done simultaneously. Addition is done in six steps as follows

(see Figure 4.8).

Initial condition: w0 stores
à

. w1 stores
á

.

Step 1: Produce
×#Öäà^ÛJá

and store it to G. G
Öäà^Û�á

Step 2: Produce
Ú"Öäà å á

and store it to P. P
ÖTà å á

Step 3: Write
Ú

into w2. At the same time, carry propagation is done in the carry chain. w2
ÖTÚ

Step 4: Store
Ô

into w3. w3
Ö Ô

Step 5: Perform XNOR operation between w2 and w3. The result is written to P. P
Ö�é�à å á%ë å Ô

Step 6: The result in P is written to w2. w2
Ö é�à å á:ë å ÔìÖ�Ú å ÔìÖ�ã·çUè

Addition takes 1200ns, since the developed LSI works at 5MHz clock frequency.
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Figure 4.8: Addition between 2 words.
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4.2.3 Shift/rotate Left Operation

The shift/rotate left operation shifts one of the operand word one-bit left. The carry chain propagates

the target value to one-bit left. The shift left operation are done according to the following procedure.

Initial Condition: w0 stores
à

Step 1: G=0

Step 2: w0 Ð P

Step 3: carry propagation

Step 4:
Ô Ð w0 ( w0 becomes

à#í�í
1.)

Step 5: w0 Ð P

Step 6: Ï6Ð w0

To perform the rotate left operation, two carry propagations are done. At the first carry propaga-

tion, the overflow value of the carry is stored in C32. It is used as the LSB of the carry on the second

carry propagation.

4.2.4 Search Operation

On the search operation, the XOR operation between a key value broadcast to the PE and an operand

word (w0 î 3) is done. The result is stored to the buffer P. If the key value is matched to the operand

word (described as the matched state), all bits in the buffer P become true, which is equivalent to that

the node Pn in Figure 4.6 becomes the ground level. If the key value is not matched (described as

the unmatched state), the unmatched bits become false. The two match lines are precharged prior to

the search operation. When one of the match lines is fell to the ground level, the other match line

keeps the precharged level on the matched state, while it is discharged on the unmatched state. The

temporary flag receives the result from the match line, which is connected to the master flags and the

block flag. To obtain matches of all the operand words, we should repeat the search operations four

times. The results are stored in the master flags.

4.2.5 Multiplication

Multiplication can be done by accumulation of the search operations, additions and shift-left op-

erations. The following procedure shows w0 ï w1 Ð w2. Figure 4.9 also shows flow of the

multiplication.

Initial condition: w0 stores
à

, w1 stores
á

. w2
Ö

0.
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Stage 1: Set ð ÖTè
and w2=0. (

è
denotes the number of bits of the multiplier

à
.)

Stage 2: Perform the search operation to search whether the ð th bit of the multiplier
á

in w1 is 1 or

not. Set the BF to 1 if the ð th bit is 1.

Stage 3: Add the multiplicand
à

in w0 to a partial product
Ú5ñ

in w2. The result is stored to w2.

Addition is prohibited in the PE whose BF is 0.

Stage 4: Set ð to ðcò 1. If ð = 0, then halt the procedure.

Stage 5: The shift left operation shifts
Únñ

in w2 to one bit left in every PE. Return to Stage 2.
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Figure 4.9: Multiplication between 2 words.

Multiplication takes 9 ï è steps for the
è

-bit multiplier. For example, 16bit multiplication takes

144 steps, i.e. 28.8 ó sec.

The 1kbit BPBP-FMPP performs 6M(106) additions and 280k(103) multiplications per second.

The performance is not enough, since the developed LSI has only eight PEs. This is mainly because

we use an old-fashioned 1.2 ó m CMOS process and the die size is small. The current sub-micron

process gives sufficient number of PEs in a single LSI.
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4.2.6 Multiple Response Resolution

In the BPBP-FMPP, multiple response resolution (MRR) is available like CAM. In CAM, the search

flag and the garbage flag defines the word to be resolved. A word is resolved if its search flag is true

and its garbage flag is false. In the BPBP-FMPP, any combination of the master and slave flags can

define a word to be resolved. A resolved word is called a selected word as mentioned before. The

BPBP-FMPP can resolve the top-most word among all the selected word. The BPBP-FMPP has the

functionality of logical operations to perform the extremum search described later in Section 4.4.1.

4.3 1kbit BPBP-FMPP LSI

Here, we give an overview of the 1kbit BPBP-FMPP LSI, evaluate its layout density and show some

test results.

4.3.1 LSI Overview

The BPBP-FMPP LSI has already been fabricated using a 1.2 ó m CMOS process. Figure 4.10 shows

the layout pattern of a four-bit slice of the memory block. It is implemented in a rectangle region,

since the layout pitches of all the components are exactly same. Table 4.2 shows an overview of

the LSI, which contains 1kbit(32bit ï 32word) memory cells on a 43 mm2 die and achieves 5MHz

clock rate. In order to enhance flexible control schemes for the first fabrication, most of the IO pins

provide primitive control signals. Its die micro photograph can be seen in Figure 4.11. Eight PEs

occupy over 80% of the core area except for IO PADs. The memory block is located at the left side

of the PE. Memory blocks, master flags and sense amplifiers are implemented with the full-custom

design method in order to achieve high density and optimizing performance. The other components

such as slave flags and IO registers are implemented with standard cells to enhance productivity

although paying a penalty in area. The power dissipation is 100mW when no operation is done, that

is, only clock signals are provided. The maximum power dissipation is 300mW when the parallel

write operation writes all 32 words in parallel.

The 1.2 ó m 1poly 2metal CMOS process is equivalent to the process used for a 256kbit

SRAM[SSN ô 90]. Table 4.3 summarizes component areas in the memory block together with the cell

area of a 256kbit SRAM. Compared with a 256kbit SRAM, the memory cell area of the BPBP-FMPP

is 60 times bigger than that of the SRAM cell. Using a 0.5 ó m CMOS technology for a 4Mbit SRAM,

the area of a memory block becomes 4756 ó m2, which value is derived by shrinking the process from

1.2 to 0.5 ó m. Including the area for flags and the multiple response resolver, 200 blocks (25kbit)

can be integrated on 60mm2 area. The die size including peripheral circuits and IO PADs will be

75mm2. Such an FMPP should be faster than the 1kbit FMPPs because the transistor size becomes
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Figure 4.10: Layout pattern of a four-bit slice of the memory block.

smaller. We can estimate that at least the 25kbit FMPP works at 20MHz clock rate. The 1kbit

BPBP-FMPP performs 6M(6 ï 106) additions per second, while the 25kbit FMPP working at 20MHz

clock rate performs 600M additions per second. These performances are derived by a single LSI. If a

1Mbit FMPP can be prepared, it performs 24G additions per second. Such a highly integrated FMPP

can be achieved in the future, since the integration density of the FMPP will increase proportionally

according to innovations in the LSI process technology.

4.3.2 Test Results

We have been running lots of test sequences using an LSI tester HP82000
	�


. Almost all operations

can be performed correctly. We, however, found a critical fault that one of the local data bus (LN in

Figure 4.5) does not work correctly. The memory cell can not pull down LN to the ground. Thus, no

logical operation except AND operation can be performed. At present, the source of the fault can not

be detected.
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Table 4.2: Overview of the 1kbit BPBP-FMPP LSI.

Area 43.5mm2 (5824 ó m ï 7420 ó m)

Operating frequency 5MHz

IO Pins 134 (8 pins for power)

Package QFP160

# Transistor 59000

Power dissipation 100mW (nop)

300mW (parallel write)

Table 4.3: Component areas of the 1kbit FMPP LSI together with a 256kbit SRAM.

area( ó m2) w ï h( ó m) # Transistor

1bit slice of a memory block 27645 53.4 ï 517.7 79

averages per one word 6889 53.4 ï 129.0 19.8

a memory cell 4133 53.4 ï 77.4 13

P & G, etc. 7561 53.4 ï 141.6 20

1bit slice of a carry chain 3551 53.4 ï 66.5 7

1bit memory cell of a 256kbit SRAM 109 8.5 ï 12.8 6

Figure 4.12 shows operating waveforms of read/write operations. It repeats read and write

operations. The minimum access time is derived as 80nsec. Another test pattern shows that the

critical signal path, 32bit carry propagation takes 175nsec., which is almost the same with the value

obtained by the circuit simulation.

4.3.3 Comparison for the Circuit Areas between CMOS and CPL Logics

The structure based on the CAM and CPL (Complementary Pass-transistor Logic) of the BPBP-FMPP

reduces an area for logical operations between two words compared with that based on the CMOS

logic. The former requires only four FMPP cells, while the latter requires four SRAM cells and

CMOS logic gates for XOR, AND and OR. Table 4.4 shows the area, the number of transistors and

signal delay for each structure. Note that we exclude 32 transistors from the number of transistors,

which both structure requires for four 8-transistor SRAM cells. The area for the CMOS structure

is twice as large as that for the CAM structure. As for the transistor count for logical operations,

the CMOS structure is three times bigger than the CAM structure. Moreover, the CAM structure
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Figure 4.11: Chip micro photograph of the BPBP-FMPP.

performs logical operations faster than the CMOS structure.

structure area( ó m2) # transistor signal delay(nsec.)

CPL(CAM) 34,800 20 15.8

CMOS 68,900 60 19.8

Table 4.4: Comparison of the structure for logical operation.

4.4 Applications of the BPBP-FMPP

Since all the PEs of the BPBP-FMPP work together, it is hard to use the bit line as a communication

path between processors. It is only used for the communication between processors and a host.

Therefore algorithms on the FMPP should remove inter-processor communication. As for the BPBP-

FMPP, it is suitable for the algorithms which require the same operations on every word or every

two words among a large amount of words. We evaluate the performance of the BPBP-FMPP

for a few applications in comparison with the performances obtained by sequential (word-serial)

implementations on an engineering workstation (EWS: cycle time 25nsec.). We evaluate the cycle
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Figure 4.12: Operating waveforms from read/write operations.

time of the BPBP-FMPP is 200ns. from circuit simulations.

4.4.1 Threshold Search and Extremum Search

The threshold search and the extremum search on the BPBP-FMPP are shown, which are frequently

used in many applications.

In the threshold search contents of a word � are compared with an external data 
 . In the CAM-

based BSWP FMPP, the threshold search is implemented to repeat search operation from MSB to

LSB (See Section 3.3.1). The FMPP can performs the same operation to subtract 
 from � . If �
is less than 
 , the C32 becomes true. Then, its master flag receives the value from the C32. The

MRR detects all the words which are less than 
 . The FMPP can perform the threshold search in a

bit-parallel manner, while an implementation of CAM should be in a bit-serial manner.

The extremum search finds the maximum or minimum value among all words. It is done to repeat

search operations and the multiple response resolution from MSB to LSB, which is done in bit-serial

similarly to the CAM implementation. Figure 4.13 shows the computation time of the BPBP-FMPP

in comparison with that of a sequential implementation. Both two computation times are quite

similar. In the developed BPBP-FMPP, response time of the multiple response resolver increases in

proportion to the word count, which linearly increases the computation time. An ideal FMPP can

solve the problem in constant time, where the multiple response resolver work in constant time at

any number of words. It is important to implement a fast multiple response resolver to accelerate the

extremum search. We implement a fast response resolver on the FMPP-VQ described in Chapter 5.



48 Chapter 4. An Implementation of the BPBP FMPP

1

10

100

usec

0 20000 40000 60000 80000 100000

BPBP-FMPP

Sequential 
Implementation

Ideal FMPP

Number of words

Computation time

Figure 4.13: Computation time of extremum search.

4.4.2 Knapsack Problem

Knapsack problem is one of typical NP-hard combinatorial optimization problems . We should

choose the combination of luggage with maximum sum of profits under the constraint that sum of

weight is within a limit. We assume � as the number of luggage, ��� as the profit of the � th piece of

luggage, ��� as the weight of the � th piece of luggage and � as the limit of the weight. The algorithm

for a BPBP FMPP is developed from that of a BSWP FMPP which is called parallel exhaustive

search[YTT88]. The idea of the parallel exhaustive search on the BPBP FMPP is as follows. We

assign every possible group to each PE (block) one by one. The weight � Õ and the profit � Õ of the � th

piece of luggage are broadcast using parallel write operation and block � which should contain the� th piece of luggage compute ��� ( Ö�� � Õ ) and
Ú � ( Ö�� � Õ ) using parallel addition. The comparison

of ��� with � is the threshold search. We can obtain the maximum
Ú � using the extremum search.

Computation time does not depend on the number of luggage except for the operations to prepare

data structure on the BPBP FMPP. It completes within � parallel write operations. Figure 4.14

shows the computation time of knapsack problem on the BPBP FMPP, on a BSWP FMPP and on

an implementation of sequential exhaustive search. The BPBP FMPP is 130 times faster than the

BSWP FMPP, and 100,000 times faster than the sequential implementation at 20 pieces of luggage.

The FMPP can solve knapsack problem much faster than the sequential approach. But huge number

of PEs should be prepared, which drawback is common to both BSWP and BPBP FMPPs. If we

want to solve a problem with � pieces of luggage, we must have 2 � ô 2 words.
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4.5 Summary of the Chapter

We propose a bit-parallel block-parallel(BPBP) FMPP in this chapter. The BPBP-FMPP LSI has been

designed and fabricated in a 1.2 ó m CMOS process. It contains eight PEs implemented in the area

of 43.5mm2. A single PE contains four 32-bit operand words. It can perform numerical operations

such as addition and subtraction between any combination of two operand words in bit-parallel. Such

numerical operations are done by the combinations of logical operations and a carry propagation.

The pass-transistor logics in the ALU decreases the circuit area considerably. We estimate that the

required area of our implementation is half of that of a conventional CMOS implementation. The

FMPP is a memory-based SIMD shared-bus parallel processor. Therefore, we can easily get highly

dense layout because of its two-dimensional regular array structure.

We have been running lots of test sequences using an LSI tester. The 32-bit carry propagation

which is supposed to be a critical operation takes 175nsec. Thus, the BPBP-FMPP operates correctly

5.7MHz. Unfortunately, a critical fault was found in a memory cell. Detailed tests can not be

continued.

A single PE consists of a bit-parallel ALU and a group of words, which structure enables operations

between words. Numerical operations can be completed in O(1), while in the bit-serial word-parallel

implementation it takes O(bit-width). The threshold search can be done in O(1) using the numerical

operation capability. A famous NP-hard problem, knapsack problem is suitable for the BPBP-FMPP.

