RBAFZWERY KT b %
Al

KURENAI

Kyoto University Research Information Repository

Title A Study of the Functional Memory Type Parallel Processor(
Dissertation_J [)

Author(s) | Kobayashi, Kazutoshi

Citation Kyoto University (0 O 0O 0)

Issue Date | 1999-01-25

URL http://dx.doi.org/10.11501/3147511

Right

Type Thesis or Dissertation

Textversion | author

Kyoto University

A Study of
the Functional Memory Type
Parallel Processor

FMPP

http://www.tamaru.kuee.kyoto-u.ac.jp/fmpp/

K azutoshi Kobayashi

Kyoto University

September 1998

Abstract

This paper describes a memory-based SIMD shared-bus parallel processor architecture, which is
called “Functional Memory Type Parallel Processor” abbreviated as FMPP. The FM PP architecture
integrates memory and an ALU closely on asingledie. All the PEs are connected with a shared bus
and laid out in atwo-dimensional array like memory and perform the same instructions according to
the SIMD manner. The FMPP architecture enables massively parallel computing inside a memory.
It has a capability to break the Von Neumann bottleneck where the system performance islimited by
the bus performance between memory and CPU.

We have developed four LSIs based on the bit-parallel block-parallel architecture, where a PE
consists of several words and a bit-parallel ALU. The first LS| called the BPBP-FMPP with 8 PEs
is designed and fabricated for general purpose. A PE consists of 32bit CAM words and a 32bit
ALU for numerical and logical operations. The following three LSIs caled FMPP-VQ are for a
special purpose: vector quantization (VQ). A PE consists of 16 words of 8bit SRAMs and a 12bit
ALU. The FMPP-VQ accelerates the nearest neighbor search where the vector nearest to an input
is extracted among large number of code vectors. The FMPP-VQ4 with 4 PEsis an evaluation LS|
to confirm functionalities. The second FMPP-V Q64 integrates 64 PEs. It performs over 50,000
nearest neighbor searches per second, while its power consumption is 20mW. It can be used for
real-time low-rate video compression. The third FMPP-VQ64M is designed for more powerful and
low-power computation. Its performance becomes almost twice, whileits power consumption is half
compared with the FMPP-V Q64. We have also devel oped alow-rate video compression system using
the FMPP-V Q. The proposed multi-stage hierarchical vector quantization algorithm can transmit 10
QCIF frames per second through a 29.2kbps mobile channel.

Contents

1 Introduction

21

2.2

2.3

3.1
3.2
3.3

34

35

4.1

Overview of Parallel Processor and Functional Memory

Parallel Processor Architecturesto Break the Von Neumann Bottleneck
2.1.1 Von Neumann Computer Architecture
2.1.2 SIMD Parallel Processor to Solve the Von Neumann Bottleneck
Functional Memory and Associative Processor L.
221 Content AddressableMemory
222 AssOCiativeProcessors.
2.2.3 Implementations of AssociativeProcessors L.

Summary of theChapter

Functional Memory Type Parallel Processor: FM PP

Featuresof the FMPP
FMPP Architectures According to the PE Granuadlity
Implementations of the FMPP Architecture
3.3.1 Bit-seriad Word-parallel Architecture
3.3.2 Bit-pardllel Block-parallel Architecture
Parallel Computation Efficiency onthe FMPP 0oL
3.4.1 Von Neumann Bottle Neck on the Conventional Computer
34.2 Paaled Computationonthe FMPP
Summary of theChapter

An Implementation of the Bit-Parallel Block-Parallel FM PP

BPBP-FMPP
411 Logica OperationsontheCAMCdl
4.1.2 Block Diagram
413 Primary Operations
414 DataMask and AddressMask Operations

O© N N O wow w

10
13

15
15
17
18
19
21
25
25
27
31

WY Contents
4.1.5 Detaled Structure of theMemory Block 37

4.2 Detaled Operation Strategies e 38
421 Logica Operations 39
4.2.2 Additionand Subtraction 39
423 Shift/rotateLeft Operation 41

424 SearchOperation 41
425 Multiplication 41

426 MultipleResponseResolution oL 43

4.3 1kbit BPBP-FMPPLSI 43
431 LSIOverview 43
432 TestResults 44
4.3.3 Comparison for the Circuit Areas between CMOS and CPL Logics 45

4.4 Applicationsof theBPBP-FMPP 46
4.4.1 Threshold Search and Extremum Search 47
442 Knapsack Problem 48

45 Summary oftheChapter L 49
5 Functional Memory Type Parallel Processor for Vector Quantization: FMPP-VQ 51
51 Introduction e 51
5.2 Vector Quantizationof Image Lo 53
5.3 Vector Quantizationonthe FMPP L. 55
54 Architectureand Structure 56
54.1 Nearest Neighbor Searchonthe FMPP-VQ 57

54.2 Structureof theFMPP-VQ 58

54.3 Detaled StructureofthePEo 60

54.4 Nearest Neighbor SearchProcedure 67
545 Listof Operationsonthe FMPP-VQ 68

55 Implementationsof FMPP-VQLSIs 72
55.1 AnLSI Including Four PEsand TEGs. FMPP-VQ4 72
5.5.2 AnLSl Including 64 PEsand Control Logics: FMPP-VQ64 73
55.3 Integration Density of the FMPP-VQ64 76

554 Testability of the FMPP-VQ64 a4

5.6 Maodified Version of the FMPP-VQ: FMPP-VQ64M 78
56.1 StructureofaPE. 79

5.6.2 Absolute Distance Computation 80

Contents \Y}

5.6.3 Detaled Structureof theALU 81
5.6.4 A Highly-Functional Control Logic 83
5.6.5 Specificationand Implementation 84
5.7 Comparison with Other Implementations 88
5.7.1 Comparison with the Other Vector Quantizer. 88
5.7.2 Comparison with the Von Neumann Sequential Processors. 92

5.7.3 Comparison with an Application Specific Processor for Vector Quantization 93

5.8 A Low-rate and Low Power Image Compression System Usingthe FMPP-VQ . . . 95
5.8.1 Overview of the Real-Time Low-Rate Video Compression System 96

582 CodingAlgorithm 97

5.8.3 Experimental Real-Time Low-Rate Video Compression System 102

584 PeaformanceEvaluation 104

59 SummaryoftheChapter 109

6 Conclusion 111
Bibliography 114
Publication List 121

Acknowledgment 125

Vi

Contents

List of Figures

21
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10

31
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
3.10
311

3.12
3.13
3.14
3.15
3.16
3.17

Von Neumann computer and its hierarchical memory structure. 4
IMAPLSI. e 6
Block diagramof adkb CAM. 8
Memory cells of a CAM(left) and a conventional 6-transistor SRAM(right). 9
MatchlineonaCAMccel. 9
General bit-serial associative processors. e e