The BPBP-FMPP can solve knapsack problem of 20 luggage 100,000 times faster than the sequential

approach.
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The BPBP-FMPP has a possibility to enhance the current Von Neumann computing system

considerably. To enjoy such enhancement as much as possible, huge computation space should be

prepared. We have to consider more dense and powerful PE structure.

The developed BPBP-FMPP LSI have various functionalities. The rich functionalities and 32bit

word structure diminishes the number of PEs on a single LSI, which results that only eight PEs

are available. The 32bit structure also decreases the processing speed. As shown in Figure 4.11,

peripheral circuitry besides the memory block occupies half of the PE area. To enhance the integration

density, the bit width of words and an ALU should be decreased to be optimized for some specific

applications. The peripheral circuitry is also minimized. In the next chapter, we explain an application

specific FMPP called FMPP-VQ. The FMPP-VQ64 LSI integrates 64 PEs. A PE consists of 16word

8bit SRAMs and an 12bit ALU.



Chapter 5

Functional Memory Type Parallel Processor
for Vector Quantization: FMPP-VQ

An application specific FMPP called “FMPP-VQ” is discussed in this chapter. The FMPP-VQ

accelerates the nearest neighbor search on vector quantization (VQ). It can be applied to low-rate video

compression. Three LSIs are already available: FMPP-VQ4, FMPP-VQ64 and FMPP-VQ64M. The

FMPP-VQ4 integrates 4 PEs to evaluate its functionality. The latter two LSIs integrate 64 PEs, which

can be applied to actual low-rate video compression. The FMPP-VQ64 and FMPP-VQ64M achieve

both of high performance and low power. We have also developed a low-rate video compression

system and a multi-stage hierarchical vector quantization algorithm using the FMPP-VQ.

5.1 Introduction

We can currently use cellular phones and PHS1 for the mobile sound communication. Visual

information is important to communicate each other because we can easily recognize and analyze

information with our eyes. In the mobile communication, transmission of information is restricted

within a limited bandwidth. Visual information, however, involves a huge amount of data. For

example, a frame of full-color images including 176 ï 144 pixels amounts to 76kbytes. The PHS which

achieve a wide bandwidth of 32kbps cannot send even a single frame per second without compression.

Thus, some kind of data compression technique must be applied. In addition, the data compression

technique should also be low-power consuming, since all of electric instruments for mobile computing

are driven by batteries. In the JPEG or MPEG algorithms the discrete cosine transformation (DCT)

compresses space redundancy of an image. Such DCT-based image compression algorithms achieve

both high quality and high compression ratios, but consume large amount of hardware and power both

during compression and during decompression. On the other hand, vector quantization (VQ)[GC83]

is a promising candidate for low-rate and low-power image compression, since it requires much

less hardware for decompression. During compression, however, it requires a large amount of

1Personal Handy-phone Systems available in Japan.
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computation time. The most time-consuming factor in compression is the “nearest neighbor search,”

which searches for a vector nearest to an input among several vectors.

The memory-based SIMD shared-bus parallel processor architecture, the FMPP is well suited for

computing the nearest neighbor search. We propose an implementation of the FMPP architecture to

accelerate the nearest neighbor search.

The developed hardware is called “FMPP-VQ”, to signify an FMPP for Vector

Quantization[KKT ô 96]. It has as many processing elements (PEs) as code vectors. A shared bus

connects all PEs. The nearest vector is searched exhaustively in parallel. Each PE has conventional

memories to store code vectors and an arithmetic logic unit (ALU) based on pass-transistor logic

to compute the distance between an input vector and code vectors. The nearest vector is obtained

using the CAM-based parallel search. These procedures are done in O( � ), where � stands for the

dimension of vectors. The number of code vectors does not affect computation time. In the nearest

neighbor search, only input vectors are broadcast to PEs from a shared data bus. The distance is

locally computed in each PE. Thus, memory-based PEs perform effective computation to obtain an

input vector broadcast through a shared bus. Code vectors can be easily updated, since they are

stored in conventional memories. All PEs can be laid out in a memory-like regular-array structure,

which minimizes circuit area. A large number of PEs can be integrated on a single LSI and used to

perform massively parallel computation. We have designed and fabricated three LSIs of the FMPP-

VQ architecture. The first LSI called “FMPP-VQ4” was fabricated in 1996, which integrates four

PEs to evaluate functionality of the FMPP-VQ. It is almost fully functional. Then we designed and

fabricated the FMPP-VQ64 integrated 64 PEs in 1997. PE arrays are fully-functional, but its control

logic has some design errors. These two LSIs work at 25MHz clock cycles. The power dissipation

of the FMPP-VQ64 is 20mW at 25MHz clock frequency and 3.0V power supply. It performs 53,000

nearest neighbor searches per second. It can be applied to the image compression on the mobile

computing field. The third LSI called FMPP-VQ64M is developed to achieve higher performance

and lower power. Its performance is doubled, while its power dissipation is half compared with the

FMPP-VQ64.

We develop a video compression system using the FMPP-VQ64. It consists of the FMPP-VQ64

LSI and an FPGA for control logic, attached to personal computers. Images compressed by vector

quantization can be easily decompressed. A serial commercial processor for PDA has enough power

to decompress the compressed images in real time. The developed compression algorithm can

compress a frame of a QCIF (176 ï 144) video sequence into 2920bits. The quality of compressed

images is over 30dB for some standard video sequences like “Suzie” or “Miss America.” We also

develop an evaluation encoding system consists of a host computer and an FMPP-VQ64 LSI. It

compresses 10 QCIF frames per second in real time. A PHS terminal can send 10 frames per second
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via the 29.2kbps mobile wireless channel. The algorithm is very robust to noise, since indexes from

the nearest neighbor search is coded with a fixed length.

In this chapter, Section 5.2 gives a brief introduction of vector quantization. Section 5.3 shows how

to accelerate the nearest neighbor search on the FMPP architecture. The architecture and structure of

the FMPP-VQ is explained in Section 5.4 The detail description of the FMPP-VQ4 and FMPP-VQ64

are shown in Section 5.5. The FMPP-VQ64M are described in Section 5.6. The FMPP-VQ64M

is now under test. We compare the FMPP-VQ with some other vector quantizer and commercial

sequential processors in Section 5.7. Section 5.8 gives a description of the compression algorithm

and the experimental real-time low-rate video compression system.

5.2 Vector Quantization of Image

Vector quantization (VQ) can be defined as a form of pattern recognition where an input pattern

is “approximated” by one of a set of patterns[GG92]. It is mostly applied to image compression.

An input image is first divided into meshes which includes � �æï�� � pixels. Each mesh is then

approximated by one of a set of patterns. We call a mesh an input vector �� and a set of patterns

a codebook  . A vector in a codebook is referred to as a code vector �! Õ . For VQ to be put into

practical use, there are two issues that need to be addressed. One is the acceleration of the “nearest

neighbor search (NNS).” The NNS searches for a vector nearest to an input vector among a large

number of vectors. This requires a substantial amount of time on conventional serial processors in

relation to the dimension and the number of code vectors. The other issue is the design of an optimal

codebook. The quality of reconstructed images obtained from a common set of images using DCT-

based compression algorithms is independent of the algorithm used. In VQ, however, the quality

of the compressed image depends on the codebook design. The proposed hardware, FMPP-VQ is

designed to satisfy these two considerations, acceleration of nearest neighbor search and optimization

of codebooks.

We should perform optimization sequence to find an optimal codebook. For example, the

LBG[LBG80] algorithm is one of the most famous algorithms to find an optimal codebook. It usually

requires long training sequence to obtain an optimized codebook.

Figure 5.2 explain the nearest neighbor search and codebook optimization for two-dimensional

vectors. In the LBG algorithm, a code vector is rearranged into the center of gravity among all the

nearest vectors.

Table 5.1 shows parameters and definition for vector quantization.

The nearest neighbor search (NNS) can be defined as Equation (5.1).

ð"�$#&%(')#)*,+ Ö
minÕ Ý

1 
 é ��.- �! Õ�ë (5.1)
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Figure 5.1: Vector quantization of images.
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To compute the distance between vectors, two measurement methods are well known. One is the

absolute distance (mean absolute error (MAE)) in Equation (5.2).


 é ���- �! Õ)ë{ÖLK Ý 1M�ON 0

â � �Üò ! Õ � â (5.2)

The other is the squared distance (mean squared error (MSE)) in Equation (5.3).


 é ���- �! ÕRë4ÖPK Ý 1M�ON 0

é � �+ò ! Õ � ë 2 (5.3)

The squared distance requires multiplication to compute the second power products, which wastes

the silicon area. On the other hand, the absolute distance requires no multiplication, but it may fall

into a local optimum solution. Code vectors for images, however, are spread out sparsely in the

Euclidean space. The absolute distance has enough quality for image compression.

The FMPP-VQ performs the nearest neighbor search to simultaneously compute all the absolute

distances between a broadcast input vector and code vectors. The memory-based architecture of

the FMPP enables optimization of the code vectors, since they are stored in memory cells in the

FMPP-VQ. It can be accessed as the same manner than conventional memory devices.
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Figure 5.2: Nearest neighbor search and codebook optimization.

5.3 Vector Quantization on the FMPP

The first FMPP LSI called the BPBP-FMPP described in Chapter 4 appeared in 1994[KOT95]. It

involves 8 processing elements. Each processing element (PE) consists of several words of CAM

(Content Addressable Memory) and an ALU. The ALU can perform addition and logical operations,

which are implemented using a CAM-based pass transistor logic. The BPBP-FMPP can search for

the minimum value among all words.

The NNS of vector quantization can be an application very suitable for the FMPP. It requires

an input vector and a set of code vectors. In order to compute the NNS in the FMPP, PEs store

code vectors and an input vector is broadcast to all PEs through a bus. First all distances between

the input vector and the code vectors are computed. The code vector nearest to the input is then

extracted. PEs can compute the distance locally without communication between PEs. The absolute

distance | â �� ò}�! â can be calculated with a combination of subtraction and logical operations already

implemented in the BPBP-FMPP. The minimum absolute distance can be extracted using its minimum

value search capability. Thus, the FMPP architecture effectively accelerates the NNS. Code vectors

can also be easily optimized since they are stored in a conventional memory (CAM) and can be read

or written in the same manner with a conventional memory.

We have designed an LSI called the FMPP-VQ to be optimized for the NNS. To confirm the

functionality of the FMPP-VQ, we have developed and fabricated the FMPP-VQ4 which contains

four PEs[KKT ô 97]. It operates properly at 25MHz. Four PEs are enough to verify parallel SIMD
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Table 5.1: Parameters and definition for vector quantization.

Parameter/Definition Synopsis� dimension of vectors~
number of code vectorsè
bit width of vectors codebook�! Õ ð th code vector in  ! Õ � � th element of ð th code vector�� input vector� � � th element of input vector

operations, but insufficient for actual image compression. We have developed and fabricated the

FMPP-VQ64[KNT ô 98] with 64 PEs for real-time low-rate image compression. The FMPP-VQ64

is fully-functional and performs 53,000 NNSs per second, while its power consumption is 20mW

at 25MHz clock frequency and 3.0V power supply. We have also developed an image compression

algorithm using vector quantization for the FMPP-VQ. A low-bit rate image compression system is

now under development, sending 10 frames of QCIF (176 ï 144) video sequence through a 29.2 kbps

wireless line of the PHS. The image compression system consists of a single LSI of the FMPP-VQ64,

an FPGA for control logic and a host computer. The FMPP-VQ achieves both of high performance

and low power. But the simple control logic does not work because of some design faults. We have

designed and fabricated an modified versions of the FMPP-VQ64 called FMPP-VQ64M. It contains

more sophisticated control unit to manage the nearest neighbor search. Its throughput is increased to

91,000 NNSs per second, while its power consumption is estimated to be 10mW.

5.4 Architecture and Structure

The features of the FMPP-VQ are summarized as follows.

� The bit-parallel block-parallel structure is adopted.

� The absolute distance | â �� ò��! â is used as the distance measure.

� The nearest neighbor search is computed in O( � ). ( � denotes the vector dimension.)

� 16 dimensional vectors are used.
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� Code vectors are stored in SRAM cells.

� A pass-transistor based arithmetic logic unit (ALU) computes the absolute distance between ��
and �! Õ

� The minimum distance is extracted using the CAM-based search procedure.

The distances between a broadcast input vector and code vectors are computed on all the PEs in

an SIMD manner. We can get the nearest neighbor vector by finding the minimum value from all the

distances. Since conventional adders consume hardware, we use an adder based on a pass-transistor

logic.

5.4.1 Nearest Neighbor Search on the FMPP-VQ

Required operations for the nearest neighbor search are listed as follows.

1. Absolute distance measurement.
â �� ò��! Õ>â

1.1 Subtraction. � �Üò ! Õ �
1.2 Absolute value computation(ABS).

â � �+ò ! Õ � â
1.3 Accumulation.

K Ý 1M�ON 0

â � �Üò ! Õ � â
2. Minimum value search. minÕ â �� ò��! Õ â
The FMPP-VQ is designed to perform these operations. Absolute distances are computed on all

the memory-based PEs, and then the minimum value is searched in parallel. The size of codebooks

does not affect the time to compute the NNS, since all the distances are computed in parallel and we

use the minimum search procedure similar to that on conventional CAMs [OYN85, OYY86].

In order to compute the absolute distance, the capability of numerical operations are implemented

in the PE. In the FMPP-VQ, numerical operations are done using the same strategies as the BPBP-

FMPP according to Equations (5.4)-(5.7).

Ô<ÕcÖT×�ÕÙØ|Ú�ÕUÛJÔÜÕÞÝ
1 (5.4)×ßÕoÖTà/ÕUÛ�áÎÕ

(5.5)ÚNÕnÖTà/Õuâ áÎÕ
(5.6)ã5ÕoÖ ÔÜÕÞÝ

1 å Ú�Õ
(5.7)
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In the BPBP-FMPP, addition is composed of several individual operations: logical operations and

carry propagation. It takes 6 steps to complete addition. On the other hand, numerical operations on

the FMPP-VQ can complete in a single cycle. The carry propagate (
Ú

) and the carry generate (
×

)

are produced simultaneously. Then, they are sent to the carry chain. Finally the XNOR operation

between the carry and
Ú

is done. There is no buffer or word to save
Ú

,
×

and
Ô

. The required

number of transistors can be reduced compared with that of the BPBP-FMPP.

5.4.2 Structure of the FMPP-VQ

Figure 5.3 shows a block diagram of the FMPP-VQ. Each PE stores a code vector �! Õ in a codebook  
and computes

â �� ò��! Õ â . All PEs are laid out in a � ~ ï�� ~ two-dimensional regular array structure

and connected through a shared bus called the “global data bus.” An input vector is broadcast element

by element through the global data bus. In the PE, the absolute distance of each element
â � �{ò ! Õ � â is

accumulated element by element. After all elements are broadcast, the minimum value is extracted

as the same manner as the conventional CAMs.

� �� � ��
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Figure 5.3: Block diagram of the FMPP-VQ.

The PE contains 16 codebook words for a code vector and an ALU to compute the absolute

distance. To accumulate the absolute distance of the ² th element to the
é ²cò 1

ë
accumulated result,
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Equation (5.8) is performed. Since the FMPP-VQ is an SIMD parallel processor, all PEs must

perform the same operations. To compute the absolute distance
â � �cò ! Õ � â , operations should be given

individually to each PE according to the values of � � and ! Õ � . There are two ways to compute the

absolute value, depending on whether an element of a code vector is greater than (Condition 1) or

less than (Condition 2) an element of an input vector.

³M�ON 0

â � �+ò ! Õ � âYÖ
´µµµµµ¶ µµµµµ·
³ Ý

1M�ON 0

â � �Üò ! Õ � â£Ø ! ³ ò � ³ é ! ³¹¸ � ³ : Condition1
ë³ Ý

1M�ON 0

â � �Üò ! Õ � â£Ø ! ³ ò � ³ Ø 1
é ! ³ í � ³ : Condition2

ë (5.8)

The FMPP-VQ computes the absolute distance to repeat Equation (5.8) from ² Ö 0 to �:ò 1. To

compute the NNS of these two conditions on an SIMD processor, we divide Equation (5.8) into the

following three operations.

Operation 1 Compute ! ³ ò � ³ .
Operation 2

Condition 1 º é ! ³ ò � ³I¸ 0
ë)»

Nothing done.

Condition 2 º é ! ³ ò � ³ í 0
ë)»

Compute ! ³ ò � ³ .
Operation 3

Condition 1 Accumulate ! ³ ò � ³ to ³ Ý 1M�ON 0

â � �Üò ! Õ � â .
Condition 2 Accumulate

é ! ³ ò � ³ Ø 1
ë

to

³ Ý
1M�ON 0

â � �+ò ! Õ � â .
The overflow bit of the carry is memorized at the subtraction of Operation 1. It is used to control

the following two operations.

Figure 5.4 shows the structure of the PE. A codebook word CW(� ) stores ! Õ � in a code vector�! Õ . For vector quantization of image, the dimension of vector � is usually 16. Thus, each PE of

the FMPP-VQ has 16 codebook words. A memory cell of the codebook word is a conventional

6-transistor SRAM. The operand word OW stores an operand on every operation. The result word

RW stores
� â � �Üò ! Õ � â . The temporary word TW stores results from operations. The local data bus

(lb0, lb1) connects operand words and the other words in the ALU. There is no conventional adder

in the ALU. Instead, the operand word, carry chain and the XNOR gate work together for addition or

subtraction according to Equation (5.9), which can be obtained from Equations (5.4)-(5.7).

à/Õ�Ø|á/ÕcÖ é�àÌÕ å áÌÕ)ëoØ Ô<ÕÞÝ
1 (5.9)

The operand word is designed using the conventional SRAM-based CAM[OYN85]. Logical

operations required for addition are executed using pass transistors in the operand word. The carry

chain is also composed of pass transistors, which accelerates carry propagation. Thus, addition
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can be done in bit-parallel. A codebook word consists of 8bit-wide SRAMs, while the ALU is

12bit-wide because the distance between an input vector and a code vector may grow as wide as 12

(
Öìè Ø½¼

log2 �¿¾ Ö 8
Ø½¼

log2 16 ¾ )bit. The overflow flag OF stores the overflow bit from the carry

chain. The OF is connected to the local control logic (LCL), which controls several input signals in

the PE for Operation 2 and 3. The search flag SF is used to store the result from the search operation.

On the search operation, a search key is given from the global data bus. Then, it is compared with the

value stored in the OW . If the search key is equal to it, the SF becomes true. The signal
ÔÁÀ

from the

SF is linked to the local priority address encoder. Its detailed description is given in the following

section.
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Figure 5.5: Layout pattern of a PE.

5.4.3 Detailed Structure of the PE

The block diagram of the PE is already shown in Figure 5.4. Here, transistor level structures of the

PE is described in detail.

As shown in Figure 5.4, the PE of the FMPP-VQ consists of operand words, the ALU, the flags

and the local control logic. All of these components are laid out in a square region to satisfy the
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two-dimensional regular structure. Since the operand words is 8-bit wide and the ALU is 12-bit

wide, the flags and the local control logic are laid out in the empty space at the side of the operand

words. The layout pattern of the PE is shown in Figure 5.5. It is implemented in a rectangle region

to satisfy the two-dimensional regular array structure. In the left side of the PE, there is the local

priority address encoder to search for the nearest vector.

Operand words and the ALU

The memory cell of the operand word OW is a conventional 6 transistor SRAMs already shown in

Figure 2.4. Figure 5.6 shows one bit slice of the ALU. All three words, the result word, the operand

word and the temporary word consist of an 8 transistor SRAM cells. Between the operand word and

the temporary word, the carry chain and the XNOR gate are placed.

P

C

carry
chain

sum

P

G

XNOR gate

lb1lb0

RW

OW

TW

Control

Figure 5.6: One bit slice of the ALU.
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Figure 5.7: Operand word.
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Figure 5.8: Search line and reference line for the search
operation.

Figure 5.7 shows a memory cell of the operand word OW. It stores an operand in the SRAM

cell and produces logical AND (G), XOR (P) and XNOR (P) values between a stored value and a

broadcast value through the local bit lines. The four pass transistors create logical AND and XNOR.

The transistor Ts is used for the search operation. Figure 5.8 shows the search line and the reference

line for a single 12-bit operand word. The search line is precharged before the search operation.

When all the XOR values are fixed according to a broadcast key data, the reference line is discharged.
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If the key data is equal to the value in the operand word , all the XOR values becomes false. Thus,

the search line remains high voltage. If not, it is discharged. This capability is almost same as that of

conventional CAMs. The search line is connected to the search flag. Figure 5.9 shows two bit slice

of the carry chain. It produces the carry Â from the carry propagate P and the carry generate G. The

input node P and Ã and G are connected to the equivalent output nodes of the OW. The functionality

of the carry chain is entirely same as that in the BPBP-FMPP. In the BPBP-FMPP, the carry chain is

activated by the clock signal, while there is no clock signal in Figure 5.9. Its area is decreased, but it

may be activated whenever the states of input signals are changed. In the FMPP-VQ64, the inverter

in the OW is activated by a control signal in order to eliminate unnecessary state changes of the input

signal P. Figure 5.10 shows the schematic diagram of the inverter controlled by an NMOS FET.

P0 G0

C0

P0

P1 G1

C1

P1

Pull-up Buffer

C2
C0

Figure 5.9: Two bit slice of the carry chain.

Figure 5.11 shows the XNOR (exclusive-nor) gate which produces the sum from the carry

propagate and the carry. It consists of 6 transistors.

IN OUT

Control

Figure 5.10: Inverter controlled by an NMOS
FET.

A(P) B(C)

A(P)

XNOR(S)

XNOR = A B

Figure 5.11: XNOR (exclusive-nor) gate.

Figure 5.12 shows the temporary word TW. The input node P is connected to the correspond

output node of the OW. The control node Pin is activated at the complement operation in the

absolute value computation. The input node S is connected to the corresponding node of the XNOR
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gate.Ä
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w
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S : Sum
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W0,  W1  : Address Line
BIT, BIT : Local Data Bus

WE, WE : Write enable

Figure 5.12: Temporary word.
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BIT, BIT : Local Data Bus
W0,  W1  : Address Line

WE, WE : write enable

Figure 5.13: Result word.

Figure 5.13 shows the result word RW. It is an 8-transistor SRAM cell which has a CMOS

pass-transistor switch.

The operand words consists of the 6-transistor SRAM cell, while the other words has an additional

CMOS switches to cut off the inverter loop in the SRAM cell. This is because the operand word

are always modified by the driver outside of the PE, while the other words may be modified by the

internal words in the PE. The CMOS switch must be off on the word that the other internal word is

going to write.

Two flags and the local control logic

Figure 5.14 shows the schematic diagram of two flags, the search flag SF and the overflow flag OF.

The input node IN of the SF is connected to the search line in the operand word. That of the OF is

connected to the MSB of the carry in the carry chain. These two flags are also connected to the local

data bus for test. Their values can be read or written directly from the data bus. The details is written

in Section 5.5.4.

Figure 5.15 shows the OF and the part of the local control logic connected to it. The OF stores

the overflow at the subtraction on Operation 1 in page 59. Then the local control logic produces the

signals PIN and ÂÆÅ according the the value of the OF at Operation 2 and 3. The other part of the

local control logic defines the operation mode of the PE whether it operates by SIMD operations or

by block-oriented operations, which is explained later in Section 5.5.4.
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Figure 5.14: Schematic view of two flags.
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Figure 5.15: The overflow flag and the part of
the local control logic.

Priority address encoder

The priority address encoder is used to extract the minimum value. It consists of comparison lines,

a priority encoder and an address encoder. The comparison lines rapidly confirm whether there is

any true search flags in the FMPP-VQ. The priority encoder resolves the word which contains the

minimum value. Figure 5.16 shows the column priority address encoder for 8 PEs. It is for 64PEs of

the FMPP-VQ64. The precharged comparison lines are rapidly discharged if there is any true search

flag. It is done as the same manner with the search and reference lines in the OW. The priority address

encoder consists of a priority encoder and an address encoder. It resolves the topmost word among

all the words whose SFs are true and then outputs its address. The local priority address encoder is

a single PE slice of the priority address encoder.

Figure 5.17 shows the structure of the two dimensional priority address encoder. The row priority

address encoder has the same structure with the column one. Comparison lines in the row and column

priority address encoder work to output ÇÉÈ which becomes false if there is no true search flag. The

priority encoder in the row priority address encoder resolves the lowest row and the address encoder

outputs the row address. The column address of the resolved row is selected by the AND gates and

wired-OR logic placed below the row priority address encoder.
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Figure 5.16: Column priority address encoder.
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5.4.4 Nearest Neighbor Search Procedure

The nearest neighbor search consists of the absolute value computation and the minimum value

search. Here, the absolute distance computation and minimum value search method is described in

detail using the data flow in the PE.

The absolute residual value of single elements of ÎÏ and ÎÐÒÑ is accumulated to the last absolute

distance according to Equation (5.8) (in page 59). Each element Ï¿Ó of ÎÏ is given one by one to

every PE through the global data bus. Every time an element ÏÔÓ of ÎÏ comes to a PE, Õ½Ö Ï¿ÓØ×ÙÐÚÑÛÓ Ö is
computed according to the following procedure.

Step1: [code2operand(Ü )] The Ü th element of ÎÐÝÑ , ÐÞÑÛÓ is sent to the OW.

Step2: [subtraction( ÏßÓ )] The inverse value of Ï¿Ó , Ï¿Ó is broadcast to all PEs. Then,
the subtraction, ÐÒÑÛÓ�×àÏ¿Ó is done. The result is stored in the
TW. The overflow value is stored in the OF.

Step3: [temp2operand] The value stored in the TW is transfered to the OW.

Step4: [complement] The TW becomes the complement value of the OW. The
PEs where á ÐÚÑÛÓØ×âÏÔÓäãØå 0 perform the operation.

Step5: [temp2operand] Same as Step 3.

Step6: [addinner] Addition between

Óçæ
1è éëê
0

Ö Ï é ×�ÐÚÑ é Ö and the OW is done. ifá ÐÚÑÛÓì×PÏÔÓ$ãíå 0, the 0th bit of the carry is set to 1 at the
addition.

Step7: [temp2result] The value stored in the TW is transfered to the RW . RW

becomes

Óè éîê
0

Ö Ï é ×ïÐÚÑ é Ö
It consists of 7 steps (operations). Four operations code2operand, temp2operand ð 2,

temp2result transfer values from any word to any. There are 3 operations subtraction, com-

plement, addinner between these transfer operations, which correspond to Operation 1, 2 and 3 in

page 59 respectively. Figure 5.18 shows the flow of a single-dimension slice of the absolute distance

computation. The upper PE represents Condition 1 and the lower one represents Condition 2. The

OF stores an overflow value on the subtraction at Step 2. The OF and the local control logic in

Figure 5.15 disable the complement at Step 4 and determines the carry on the addinner at Step 6.

Note that the subtraction adds the 2’s complement value of Ïòñ (=5) and a value stored in the OW.

The absolute distance can be computed to repeat the flow 16 (= ó ) times.

After all elements of ÎÏ are given, the CAM-based parallel search procedure finds the minimum

value. The output signal ôöõ from the comparison line in Figure 5.17 becomes false if a broadcast

search key is not matched to any operand word. Figure 5.19 shows a program of the minimum value

search. The definitions of these operations are given later in Table 5.2 and Table 5.3. Figure 5.20

is the procedure for the minimum value search among four 5bit values. The minimum distance can
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Figure 5.18: Procedure for computing the absolute distance.

be extracted to repeat a set of the search and mrr operations from MSB to LSB 12 ( ÷Pøúùüû log2 óßý )
times. The place which contains the minimum value is extracted by the priority address encoder.

5.4.5 List of Operations on the FMPP-VQ

All possible operations of the FMPP-VQ are listed in Table 5.2 and Table 5.3. The operations in

Table 5.2 are done according to the SIMD manner. These SIMD operations fall into two categories:

numerical and logical operations and transfer operations. On addinner operation the other operand is

supplied from the RW through the local data bus. On subtraction, an external data is given through

the global data bus. Note that complement operation is performed as an exclusive-nor between

the OW and zero value. The transfer operations moves data from one word to another. Before a

numerical or logical operation is done, one of two operands should be transferred to the OW by one of

any2operand operations. The search-flag oriented operations are related to the SF. On the search
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øÿþ�� =All 1 # All bits are 1ø����Òó =All 1 #(every bit is masked)
for þ ÷Løúù û log2 ó¿ý�� 1 to 0 # From MSB to LSBø����Òó � þ
	¹÷ 0 # The target bit is unmasked.øÿþ�� � þ
	¹÷ 0

search( ø þ
� , ø����Òó )
mrr( ôÉõ ,)# Confirmation
if ôöõ�÷ 0 thenøÿþ�� � þ�	H÷ 1
endif

end
search( ø þ
� ,0) # Search the minimum value.
mrr(, �
�
��������� ) # resolve the address of the PE

Figure 5.19: Program of the minimum value search.
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Figure 5.20: The minimum value search procedures.

operation a search key is given through the global data bus. It is simultaneously compared with all

data in the operand words. An SF becomes true if it is equal to the search key. It is masked by theø����Ýó signal. The mrr operation produces ôÉõ which indicates whether there is any true search flag

or not and also obtains the top most PE address whose SF is true. The writecode operation is used

to write code vectors to the OW . Of course, the readcode operation to read out the OW is prepared,

but it is not used on the nearest neighbor search. It is for test operations described in Section 5.5.4.

In the FMPP-VQ, each operation takes two clock cycles. Figure 5.21 shows the timing diagram

of the FMPP-VQ. All the control signals to the PEs are activated at the first edge of the clock. It is

deactivated at the second edge. The address or data inputs are fixed ahead of the first edge. It is held

until the end of the second edges. It takes two clock cycles to perform an operation of the FMPP-VQ.

In order to modify the values of a word by an internal word on addinner or transfer operations, the

local data bus should be precharged prior to these operations, which takes two clock cycles. Thus
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Table 5.2: All available SIMD operations of the FMPP-VQ.

operation synopsis #cycle

numerical and logical operations

subtraction( ������� ) ������������� ��!"�$#&%(')�+* 2

addinner ,-�/.0���1. �$#2�3'4� 4

complement ���5�6'4� if OF =0 2

transfer operations

code2operand( 7 ) transfer CW( 7 ) to OW 4

temp2result transfer TW to RW 4

result2operand transfer RW to OW 4

temp2operand transfer TW to OW 4

Table 5.3: Other operations of the FMPP-VQ.

operation synopsis #cycle

search-flag oriented operations

search( 8
9;: , <=�?>@8 ) SF A 1 if OW AB8�9;: & <=�C>"8 2

mrr( D õ , �C����EF9G>"> ) resolve the topmost PE whose SF is true. 2

D õ becomes false if there is no true. SF

������EH9@>@> is the address of the topmost PE.

To write a codebook to codebook words

writecode( ������E�9G>"> , ������� ) data write to CW( 7 ) 2

these operation takes four clock cycles, while the operations where an operand is given from the

global data bus such as subtraction does not need any precharge cycle.

Figure 5.22 shows the whole procedure to perform the nearest neighbor search. The initflag

operation is required on the FMPP-VQ64 because of the design fault. The required number of clock

cycles IKJLJNM is described in Equation (5.10).

IOJLJNM ÷QP(RTSVUÆùBPXW ñZY$ñ W\[;W)U
]
R(^�_V`ØùaPXb�cd`e]
^fU ÷ 24 ó ù 2 g,øúù û log2 ó¿ý�hÆù 8 (5.10)

It takes 470 clock cycles when ó =16 and ø =12: 416 cycles to compute the absolute distance, 50

clock cycles to obtain the address where the nearest neighbor vector is stored and 4 clock cycles for

the other operations. Note that the number of clock cycles does not depend on the number of PEs �
(i.e., size of a codebook).
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Figure 5.21: Timing Diagram of the FMPP-VQ.

for i j 0 to 15 # compute absolute distance
begin #416cycles=24*16

initflag()
code2operand( i )
subtraction( k l )
temp2operand
complement
temp2operand
addinner
temp2result end

result2operand # 4m n o p =0b111111111111o q n r s t u n v =0b000000000000
for i j 11 downto 0 # extract minimum value
begin # 48=12*4m n o p w i x =0

search( o q n r s t u n v m n o p )
mrr( y z ,)o q n r s t u n v w i x =1 if y z = 0

end
search( o q n s t u n v )# 2
mrr(, m i { l ) # 2

| } ~ � � ~ |

Σ � � 1� �
0 � � � � � � � � � � � � � � �

Figure 5.22: Whole procedure to perform the nearest neighbor search.
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Table 5.4: LSI specifications of the FMPP-VQ4.

Process 0.7 � m double-metal single-poly CMOS

Die size 26.3mm2

Area for 4 PEs 1.12mm2

# IOs 116

Power dissipation 3.8mW @(25MHz,5V)

5.5 Implementations of FMPP-VQ LSIs

In this section, two LSI implementations of the FMPP-VQ architecture are introduced. The first

LSI contains four PEs called “FMPP-VQ4,” which is for evaluating functionalities of the FMPP-VQ.

Almost all functionalities are verified, but we found several faults. Secondly, we have designed

and fabricated an LSI with 64 PEs called “FMPP-VQ64.” It can be applied to low bit-rate image

compression using vector quantization. It works properly at 25MHz and achieves high performance

and low power.

5.5.1 An LSI Including Four PEs and TEGs: FMPP-VQ4

We have implemented an LSI called “FMPP-VQ4” including four PEs and some test circuitries using

a 0.7 � m double-metal single-poly CMOS process. Four PEs and a 12bit sense amplifier are shown in

the chip microphotograph of Figure 5.23. Table 5.4 shows specifications of the LSI. All the primitive

control signals to the PEs and sense amplifiers are assigned to the primary input signals of the LSI,

which increase the number of IO pins and chip area, while enhancing testability and controllability of

the FMPP-VQ. All functionalities to perform the nearest neighbor search work properly at 25MHz,

which is the same value obtained from circuit simulations. In the LSI, a 2bit ALU, a sense amplifier

and 32bit carry chain are implemented. Unfortunately, they can not work correctly because of a short

circuit between the power and ground nodes.

In the FMPP-VQ4, several faults are found. The most critical fault is as follows.

� At the code2operand operation, 4 MSBs of the operand word becomes unknown state. It is

because the local bit lines of these bits are floated on the operation.

In the FMPP-VQ64, these 4 MSBs are connected to the ground node at the code2operand operation.
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Figure 5.23: Chip microphotograph of the FMPP-VQ4.

5.5.2 An LSI Including 64 PEs and Control Logics: FMPP-VQ64

We have implemented and fabricated the FMPP-VQ64 LSI using the same 0.7 � m CMOS process

as that of the FMPP-VQ4. Figure 5.24 shows its detailed block digram. It is controlled by a 5-bit

operation code supplied to the IO control logic ICL and the global control logic GCL. The control

signals from the GCL to 64 PEs are doubled to decrease the load capacitance and to enhance the

performance. Upper and lower 32 PEs are controlled by individual drivers. To equalize the distance

from the ICL to every PE, the global data bus is laid out as the shape of an H character. To enhance its

testability it has been designed such that all primitive control signals to the PE can be directly given

from the IO pins. The number of IO pins is 50 except the primitive control and power supply pins.

It is fully functional by the primitive control signals. But the control logics do not work correctly.

In the FMPP-VQ4, all the circuitries can be simulated by the transistor level simulator HSPICE �\� ,

while in the FMPP-VQ64 the transistor level simulation is impossible since the number transistors

amounts to several hundred thousand. To simulate the whole circuitries of the FMPP-VQ64, we have

developed a behavioral HDL description of the PE. Figure 5.25 shows the Verilog-HDL description

of the operand word and the carry chain. The whole circuit of the FMPP-VQ64 is simulated in the

logic level by the logic simulator Verilog-XL. The fault of the control logics occurs because the HDL

description of the PE does not follow their accurate behavior.
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Figure 5.24: The detailed block diagram of the FMPP-VQ64.

Figure 5.26 shows the chip microphotograph. LSI Specifications of both the FMPP-VQ4 and

FMPP-VQ64 are described in Table 5.5. Figure 5.27 shows a measured Shmoo plot of supply

voltage versus cycle time. While the recommended supply voltage of the target process is 5.0V, the

FMPP-VQ64 LSI works properly at 3.0V/25MHz and at 2.5V/20MHz. The power dissipation of the

FMPP-VQ64 is 20mW under the condition of 3.0V/25MHz.

Figure 5.28 shows the dynamic current flow of the power-supply pin during an iteration of the

absolute distance computation. The operating condition is at 25MHz/5V. The current flow has peaks

when operations such as subtraction, complement and addinner are executed.

Table 5.5: LSI specifications of both of the FMPP-VQ4 and FMPP-VQ64.

FMPP-VQ4 FMPP-VQ64

Process 0.7 � m double-metal single-poly CMOS

Die size 26.3mm2 52.6mm2

# IOs 116 148

Power 9.30mW@(20MHz,2.5V)

dissipation 3.8mW@(25MHz,5V) 20.5mW@(25MHz,3.0V)

128mW@(25MHz,5.0V)

Area of a PE array 2.43mm2(2 ð 2) 23.5mm2(8 ð 8)

Area of a PE .28mm2 .37mm2
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module operandword (c1_, sum, pp, b0, b1, search, sin, c0_, w0, w1, we);
output c1_,sum,pp;
inout b0,b1;
inout search,sin,c0_,w0,w1,we;

reg q,c1;
always @(b0,w0,we)

#10
case(b0,w0,we)

3’b011: q=0;
3’b111: q=1;

endcase
not not0(we_,we);
and and0(write0,w0,we_);
and and1(write1,w1,we_);
bufif1 (weak0,weak1) buf0(b0,q,write0);
notif1 (weak0,weak1) not1(b1,q,write1);
not not2(c0,c0_);
xor xor0(sum,q,b0,c0);

or or0(pp,x0,x1);
not not4(q_,q);
not not5(b1_,b1);
not not6(b0_,b0);
and and2(x0,q,b0_,b1);
and and3(x1,q_,b0,b1_);

// adder
always @(b0,c0,q)

begin
c1=(b0&&c0)||(b0&&q)||(q&&c0);

end
not not3(c1_,c1);
// search

bufif1 bufsearch0(search,sin,pp);
endmodule

Figure 5.25: Verilog-HDL description of the operand word and the carry chain.

As described in Section 5.4.5, the FMPP-VQ computes the nearest neighbor search (NNS) in 470

clock cycles. Thus, the FMPP-VQ64 completes the NNS in 18.8 � sec at 25MHz. It can perform

53,000 NNSs per second.

In order to eliminate unnecessary state changes in the ALU, the inverter in Figure 5.10 is only

activated at the numerical operations. To evaluate the effect, power dissipations are measured. Table

5.6 shows the results. Unfortunately, activating the inverter only at the numerical operation increases

the power. It may be because the input nodes of the inverter has high probability of high voltage.

When the inverter is deactivated and the input node of inverter is high, the output node is floated,

which leads short-circuit current in the XNOR gate or the carry chain. To eliminate the short-circuit

current, the inverter must be deactivated by both of NMOS and PMOS FETs. But it makes the circuit

area larger. Therefore, in the FMPP-VQ64M, which is the modified version of the FMPP-VQ64, the

inverter is controlled by a PMOS FET (See Section 5.6.3). Since the input node of the inverter has
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Figure 5.26: The chip microphotograph of the FMPP-VQ64.

high probability of high voltage, the output node of the inverter has high probability of discharged

state causing no short-circuit current in the subsequent circuits when deactivating the inverter.

Table 5.6: Comparisons of power dissipation by activating the inverter at the numerical operation
and by always activating the inverter. The condition is 5V/25MHz.

Activation at the numerical operations always

Power dissipation 193mW 128mW

5.5.3 Integration Density of the FMPP-VQ64

Here, we evaluate the integration density of the FMPP-VQ64 compared with a conventional SRAM

designed with the same technology. Table 5.7 shows the area of a single PE of the FMPP-VQ64

with the area of the 8kbit SRAM designed with the same 0.7 � m process[DAT96]. The 64PEs of the

FMPP-VQ64 contains 8kbit codebook words, which area is 9.5 times larger than the conventional

SRAM. Looking at Figure 5.5, the global data bus, control lines and address bus occupies about a half

of PEs. Without these bus and control lines, the area of the 64PEs is reduced to 10.1mm2, which is

only 4 times larger than the conventional SRAM. The reason why the area becomes twice including
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Figure 5.27: A measured Shmoo plot of supply voltage versus cycle time in the FMPP-VQ64.

these bus and control lines is mainly that the fabricated process has only two metal layers. If the

brand-new sub-micron multiple-metal-layer process is available for use, the integration density of the

FMPP will increase considerably.

Table 5.7: Area for 1 PE of the FMPP-VQ64 and 8kbit SRAM fabricated by the same 0.7 � m process.

area(mm2)

64PEs 23.5

1PE total .367

16codebook words+ALU .137

priority address encoder .02

8kbit SRAM 2.45

5.5.4 Testability of the FMPP-VQ64

To enhance the testability of logic LSIs scan methods have commonly been used. The FMPP-VQ64

adopts the parallel random-access scan methodology[WE93] owing to its memory-based structure.

Codebook words can be accessed in the same manner as conventional RAMs. Furthermore, all words

and flags in the ALU can be accessed with read/write operations.

Figure 5.29 illustrates the address control scheme of the FMPP-VQ64. It has 10-bit address
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control lines for 1k (16 ª 64) codebook words. Higher 6-bit signals to the higher address decoder

(HAD) represent a PE address. Lower 4-bit signals to the lower address decoder (LAD) are used for

a codebook-word address in each PE. On SIMD operations, such as subtraction, the input signal«�¬@­
®V® is set to high. Then all higher decoded addresses become active. All PEs work simultaneously

according to the SIMD control method. On read/write operations, the higher decoded address

determines a single PE. In the local control logic (LCL) shown in the bottom left of Figure 5.29,

a higher decoded address from the HAD enables the local decoded address ( ¯±°³² ) from the LAD.

To append parallel random-access capability to the ALU, the higher decoded address also enables

control signals from the global control logic.All words and flags in the ALU can be accessed through

read/write operations, which improves the testability of the FMPP-VQ64 considerably. The number

of signals controlled by a higher decoded address is only 10 in the ALU. The hardware overhead is

very small. Note that the flags are connected to the local data bus as shown in Figure 5.4 in order to

be read or written directly through the bus.

5.6 Modified Version of the FMPP-VQ: FMPP-VQ64M

The FMPP-VQ64 achieves both of high performance and low power. But it has some drawbacks to

compute the NNS as follows. Eight operations are required to compute the absolute distance of a

single dimension, as already shown in Figure 5.22. Half of these 8 operations transfer a value from

one word to another such as temp2operand. These transfer operations decrease the throughput
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and increase the power consumption. The number of operations can be reduced if operation results

are directly written to the OW . The optimal transistor-sizing may reduce the short-circuit power

dissipation. In this section, a modified-version of the FMPP-VQ64 is described, which is called

“FMPP-VQ64M.”

The structure of the FMPP-VQ64M is similar to the FMPP-VQ64. But it can perform 91,000

NNSs per second which is almost two times faster than the FMPP-VQ64. It integrates a highly-

functional control logic to manage the nearest neighbor search.

5.6.1 Structure of a PE

Figure 5.30 compares two PE structures of FMPP-VQ64 and FMPP-VQ64M. Codebook words are

16 words of eight-bit conventional SRAM cells, which store a 16-dimensional code vector. The ALU

computes the absolute distance. The operand word receives data from the local data bus and performs

logical operations. In the FMPP-VQ64, operation results from the carry chain or the operand word

are temporarily written to the temporary word. To reuse the value stored in the temporary word,

it must be transferred to the operand word, which always consumes an operation. To remove such

drawbacks, the ALU of the FMPP-VQ64M does not have the temporary word. Operation results can

directly be written to the operand word. It can compute the absolute distance for an element ´¶µ of ·´
in four steps, while the FMPP-VQ64 takes eight steps.
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5.6.2 Absolute Distance Computation

In the FMPP-VQ64M, the absolute distance is computed element by element according to Equation

(5.11).

¸¹ º » 0

¼ ´
º�½¿¾

µ
º ¼?À

ÁÂÂÂÂÂÃ ÂÂÂÂÂÄ
¸eÅ

1¹ º » 0

¼ ´
º ½¿¾

µ
º ¼@Æ ¾ µ ¸

½
´ ¸ Ç ¾ µ ¸ÉÈ ´ ¸"Ê

Ë Ç ¸eÅ 1¹ º » 0

¼ ´
º�½B¾

µ
º ¼ Ê Æ ¾ µ ¸

½
´ ¸HÌ Ç ¾ µ ¸ÉÍ ´ ¸ Ê (5.11)

It requires a conditional operation according to the results of

¾
µ
½
´-µ , which is enabled by the

overflow flag OF. Three operations as shown below compute the absolute distance.

Operation 1 Compute

¾
µ ¸
½
´ ¸

Operation 2

Condition 1 Î Ç
¾
µ ¸
½
´ ¸ È 0 Ê�Ï Accumulate

¾
µ ¸
½
´ ¸ to

¸eÅ
1¹ º » 0

¼ ´
º�½¿¾

µ
º ¼

.

Condition 2 Î Ç
¾
µ ¸
½
´ ¸ÐÍ 0 Ê�Ï Accumulate

¾
µ ¸
½
´ ¸ to

¸eÅ
1¹ º » 0

¼ ´
º�½¿¾

µ
º ¼

.
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Operation 3
Condition 1 Î Ç

¾
µ ¸
½
´ ¸ È 0 Ê�Ï Transfer the original value to the RW .

Condition 2 Î Ç
¾
µ ¸
½
´ ¸ÐÍ 0 Ê�Ï Transfer the inversed value to the RW .

These operations are performed in 4 steps as below.

Step1: [code2operand(Ñ )] The Ñ th element of ·
¾
µ ,
¾
µ ¸ is sent to the OW.

Step2: [subtraction( ´ ¸ )] The Ñ th element of ·´ , ´ ¸ is broadcast to all PEs. Then, the subtraction,¾
µ ¸
½
´-µ is done. The result is stored in the OW. The overflow value is stored in the OF.

Step3: [addinner]

Ç ¾ µ ¸
½
´ ¸ ÊÒÈ 0

¸ÓÅ
1¹ º » 0

¼ ´
º�½B¾

µ
º ¼GÆÕÔ×ÖÙØ ÔÒÖ

Ç ¾ µ ¸
½
´ ¸ Ê Í 0

¸eÅ
1¹ º » 0

¼ ´
º�½¿¾

µ
º ¼"ÆÕÔ�ÖÙØ Ô�Ö

Step4: [temp2result]
Ç ¾ µ ¸

½
´ ¸@ÊÒÈ 0

Ô�ÖÚØ Û¶Ö
.Ç ¾ µ ¸

½
´ ¸ Ê Í 0

Ô�ÖÙØ Û¶Ö
.

At Step1, an element of code vectors is tranfer to the operand word. There exists no useless

transfer operation between the other operations. At Step2, ´ ¸ is given through the local data bus and

subtraction

¾
µ ¸
½
´ ¸ is done. The overflow value is stored to the OF . If

¾
µ ¸
½
´ ¸ È 0, the OF becomes

1. At Step 3 and 4, the summation Ü ¸eÅ 1

º » 0

¼ ´
º�½¿¾

µ
º ¼

is accumulated to
¼ ´ ¸
½¿¾
µ ¸ ¼ . The value of the OF

controls the operations at these two steps. The final value stored in the RW becomes Ü ¸ º » 0

¼ ´
º�½B¾

µ
º ¼

at the both conditions.

Figure 5.31 depicts the data flow to compute Equation (5.11) (in page 80). It shows two conditions

according to the results of the subtraction in Step2. The upper condition is where

¾
µ ¸
½
´ ¸ È 0 and

the lower one is the opposite state. In Step1, code2operand transfers

¾
µ ¸ from CW(Ñ ) to OW . In

Step2 all PEs receive an element ´ ¸ of an input vector ·´ . In Step 2’, the subtraction between ´ ¸ and

the OW is performed and the results are written to the OW and the OF . In Step 3 addition between

the RW and the OW is done and the result is written to the OW . The value from the RW to the local

data bus is changed according to the OF . In Step 4, the value in the OW is moved to the RW , which

becomes Ü ¸ º » 0

¼ ´ ¸
½¿¾
µ ¸ ¼ .

5.6.3 Detailed Structure of the ALU

Figure 5.32 shows a detailed schematic diagram of two-bit slice of the ALU. Figure 5.33 shows a

detailed schematic diagram of the operand word. When an operation between the OW and an operand

from the local bit lines is done, the result is written to the OW itself. To write back the operation
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Figure 5.31: A single dimension slice of the absolute distance computation in FMPP-VQ64M.

result to the OW safely, two CMOS switches Sw0 and Sw1 are cut off. The gate capacitance of

nodes T and � holds the value stored in the OW .

In the result word RW (See Figure 5.35), W0 and W1 are controlled by the value of the
Ô��

, which

enables read and write operations of the inversed value required at Step3, 4. The controlled inverter

in Figure 5.34 decreases power consumption considerbly. The control signal 	�

������
�� is activated on

the numerical operation. As already written in Section 5.5.2, the input node of the inverter has a high

probability of high voltage. Once its output node is discharged, it can not be re-charged unless 	�
�������

�
is activated. THus, the XNOR gate and the carry chain dissipate power at numerical operations.

Table 5.8 compares the specifications of the PEs of FMPP-VQ64 and FMPP-VQ64M. The number

of transistors in the FMPP-VQ64M is decreased to 86% compared to that in the FMPP-VQ64, while

the area of PE is almost same. It it mainly because the number of vertical signals in the ALU increases.
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The total number of transistors in the PE is increased, since the local control logic to manage W0 and

W1 in the RW becomes complecated. The number of clock cycles to compute the absolute distance,

however, is decreased to 53% of the FMPP-VQ64.

5.6.4 A Highly-Functional Control Logic

The FMPP-VQ64 has a primitive control logic which translates a specified 5-bit control code to

primary input signals of the PE array. In the FMPP-VQ64M, a highly-functional control logic is

implemented. It receives a start signal and automatically performs the nearest neighbor search. It

is called the auto-execution mode. To enhance its testability, all primary input signals are directly

controlled in the primary control mode. In order to observe some temporary values which are on the

way of operations, a HALT signal is given to the control logic. There exist two modes in the auto

exectution mode. One is the normal operation mode and the other is the fast operation mode. In

the normal operation mode, all operations are done in a single cycle. On the other hand, in the fast
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opearation mode, numerical operations are done in two cycles. In Figure 5.31, numerical operations

such as subtraction and addinner can be divided two phases. The second phase is denoted by a

single quotation mark. At the first phase, an operand is given to the operand word. At the second

phase, the result is written to the operand word. The numerical operations take twice as long as the

other non-numerical operations. If the numerical operations are done in two cycles, the clock cycle

can be shortened. Thus, the whole operation can be done faster. The detailed simulation results and

performance estimation are given afterwards.

5.6.5 Specification and Implementation

Equation (5.12) and (5.13) show the number of clock cycles to compute the NNS in the normal

operation mode and the fast operation mode respectively.

����������� º À
14 � 16

Æ
50
À

274 (5.12)
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Table 5.8: Comparison of areas and performance for the FMPP-VQ64 and the FMPP-VQ64M.

FMPP-VQ64 FMPP-VQ64M

# of Tr. per bit in the ALU 45 39

Area of a PE .241mm2 .238mm2

# Trs of a PE 1524 1534

# of clock cycles to compute the absolute
distance of a single dimension

26 14

� �!�#"%$ À
18 � 16

Æ
50
À

338 (5.13)

We estimate that the FMPP-VQ64M works at 25MHz (40ns.) at the normal operation mode. The

numerical operations on the FMPP are 1.5 times slower than the other operations. The operation

speed can be 1.5 times faster in the fast operation mode, resulting 37.5MHz clock frequency. Thus, the

FMPP-VQ64M performs 91,000 NNSs per second at the normal operation mode, while it performs

111,000 NNSs per second at the fast operation mode.

Table 5.9 lists power consumption values of a PE from circuit simulations, which shows the effect

of two optimizations compared with the FMPP-VQ64. First, the transistor size is optimized to reduce

the short-circuit current, which decreases the power by 6%. The controlled inverter decreases the

power by 23%. Table 5.10 shows the dissipated power in each part of the PE. It proves that the carry

chain dissipates half of the total power. The FMPP-VQ64 activates the carry chain three times in a

single dimensional absolute distance computation, while the FMPP-VQ64M activates it twice.

Table 5.9: Power consumption of the FMPP-VQ64M from circuit simulations of a PE at 25MHz
5.0V.

Optimization Method Power

FMPP-VQ64 3.03mW

before optimizing Tr. size 2.01mW

FMPP-VQ64M after optimization 1.86mW

activate INV at operations 1.45mW

The power consumption expected from that of the FMPP-VQ64 is shown in Table 5.11. The

power consumption of the FMPP-VQ64M decreases by half, while the number of operations for the

nearest neighbor search becomes twice of the FMPP-VQ64’s. Thus, its total energy consumption

becomes 1/4 compared with the FMPP-VQ64.
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Table 5.10:& Power dissipation map for all
the components in a PE.

whole PE 1.45mW 100%

Carry Chain 0.82mW 56%

Operand Word 0.32mW 22%

XNOR 0.07mW 5%

Result Word 0.06mW 4%

Others 0.11mW 11%

Table 5.11: The power consumption of the FMPP-
VQ64M expected from the measured results of the
FMPP-VQ64.

Clock Freq. 28.5MHz 25MHz 20MHz

Supply Volt. 5.0V 3.0V 2.5V

Power(mW) 65 9.9 4.5

The FMPP-VQ64M is designed using the same double-metal single-poly 0.7 ' m CMOS process

as that of the FMPP-VQ64. The layout pattern of the PE is shown in Figure 5.37. At the first stage

when we start to design the FMPP-VQ64M, we expected that the area for a PE would be smaller than

that of the FMPP-VQ64, since the PE of the FMPP-VQ64M has no temporary word. But the area of

the PE becomes almost the same. Table 5.12 summarizes the number of transistors and area for each

part in the PEs. The areas for the operand word and the result word in the FMPP-VQ64M becomes

larger than those in the FMPP-VQ64.

Table 5.12: Areas for PEs of the FMPP-VQ64 and FMPP-VQ64M.

FMPP-VQ64M FMPP-VQ64

# of Tr/bit. Area/bit # of Tr/bit. Area/bit

Codebook Word 6 433 ( 4 ' m2 6 433 ( 4 ' m2

Result Word 10 840 ( 0 ' m2 8 710 ( 1 ' m2

Operand Word 17 1714 ' m2 15 977 ( 4 ' m2

Carry Chain 11 695 ( 5 ' m2 11 695 ( 5 ' m2

XNOR 6 571 ( 2 ' m2 6 571 ( 2 ' m2

Temporary Word N/A N/A 10 930 ( 7 ' m2

Others 2 168 ( 0 ' m2 2 168 ( 0 ' m2

One bit slice of a PE (for 8LSBs) 142 11205 ' m2 148 11203 ' m2

Total (12bit) of a PE 1534 0.214mm2 1522 0.208mm2

Figure 5.38 shows the chip micrograph. The die size of the FMPP-VQ64M is 52.7mm2. Table

5.13 compares the areas of FMPP-VQ64 and FMPP-VQ64M. FMPP-VQ64M actually integrates

more complex control logics than that of the FMPP-VQ64. Table 5.14 summarizes the number of

implemented standard cells in each control logic. These areas are almost same with both implemen-
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tations. It is because the strategies of place and route are changed. The FMPP-VQ64 is placed and

routed from the bottom to the top level. Each component such as the PE array or control logics are

placed and routed respectively. Then the top level layout is created using these macro blocks. In

the FMPP-VQ64M, however, full-custom components such as the PE array or sense amplifiers are

placed as macro blocks, but the other random-logic cells in the control logics are placed and routed

in the top level with these macro blocks. This strategy decreases the area of the control logic.

The FMPP-VQ64M is now under test. Test results will be shown in later.
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Figure 5.38: Chip micrograph of the FMPP-
VQ64M.

Table 5.13: The areas for FMPP-VQ64 and FMPP-VQ64M.

FMPP-VQ64M FMPP-VQ64

Die size (Including I/O PADS) 6 ( 63 � 7 ( 94mm2 52.64mm2 6 ( 60 � 7 ( 86mm2 51.84mm2

Core size (Without I/O PADS) 5 ( 78 � 7 ( 09mm2 40.98mm2 5 ( 75 � 7 ( 01mm2 40.30mm2

64 PEs 3 ( 70 � 6 ( 35mm2 23.50mm2 3 ( 52 � 6 ( 24mm2 21.97mm2
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Table 5.14: Number of standard cells for control logics.

Logics FMPP-VQ64M FMPP-VQ64

D-FF 313 45

Other sequential logic cells 1956 548

Total 2269 593

5.7 Comparison with Other Implementations

In this section, several comparisons between the FMPP-VQ with the other implementations are given.

5.7.1 Comparison with the Other Vector Quantizer.

Here, the FMPP-VQ is compared with the other vector quantizers. Parameters for vector quantization

are given again:

)
dimension of vectors�
number of code vectors* bit width of vectors

The compared points are as follows.

Codebook optimization It is to hard to obtain a generalized codebook which can be applied to any

type of images. It should be optimized for every frame of image. Thus, a codebook has to be

updated in real-time.

Accuracy of the nearest vector If the vector from the NNS is a suboptimal one, the distance be-

comes larger, which decreases the quality of a reconstructed image.

IO bandwidth A large IO bandwidth enlarges the area and causes problems to mount the LSI on a

circuit board.

Power Consumption Power consumption should be minimized for mobile telecommunication.

There are two algorithms to search the nearest neighbor vector. The tree-searched VQ (TSVQ)

has less codebook search complexity in proportion to the logarithmic order of the size of a codebook

than the full-searched VQ (FSVQ) adopted in the FMPP-VQ. But the size of memory to store a

codebook becomes large. As for codebook optimization, the TSVQ has a major drawback that the
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codebook cannot be optimized in real time, since it requires huge computation complexity to generate

the tree-structured codebook.

Fang et al. proposed a systolic binary tree-searched vector quantizer[FCS + 94]. Its block diagram

is drawn in Figure 5.39. In conventional TSVQ implementations, the total size of a codebook reaches

O( Ü-,�. � .0/21 ). The value 1 means the number of levels and
� . is the number of code vectors in each

sub-codebook. They reduce the size of a sub-codebook at each level into two, which results 2 Ç4365 1 Ê
code vectors in all the sub-codebook. The index of the nearest code vector in a sub-codebook is

computed using the MSE as follows.7 . 1 5 7 . 0 8 9;:< 5 := . 1 9 2 5 9�:< 5 := . 0 9 28 := . 12 5 := . 02 5?> := . 1 5 := . 0 @ :<
if

7 . 1 5 7 . 0 A 0

then B 30CED <�F 1HG 8 0

else B 3ICED <JF 1HG 8 1

The terms of K 8 := . 12 5 := . 02 and L 8 := . 1 5 := . 0 are formerly prepared to guarantee real-time

encoding with the small hardware.
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Figure 5.39: A systolic binary-searched vector quantizer.

Wang et al. propose a systolic array processor as shown in Figure 5.40[WC95]. It has j PEs

that compute MAEs and jlk ) PEs that compare the MAEs. The latency is O(
)nm j ). The minimum

distance can be obtained every
)

clocks. But It has some drawbacks. First, it has a large bandwidth

of O(
) * ), which amounts to 128 when

) 8 16 and * =8. Secondly, it contains a large number of

latches inproportion to O( j ) to store temporary values among PEs. In addition to that, they assume
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100MHz clock frequency for both the inner and outer LSI. It is difficult to give data at such high clock

frequency from outside of the LSI. As discussed in Section 5.7.3, the SRAM module implemented

inside the LSI using the 0.7 o m process for the FMPP-VQ LSIs cannot provide data at 100MHz.

p q r s t u p q r v t up q r s t q r s p q r v t q r s

w xw yw z { y | } ~ | } ~ | } ~ � � � �
| } ~ | } ~ | } ~ � � � �
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Figure 5.40: A systolic full-searched array processor[WC95].

Reference [CWL96] proposes a serial processor computing the distance using the MSE, which

usually requires multiplication. To decrease computation complexity, they split it into additions and

table-look-up(TLU) operations. Figure 5.41 shows its block diagram. C RAM stores a codebook

and sends all elements in a code vector := to X UNIT. X UNIT computes the inner product :< / :=
using the TLU operation. P Adder sums up these two terms: :< / := and 9 = 9 2. Whole operation can be

finished within one clock cycle. It has internal memory and its IO bandwidth is very small. But, the

bus width between C RAM and X UNIT is quite large (O(
) * )), which consumes much power.

Reference [SNK + 97] describes a 256-element fully-parallel processor as shown in Figure 5.42.

The PE cosists of 16 words of SRAM for a code vector and an ALU that computes a MAE and

accumulates MAEs. Each PE is laid out into a rectangle region The winner-take-all(WTA) is used

to extract the minimum distance. Accumulation and absolute distance computation of a single

dimension ( ����� 1 ¢¡
0 9 <   5 =   9 m 9 < � 5 = � 9 ) can be obtained in one cycle. The minimum distance is
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Figure 5.41: A serial full-searched
MSE processor[CWL96].
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Figure 5.42: A fully-parallel 256-elements parallel
processor[SNK + 97].

extracted in every 17 cycles. The first 16 cycles is used for 16 iterations of the MAE, and the last

cycle is used to extract the minimum distance. It is fastest of all previous implementations. But, it

consumes 900mW of power which is too much.

An implementation of Computational RAM as already shown in Figure 2.10 (in page 12) is

applied to vector quantization as described in Section 2.2.3. At first, they applied it to still image

compression and then to video compression[LP95]. They propose an algorithm to encode 30 CIF

(360 ã 288) video frames per second via a low-rate line from 64kbps to 192kbps. The total encoding

time is 330ms. on the system including two C ä RAM modules for the nearest neighbor search and an

index-based motion estimation (Figure 5.43). A C ä RAM module consists of 4 C ä RAM LSIs. Thus,

40 C ä RAM LSIs are required to compress in real time (33ms.). On the other hand, our proposed

algorithm explained in Section 5.8.2 can compress 10 QCIF (176 ã 144) frames per second via a

29.2kbps mobile channel. It requires only one FMPP-VQ64 LSI. Unfortunately, [ESS92] shows only

the chip micrograph. Its area or power consumption cannot be seen.

Table 5.15 lists specifications of these 5 implementations, FMPP-VQ64 (VQ64) and FMP-

VQ64M (VQ64M). The other implementations are faster than the FMPP-VQs, but the power dissi-

pations of the FMPP-VQs are lowest among all. As for the number of code vectors, almost the other

implmentations deal with 256 code vectors, while the FMPP-VQ contains only 64 PEs for 64 code

vectors. But the performance and the number of PEs are enough for the current target application,

low-rate video compression. The number of PEs can be increased to use the current sub-micron

technology. The performance can be improved if the ALU has rich functionalites. The ALU in

[SNK + 97] is fastest when the input vector is given element by element. But it consumes much

power. We have to consider the trade-off between performance and power.
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Adaptive VQ Index-based ME
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Figure 5.43: C ä RAM implementation of vector quantization for video compression[LP95].

Table 5.15: Comparison with the other vector quantizers.

Name [FCS + 94] [WC95] [CWL96] [SNK + 97] [LP95] VQ64 VQ64M

measure MSE MAE MSE MAE MAE MAE MAE

VQ TSVQ FSVQ FSVQ FSVQ FSVQ FSVQ FSVQ

CV Optimization N/A OK OK OK OK OK OK

IO Bandwidth O( å ) O( æHå ) O( å ) O( å ) O( å ) O( å ) O( å )

Power 500mW N/A N/A 900mW N/A 20mW 10mW

# of CVs 256 256 256 256 64 64 64

Throughput 1.56M 6.25M 195k 2M N/A 53k 111k

Area(mm2) 67 42.5 100 72 N/A 52 52

process 1.2 ç m 0.8 ç m 1.2 ç m 0.6 ç m N/A 0.7 ç m 0.7 ç m

LSI N/A N/A N/A OK OK OK OK

5.7.2 Comparison with the Von Neumann Sequential Processors.

Here we compare the FMPP-VQ with the Von Neumann commercial sequential processor in terms

of speed and power consumption. Table 5.16 lists speed and power of the nearest neighbor search

among 64 code vectors for the FMPP-VQ64, the FMPP-VQ64M, Pentium and Ultra SPARC[Pro].

The latter two are commercial sequential CPUs that perform the C program listed in Figure 5.44.

The FMPP-VQ64 and the FMPP-VQ64M achieve both of high speed and low power. On the other

hand, these commerial CPUs are slower and dissipate more power than the FMPP-VQs.

Figure 5.45 lists the assembler program of a single dimenstion slice of the nearest neighbor search

on Ultra SPARC. It consists of two loads, three numerical operations and one conditional branch.

From Table 5.16, we can easily guess that it takes about 35nsec.(36.0 o s./16/64) to obtain the absolute

distance for a single dimension. The four operations besides the first two loads can complete in four
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T
è

able 5.16: Speed and power dissipation table of the nearest neighbor search among 64 code vectors.

Clock Cycle Bus Cycle NNS for 64 CVs. Power Vdd

FMPP-VQ64 25MHz 18.8 o s. 20mW 3.0V

FMPP-VQ64M 25MHz 11.0 o s. (10mW) é 3.0V

Pentium 100MHz 50MHz 85.0 o s. 2.9V
5 ê 20 W

166MHz 66MHz 49.0 o s. 2.9V

Ultra SPARC 300MHz 100MHz 36.0 o s. ê 20W 2.6V

ä estimated by simulation.

/* Nearest Neighbour Search* /
#include <stdio.h>

main()
{
static int codevector[64][16]={
/* abbrebiated * /
};
static int inputvector[16][16]={
/* abbrebiated * /
};

int j;
int mind=0x1fff,mini=−1;
for(j=0;j<64;j++)
{

int d=0;
for(k=0;k<16;k++)
{

d+=abs(codevector[j][k]−inputvector[i][k]);
}
if(d<mind)
{

mind=d;
mini=j;

}
}

}

Figure 5.44: C program for the nearest neighbor search.

clock cycles on the CPU and therefore it takes 20nsec. to load two elements from 100MHz external

IO pins. Thus, it is estimated that the assembler program completes in 32nsec., which is almost the

same value than the actual processing time 35nsec. Ultra SPARC cannot outperform the FMPP-VQ

if the external IO speed remains 100MHz. It takes 20.5 o sec. to load 16 ã 64 elements of 64 code

vectors.

5.7.3 Comparison with an Application Specific Processor for Vector Quantiza-
tion

Above these two sections, we compare the FMPP-VQ with the actual implementations: vector

quantizers and commercial sequential processors. Here, an application specific sequential processor
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ld [%o1+%i0],%g3 # load an element of an input vector
ld [%o0+%i1],%g2 # load an element of a code vector
subcc %g3,%g2,%g3# subtract
bneg,a .LL18 # if > 0 goto .LL18
sub %g0,%g3,%g3 # inverse the result
.LL18:
add %i3,%g3,%i3 # accumulation.

Figure 5.45: The assembler program to compute the absolute distance of a single dimension.

for VQ is considered to show the limitation of the sequential processing.

Figure 5.46 shows an application specific sequential processor for VQ which consists of an

8 ã 16 ã 64 >�ë 8 ì @ bit SRAM and a processor core. Table 5.17 lists the specification of the SRAM

obtained from the 0.7 o m process data book[DAT96]. The processor core should access the SRAM

16*64 times for the NNS of 64 code vectors, which takes 13.0 o sec. The processor cannnot complete

the NNS below 13 o sec. As for the power dissipation, the 8kbit SRAM consumses 219mW at

1/12.7ns.(=78.7MHz). Thus, 76,000 NNSs per second is the limitation of this processor. The SRAM

consumes the power over 200mW and its area is 2.5mm2. The FMPP-VQ64 occupies 18mm2 for the

64 PEs, which is 7.5 times larger than the SRAM. We cannnot estimate the area of the processor core

without its circuitry. But, the 8bit micro processor core “Kue-chip2” implemented by a 0.5 o m CMOS

process occupies 2.37mm2. The area of the processor including the SRAM and the processor core

may be smaller than the FMPP-VQ64, but the power dissipation becomes more than 10 times larger

including the SRAM module. It is faster than FMPP-VQ64, but slower than the FMPP-VQ64M. The

above processor core accesses code vectors in the SRAM element by element, which eliminates the

processing speed. If the multiple SRAM modules are used, the processing speed may improve, but

the area and power must be increased.

Table 5.17: SRAM specifications.

area (mm2) access time (ns) power (mW/MHz)

8bit ã 1kword SRAM 2.5 12.7 2.79
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Figure 5.46: An application specific processor for VQ.

5.8 A Low-rate and Low Power Image Compression System Using
the FMPP-VQ

In the near future personal digital assistants (PDA) will be a complete voice/video-phone transceiver.

Standard video codecs, such as MPEG1, MPEG2, H.261 and H.263, are based on discrete cosine

transform (DCT). They consume a large amount of computation on both encoding and decoding,

which are not suitable for communication with PDA. On the other hand, Vector Quantization (VQ)

has proven to be a powerful technique for low-rate image coding[LBG80]. Compared with DCT-

based techniques, a video sequence compressed by VQ can be easily decompressed and has high

compression efficiency. On encoding, however, it consumes large computation for the nearest

neighbor search (NNS).

Several VQ-based algorithms have been proposed for less computation and high compression

ratio. For example, Reference [HH88] has proposed interpolative VQ (IVQ) method, which sends a

low resolution interpolated scalar-quantized image while vector-quantizing the residual value. It can

reduce blocking effect. Gersho and Shoham suggested hierarchical VQ (HVQ) technique[GS84].

They first introduced a hierarchical structure into VQ-based algorithms. This method partitions

large dimensional vectors into small dimensional sub-vectors. HVQ can exploit correlation in large

dimensional vectors while avoiding the complexity obstacle of large dimensions. Ho and Gersho

proposed multistage hierarchical VQ (MSHVQ)[HG88]. In multistage VQ (MVQ), after an original

vector is vector-quantized, the residual vector which has the same dimension as the original one is

quantized. MSHVQ technique uses various dimensions at each stage instead of fixed-dimensional

vectors. All the above VQ coding schemes were originally proposed for a still image. We present

a low-rate video coding algorithm based on MSHVQ. Our algorithm transmits 10 QCIF frames per

second via a 29.2kbps mobile wireless channel. It is robust to noise, since indexes from VQ can be

coded in a fixed length and a frame of image is always compressed to a fixed size at any video activity.
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It enables simple bit rate control by adaptive bit allocation at each stage with small computational

complexity.

Here, we introduce a real-time low-rate video compression system using the FMPP-VQ. First, the

outline of our video compression system is explained in Section Section 5.8.1. Then, Section 5.8.2

describes the proposed multi-stage hierarchical VQ in detail. The compression system can transmit

10 QCIF frames per second via a 29.2kbps mobile wireless channel. It consists of a PC and a daughter

board where the FMPP-VQ is mounted. The detail descriptions of the system and the encoding results

from the proposed algorithm are given in Section 5.8.3 and Section 5.8.4 respectively. Simulation

results to show robustness to noise are also described in Section 5.8.4.

5.8.1 Overview of the Real-Time Low-Rate Video Compression System

The schematic diagram of our real-time low-rate video compression system is displayed in Figure

5.47. It consists of a host computer and a daughter board where the FMPP-VQ64 is mounted. The

compressed data is transmitted via a 29.2kbps channel provided by the PHS terminal. The host

computer throws input vectors and receives indexes to/from the daughter board.

FPGA

PHS

Camera

FMPP-VQ
PC

input vector

index

29.2kbps

Figure 5.47: Schematic diagram of the low-rate video compression system.

The specifications of our system are as follows.

î Send 176 ã 144 QCIF 8bit gray-scale images at the rate of 10 frames/s via a 29.2kbps wireless

channel. Encoding should be done in real time.

î Robust to noise for mobile wireless communication.
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î Compression ratio of every frame should be fixed.

î Encoding is performed on a CPU and the FMPP-VQ64, while decoding must be performed on

the CPU only.

The most significant specification is the first one. Now we have no real-time mobile videophone

terminal. The PHS provides the 29.2kbps digital wireless channel. Robustness to noise is the most

important factor for mobile wireless communication. In the DCT-based compression algorithm a

pixel block is compressed by a variable length code (VLC). On the other hand, VQ compresses a

pixel block to an index, which can be coded by a fixed length. The fixed bit length code is very robust

to noise, since the code length can be predicted on the decoder side.

The compression ratio of the current DCT-based video compression algorithm is an average

value, which means that compression ratio changes according to video activity. In such condition,

the system must have some amount of buffers to store transferring or received data. In our algorithm,

a frame of image is compressed to a fixed size. It requires no buffer. It is also robust to noise, since

the decoder can easily divide received data to each frame.

5.8.2 Coding Algorithm

Conventional MSHVQ methods[HG88] deal with still image rather than video sequence. We propose

the fixed-rate MSHVQ algorithm for real-time low-rate video encoding. In still image encoding,

spatial correlation should be used for compression. Compression of video sequence can be done

by both temporal and spatial correlations. In our method, VQ compresses spatial correlation, while

motion compensation (MC) compresses temporal correlation. MC is first applied to a frame. Then

it is hierarchically compressed in multiple stages. The proposed algorithm can adaptively compress

video sequence according to video activity. It can transmit 10 QCIF video frames per second via a

29.2kbps transmission line. A QCIF frame is always compressed to 2920bit at any video activity.

Fixed-Rate Multi-Stage Hierarchical VQ

The performance of VQ can be increased according to vector dimensions in order to reduce correlation

between input vectors. An inactive area can be partitioned into a large dimensional vector, while an

active area must be partitioned into a small dimensional vector. However, a large vector dimension

expands computational complexity and memory capacity. We have to prepare a specified quantization

method for each different vector dimension. Thus, the vector dimension should be fixed. We adopt a

multi-stage method where a frame is hierarchically partitioned according to activity of each area. To

fix the vector dimension at 4 ã 4, decimation and interpolation are applied both to enhance the quality

and to reduce computational cost.



98 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Stage3

Stage4 ï 4 ð 8

ñ
3 ò 16

block
4x4 vector

low active

low active

high active

Stage2

respresentative value

linearly
Interpolared

i0 15
0

15

j

Stage1 or MC

16pels

ó ô õ ö ÷ ø

Figure 5.48: Four hierarchical stages for decimation and interpolation.

Images are hierarchically partitioned into blocks in the subsequent four stages (block at every

stage is denoted by thick-bordered rectangles in Figure 5.48). Stage 1 scalar-quantizes a value that

represents 16 ã 16 pels. At Stage 2, 16 values each of which represents 4 ã 4 pels are vector-quantized.

At Stage 3, 16 values each of which represents 2 ã 2 pels are vector-quantized. At Stage 4, a block of

4 ã 4 pels is vector-quantized. We decimate 256 pels into 16 at Stage 1, since an inactive area does not

require high resolution. At the rest stages vector dimensions are reduced to 16. Vector dimensions

are fixed at 16 all through the stages in order to share the same quantization methodology.

The flow chart of our coding algorithm is depicted in Figure 5.49. From Stage 1 to 3, decimation

is done to obtain 16 representative values of a block. There are several possibilities to obtain a

representative value. Spatial subsampling causes aliasing errors[HG88]. The mean value of each

block brings a blocking effect of a square block. Thus, we use the mean values of the upper-left corner

of each block (See Figure 5.48). At Stage 1 the mean value of the upper-left 8 ã 8 pels becomes a

representative value. On decoding, empty areas among these representatives are linearly interpolated.

This method reduces blocking effect considerably. The decimation schemes at the subsequent stages

are equivalent to the above one. At Stage 2, the mean values of the upper left 2 ã 2 pels out of 4 ã 4

pels constitute 16 representative values to be vector-quantized.

At Stage 2 differential values between a decimated original image and a decimated interpolative

surface are partitioned into blocks of 16 ã 16 pels. A 4 ã 4 vector is extracted from the 16 ã 16 pels.

The blocks with higher activity are chosen to be decoded from Stage 2 to 4. Several blocks compose

a macro block to determine activity in order to decrease flags to designate activity. At Stage2, the size

of macro block ( ù 2) is 16 ã 16. At Stage3 and 4, those ( ù 3 and ù 4) are 16 ã 16 and 8 ã 8 respectively.

These macro blocks contain 4 blocks. The algorithm to determine the activity is as follows. The

differential value ú�ûýü4þ ÿ in Equation (5.16) is computed for every macro block at Stage þ .
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Figure 5.49: Block diagram of our coding algorithm.
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The value
' 1 ü+*7,/.�ÿ denotes the ü+*7,3.
ÿ encoded pixel value of a macro block at Stage þ , while

' (
is the

pixel of the original image (See Figure 5.48). The value ú�û ü%þ ÿ stands for the improvement of the

image quality. All ú�û ü%þ ÿ values are rearranged in the descending order. The macro block with the
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largest ú
û ü4þ ÿ is given top priority to be vector-quantized. The rest macro blocks are successively

vector-quantized until the decoded data reaches to the limit (2920bit). If ú�ûýü%þ ÿ is smaller than a

specified threshold value 8:9 1 , the macro block is not transmitted to prevent corruption of image

quality by small ú ûýü%þ ÿ and to leave bits to higher stages. In Figure 5.49, ú�ûýü4þ ÿ is computed before

the NNS. It is better to compute ú
ûýü%þ ÿ by the blocks after the NNS. But all differential blocks should

be vector-quantized. Thus,
��� ü%þ ÿ is computed prior to vector quantization.

At the first frame, Stage 1 sends scalar-quantized values for the lowest resolution. At the

subsequent frames, motion compensation (MC) is used instead of Stage 1. In MC, the full search

block matching algorithm is most popular, but it requires large computational complexity. We use the

orthogonal search method[PHS87], which has good convergence and low computational complexity.

A motion vector ( û<; ) is determined for each 16 ã 16-pixel block. The MC search window is

8 ã 8 pels around the center of each block. The following rule determines the motion vector to be

transmitted.

1. Compute the following values.

�5� ü4=>,-? ÿ ë 15#
�@$  ¢¡ 0

& 'BA ü4= m *-,C? m .�ÿ0� 'D( ü+*7,3.
ÿ & (5.17)

û<; ë min� 8 EGF $ H E 8
� 1 ��� üI=J,C?�ÿ (5.18)'KA

: pixel value of the previous frame.

2. The motion vector ûL; is transmitted if Equation (5.19) is satisfied. It reduces the number of

motion vectors to be transmitted.

min
��� ü4=>,-? ÿNM �5� ü 0 , 0 ÿ m 859PORQ (5.19)

The above hierarchical process are going on until the encoded data reaches the allowable amount

(2920bit). If the video activity is high, motion vectors have to compensate temporal activity and

lower stages have to produce a large number of indexes to compensate spatial activity. The process

is tend to be halted at a lower stage. On the other hand, if the video activity is low, higher stages can

produce many indexes to enhance the quality of reconstructed image.

Video coding based on DPCM enlarges the size of transmitted data in high video activity. Two

strategies can be chosen when transmitting through a fixed bit-rate. One is to reduce temporal

resolution, while the other is to decrease spatial resolution. The latter is better because human eyes

are insensitive for spatial activity of the high active video sequence. Lower stages of low spatial

resolution are first transmitted in our method. It works conveniently in high activity. When video

activity is low, however, lower stages may decrease the quality. It is eliminated by the threshold value

8S9 1 . Our method can offer the way to adapt spatial resolution to video activity.
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Codebook Design Strategy

Codebook design strategy is one of the most important factors in VQ. We choose 64 greater values

as initial vectors among all the ú�û ü 2 ÿ values. This is because the reconstructed image at Stage 2 of

the first frame seriously affects the quality of subsequent frames. An initial primitive codebook is

transmitted at the beginning. It is updated frame by frame.

The FMPP-VQ64 has a capability to vector-quantize an input vector among 64 code vectors. It

is not desirable that the size of code vectors is limited to 64. Although a small codebook enlarges

distortions, a large codebook increases both the bit width of the index and the size of codebook data.

Thus, we generate 1024 code vectors from 64 code vectors to rearrange elements. A primitive code

vector turns into 15 derivative code vectors as in Figure 5.50. The bit width of the index increases

from 6bit to 10bit, while the size of codebook data is unchanged.

A single code vector is update every frame. We use a modified Linde-Buzo-Gray(LBG)

algorithm[LBG80] to update code vectors. The original LBG repeats the sequence until updated

code vectors are convergent. On the other hand, our approach applies the LBG once par frame to

guarantee real-time encoding. All the updated code vectors are computed on the encoding side. But

only a single code vector is transmitted to the decoder side to decrease the data size. It is the vector

migrating farthest. Therefore, 16 vectors among 1024 are updated every frame, which reflects the

statistical property of the current input frame.
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Figure 5.50: Derivative code vectors from a primitive vector.

Coding Strategy to Compensate Errors

Compressed data consist of three parts: flags, motion vectors and vector indexes. Table 5.18 describes

contents of compressed data. The vector indexes are very robust to noise, since they are coded in

a fixed length. If an error occurs at any index data, the indexes without errors can be correctly
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detected. But, if the flags are wrongly transmitted, the decoder mistakes the place of the index, since

the number and place of indexes are obtained from the flags. Motion vectors are also important

at the decoder side. If the motion vectors are wrongly transmitted, the quality of image decreases

considerably. Thus, BCH codes2 are added to the flags and motion vectors. The BCH codes correct

one-bit error and detect three-bit errors. Although the flags are protected by the BCH codes, there is a

possibility to lose some flags at the decoder side. If the flag of motion vectors or Stage2 is lost, all the

remaining information must be discarded. To protect the remaining information, the number of each

flag is also transmitted. The number of flags T û and T 2-4 are transmitted twice at the beginning

and the end of the frame data to securely protect them from noise. If an error occurs, there happens a

conflict between the number of flags derived from T û and T 2-4 and the that from U û and U 2-4.

If the difference between them is only 1 at Stage þ , the indexes are decoded according to U þ . If

the difference is larger than 1, the indexes of Stage þ are discarded and the remaining information is

decoded at the subsequent stages.

In H.263, compressed rate varies according to the encoding data. If an error occurs, it is difficult

to re-synchronize data without some extra flags for synchronization. In the proposed algorithm, the

encoder can easily synchronize data at every frame, since a frame is decoded in a fixed size of 2920bit.

5.8.3 Experimental Real-Time Low-Rate Video Compression System

We develop an experimental real-time low-rate video compression system composed of a PC, an

FPGA and an FMPP-VQ64 LSI. The latter two LSIs are mounted on a daughter board. Figure 5.51

shows the experimental system. The CPU (Pentium 200MHz) on the PC performs the proposed

MSHVQ algorithm except for the NNS on the FMPP-VQ64 controlled by the FPGA.

A VQ index is 10bit long for 1024 code vectors derived from 64 primitive vectors. First, the

FMPP-VQ64 generates an index of the nearest code vector among the 64 primitive vectors. Then

it accepts 15 rearranged derivative input vectors to generate indexes for them. An input vector is

rearranged instead of code vectors. A 10bit index is extracted for each block. A frame should be

encoded below 2920 bit within 100ms. At most, 2920/10(=292) VQ indexes should be computed for

a single frame. Thus, the FMPP-VQ must perform 2920 V 10 W 16 (=4,672) NNSs per frame, which

is within its capability of 53,000 NNSs per second. The number of NNSs obtained from the actual

compression stream is 2540 per frame which takes 48ms. The compression of a frame except the

NNS takes 30ms on Pentium 200MHz. Thus, the system can perform the compression in 78ms even

when the NNS and the other operations are done in serial. If the performance of the CPU is poorer,

the NNS and the other operations can be done in parallel. Note that the NNS for 64 code vectors takes

80ns on Pentium 200MHz, while that takes 18.8ns on the FMPP-VQ64. The proposed algorithm

2Bose Chaudhuri-Hocquenghem code.
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Table 5.18: Contents of compressed 2920bit data.

Contents # of bits BCH code

flags for motion vectors ( T û ) X 99 7

Stage2 flags ( T 2) 99 7

Stage3 flags ( T 3) 99 7

Stage4 flags ( T 4) 0 or 396 9

# of motion vectors ( U û ) X 7

# of Stage2 flags ( U 2) 7

# of Stage3 flags ( U 3) 7 10

# of Stage4 flags ( U 4) 9

indexes of Stage1 ( ú 1) é 8 W 99 0

motion vectors ( ûL; ) X 8 WYU û 30

indexes of Stage2 ( ú 2) 10 WYU 2 0

indexes of Stage3 ( ú 3) 10 W 4 WYU 3 0

indexes of Stage4 ( ú 4) 10 W 4 WYU 4 0

updated code vector 128

code vector index 6 16

padding data 2920 � #total -Z At the 1st frame. X From the 2nd frame.

cannot be done in real-time without the FMPP-VQ64.

The decompression procedure of a single frame needs only 3.8ms on Pentium 200MHz without

using the FMPP-VQ64, while the decompression of H.263 takes 9.8ms. The compressed data from

the proposed algorithm can be decoded almost 2.5 times faster than that of H.263. Note that both

decoding programs are optimized to the same level and no MMX code is used. Figure 5.52 shows

computation amount of each function of the proposed fixed-rate MSHVQ and H.263. The function

“Stage2-Stage4” of the proposed replaces the indexes to code vectors according to the flags, which

function is done by a simple table look-up method. On the other hand, H.263 should perform the

complex IDCT and VLC. Thus the proposed algorithm can decode the compressed data much faster

than H.263.
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Camera

FMPP-VQ64
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Figure 5.51: Experimental real-time low-rate video compression system.
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Figure 5.52: Computation amount of each function on decoding of the fixed-rate MSHVQ and H.263.

5.8.4 Performance Evaluation

Here, we show several simulation results of the proposed fixed-rate MSHVQ algorithm.

Quality of Decoded Images

We apply the proposed fixed-rate MSHVQ algorithm to the standard video sequences. Figure 5.53

shows the temporal PSNR transitions of the proposed algorithm and H.2633 for “Suzie.” Both are

going to send 10 QCIF frames over a 29.2kbps line. During the first three frames of our algorithm,

initial 64 code vectors are transmitted prior to the compressed data. Thus, encoding starts from the

fourth frame (0.4s).

Figure 5.54 shows temporal bit allocation at each stage. In our adaptive method, every frame is

compressed in a fixed size of 2920bit. Suzie shakes her head near 1.8 second, when the motion is

most active. The proposed algorithm allocates motion vectors and the indexes of Stage 2 to most of

bits at that time. The results indicate that transmitted bits are properly assigned for each stage. In

3ITU-T SG15 Experts Group on Very Low Bitrate Visual Telephony: “Video Codecs Test Model, TMN5,” (1995).
No option is used.
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Figure 5.54, the temporal bit allocation of H.263 dynamically fluctuates according to the temporal

and spatial activity. At the 1.8 second, H.263 skips a frame so as not to exceed the limit (29.2kbit/s),

since the compressed frame amounts to over 5000 bit. Table 5.19 shows the average PSNRs for

8 standard video sequences. The column “1024 CVs” shows PSNRs of the proposed fixed-rate

MSHVQ algorithm. The quality of reconstructed image derived from the algorithm is only 2.5dB

worse on the average compared with H.263.
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Figure 5.54: Temporal bit allocation of Suzie for
the proposed MSHVQ algorithm and H.263.

We evaluate the effect of the derivative code vectors from 64 code vectors. The column “64 CVs”

in Table 5.19 shows the PSNRs obtained from 64 code vectors. The proposed method using 1024

code vectors always enhances the PSNRs by an average of 1.1dB, even though the bit width of the

index increases from 6bit to 10bit.

Robustness to Noise

To evaluate the robustness to the noise, two error conditions from MPEG4 error-resilience test

conditions[MPE95] in Table 5.20 are applied to Mother&Daughter (Mot&Dau), Miss America and

Suzie. Note that we modify Multiple Burst Errors condition to “2 burst errors in [1.5,5]” for Suzie

and Miss America, since they are 5 second long.

Table 5.21 shows the average PSNRs from High Random BER (HRB) and Multiple Burst Error

(MBE) conditions. Figure 5.55 and Figure 5.56 depict the temporal PSNR transitions from HRB and

MBE using Mother&Daughter respectively. The topmost line shows the original no-error condition.

Reference [MN96] has proposed a self-synchronized coding scheme for H.263, which shows

the PSNR transitions in the condition of 24kbps and 48kbps. The PSNR curves drop drastically

from 30dB to 15 or 20dB on the 10 [ 3 random BER condition. Although simulation conditions are

different, it is evident that H.263 is extremely weak to noise because of the VLC and the activity-
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Table 5.19: Average PSNRs for 8 standard video sequences.

PSNR (dB)

Proposed MSHVQ H.263

Sequence Name 64 CVs 1024 CVs

Miss America 35.4 36.4 39.7

Grandmother 32.2 33.7 35.6

Suzie 30.2 30.9 33.4

Mother&Daughter 29.3 30.7 33.4

Salesman 27.7 29.9 32.3

Trevor 27.0 27.9 30.5

Carphone 26.4 27.2 29.8

Foreman 25.3 26.0 28.3

average 29.2 30.3 32.8

64 CVs: Use only primitive vectors.

1024 CVs: Use derivative vectors.

H.263: No option is used.

oriented compression ratio as already shown in Figure 5.54. Our simulation results show that the

proposed fixed-rate MSHVQ algorithm is very robust to both random and burst errors. But, we have

to perform more simulations to fairly compare the error robustness for both algorithm. The PSNR

drops of our fixed-rate MSHVQ algorithm are always very small values of 1 or 2 dB. The PSNR drop

of the MBE condition from Suzie is largest of all (2.3dB), since the compressed data contains lots of

motion vectors. If the motion vectors are lost by noise, the quality of reconstructed image seriously

decreases.
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Table 5.20: Error conditions[MPE95].

Residual error conditions Description Error interval [begin,end(s)]

10 [ 3 Random Bit Error Rate High Random BER (HRB) [1.5,end]

3 burst of errors

50% BER within burst Multiple Burst Errors (MBE) [1.5,8]

Random Burst Length: 16 to 24 ms

Random bursts separation: \ 2s
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Table 5.21: Average PSNRs from High Random BER (HRB) and Multiple Burst Errors (MBE)
conditions.

Average PSNR(dB)

Sequence Mot&Dau Miss America Suzie

No Error 30.5 36.4 31.0

Random Seeds HRB MBE HRB MBE HRB MBE

10 29.9 30.1 35.9 36.0 30.7 30.6

11 28.7 29.9 35.1 35.9 29.2 27.5

12 29.4 29.8 35.9 36.1 30.2 30.1

13 29.8 29.6 36.1 36.2 30.5 30.1

14 29.5 29.9 35.8 34.9 30.5 25.8

15 29.8 29.8 35.5 35.3 30.5 28.4

16 29.5 28.9 36.1 34.5 30.0 27.6

17 29.4 29.8 36.1 35.5 30.7 30.7

18 29.7 28.1 34.5 35.0 30.0 26.4

19 29.8 29.1 35.7 35.9 30.6 30.1

Average 29.5 29.5 35.7 35.5 30.3 28.7

PSNR drop -1.0 -1.0 -0.7 -0.9 -0.7 -2.3
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5.9 Summary of the Chapter

In this chapter, an implementation of the FMPP for vector quantization (FMPP-VQ) is described in

detail. Vector quantization (VQ) is very much applicable to the memory-based architecture. In VQ

a single input vector is compared with lots of code vectors. The output value is only an index of

the nearest vector. We can obtain indexes for multiple input vectors without changing the content of

code vectors. An input vector can be broadcast through the shared bus.

We have designed and fabricated 3 LSIs. The first one integrates 4 PEs in order to verify its

functionalities, which is almost fully functional at 25MHz. The other two LSIs contains 64 PEs to be

applied for actual image compression. The FMPP-VQ64 integrates 64 PEs and a simple control logic,

which is fully functional besides the control logic. It can perform 53,000 nearest neighbor searches

(NNSs) per second, while its power consumption is only 20mW. The FMPP-VQ64M integrates 64

reorganized PEs and a highly-functional control logic. The strategy to compute the absolute distance

is optimized. Therefore, the performance is doubled, while its power dissipation is reduced to half.

The highly-functional control logic automatically proceeds the procedure for the NNS. Memory-

based parallel processing allows both of high performance and low power. The commercial micro

processor working at 300MHz cannot exceed the performance of the FMPP-VQ, while dissipating

more power.

We have also developed a real-time low-rate video compression system based on VQ. It can

transmit 10 QCIF (176 ] 144) video frames per second through a 29.2kbps wireless line. Our

developed compression algorithm uses an adaptive multi-stage hierarchical vector quantization. When

video activity is high, large pixel blocks for low resolution are mainly transmitted. When it is low,

small pixel blocks for high resolution increase the quality. It is robust to noise, since the fixed length

code is used instead of the variable length code as in the DCT-based algorithms and every frame

is compressed to a fixed size. It achieves PSNRs over 30dB for the well-known standard video

sequences. It is robust to both random and burst errors. The PSNR drops are only 1 or 2dB. The

proposed algorithm can encode the QCIF video sequence in real-time on a CPU and an FMPP-VQ64

LSI. The decoding process can be done on the CPU only. We are going to develop the experimental

encoding system which consists of a personal computer and a daughter board with an FMPP-VQ64

LSI. The most intensive future work of this research is to develop a portable videophone system for

mobile communication. It will be realized by the FMPP-VQ64M LSI and an application specific LSI

for encoding and decoding.



110 Chapter 5. FMPP for Vector Quantization: FMPP-VQ



Chapter 6

Conclusion

In this paper, a memory-based SIMD shared-bus parallel processor, “Functional Memory Type

Parallel Processor (FMPP)” is discussed. Current computers consist of a fast CPU (processor) and

slow DRAM modules. Between them, there is a shared bus where all the data and codes (programs)

should be passed through. The shared bus causes so-called Von Neumann bottleneck, where the

system performance is limited by the performance of the bus. The FMPP architecture integrates

a memory and a processor on a single LSI. These two components, a memory and a processor,

are closely linked in the FMPP. A processing element (PE) contains some amount of memory and

an ALU. All PEs are connected thorough a shared bus and laid out in a two-dimensional regular

array structure. The FMPP has a capability to break the bottleneck. The FMPP-based computing

system, where the part of main memory is replaced with the FMPP, shows better performance than the

conventional Neumann computer. For example, an FMPP-based system with 1000 PEs can perform

SIMD operations 40 times faster than a conventional Von Neumann computer.

The bit-parallel block-parallel structure is proposed and discussed here. A PE of the BPBP

structure consists of several words and a bit-parallel ALU. It is suitable for arithmetic computations

such as addition or multiplication. We have developed and fabricated a 1kbit BPBP-FMPP LSI,

which is the first prototype FMPP LSI and works as a RAM, a CAM and a parallel processor. The

capability of addition in a bit-parallel manner enables arithmetic computations inside memory storage

cells without transferring data between a memory and a CPU. We propose a new strategy for addition

using a CAM-based memory and a Manchester carry chain without using any conventional adder. The

LSI has various functionalities of numerical and logical operations. The BPBP-FMPP can be applied

for the knapsack problem, one of NP-hard combinatorial optimization problems. The BPBP-FMPP

is 100,000 times faster than the sequential implementation when the number of luggage is 20.

We have proposed an application specific bit-parallel block-parallel FMPP for Vector Quantization

(FMPP-VQ) to accelerate the nearest neighbor search (NNS) of vector quantization. Each processing

element computes the distance between an input vector and a code vector and finally the code vector

nearest to the input vector can be obtained rapidly using the CAM-based parallel search. Memory-



112 Chapter 6. Conclusion

based architecture and the ALU using pass-transistor logic minimize circuit area considerably. An

LSI including four PEs has been implemented in a 0.7 ^ m CMOS process. It operates at 25MHz.

Then, we have developed the FMPP-VQ64 containing 64 PEs, which is fabricated using the same

0.7 ^ m CMOS process. It performs 53,000 NNSs for 16-dimensional code vectors. The power

consumption is 20mW at the condition of 25MHz clock frequency and 3.0V power supply voltage.

The modified version of the FMPP-VQ64 called FMPP-VQ64M has been fabricated. It performs

111,000 NNSs per second, while its power consumption is estimated to 10mW. It also integrates

highly-functional control logic. The memory-based architecture enables both of high performance

and low power. A serial implementation including 8kbit SRAM for code vectors has a capability to

achieve almost the same performance than the FMPP-VQ LSIs, but it must dissipate 10 times larger

power than the FMPP-VQ.

We have proposed a hierarchical multi-stage vector quantization algorithm for real-time low-rate

video compression using the FMPP-VQ. It can transfer 10 QCIF frames per second over a 29.2kbps

mobile wireless channel. It is robust to noise, since a pixel block is compressed to an index coded

with a fixed length. A frame of image is first motion-compensated. Then the residual surface is

hierarchically compressed by multiple stages. The vector dimension is fixed to 16 (4 ] 4) all through

the stages to share the same quantization methodology. Large blocks over 4 ] 4 pixels are decimated

to 16. The algorithm compresses video frames adaptively to the activity. For high-active frames,

motion vectors and large blocks for low resolution are mainly transmitted to compensate temporal

activity. For low-active frames, small blocks enhance the image quality. It achieves the PSNR over

30dB for the well-known standard video sequences. The quality of reconstructed image is only 2.3dB

worse than that from H.263.

The proposed algorithm is done in real-time on the experimental video compression system

composed of a PC and the FMPP-VQ64 for the nearest neighbor search. Compressed data from the

proposed algorithm can be easily decoded. It takes 4.4ms. on Pentium 200MHz, while H.263 takes

10.9ms. Our future task is to build a portable real-time low-rate videophone system for mobile field.

The proposed algorithm will be done on a low-power application specific LSI and the FMPP-VQ64

LSI.

The FMPP allows massively parallel processing inside memory. But the actual LSI implemen-

tations do not have enough parallelism. The fist implementation 1kbit BPBP-FMPP has only 8 PEs,

which is mainly because its high functionality and 32bit operation capability. The fabricated process

is also the 1.2 ^ m CMOS process, which is old-fashioned. In the FMPP-VQ architecture, we have

implemented 64 PEs using the 0.7 ^ m CMOS process. The functionality and bit-width of the PE is

eliminated for vector quantization, which enhance the integration density. These 64 PEs are enough

for vector quantization. But, the FMPP cannot show massively parallel computation on such an
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application specific implementation. The area of the FMPP-VQ64 including 8kbit codebook words

is 10 times bigger than the conventional 8kbit SRAMs. Although the FMPP architecture allows high

integration density to eliminate communication between PEs and to control all the PEs with the same

instructions, the bus and control lines still occupy large area. The brand-new fine grain sub-micron

process, however, will allow huge number of processors on a single die.

In this paper, two bit-parallel block-parallel FMPPs are proposed. The BPBP-FMPP is for general

purpose and the FMPP-VQ is application-specific. At first, the FMPP architecture is proposed to be

used as a part of main memory for general purpose processing. The current research, however, tends

to aim a specific application such as vector quantization. As discussed in Chapter 3, the FMPP-based

computing system outperforms the conventional Von Neumann computers. Our future task is to

develop an FMPP-based computing system including the following components:

_ An FMPP LSI for a part of main memory,

_ A processor that can handle the memory-based processing inside the FMPP.

_ A compiler that can assign SIMD operations to the FMPP.

The block-parallel structure is suitable for such a system, since huge number of numerical

operations among multiple words can simultaneously be done in bit-parallel.
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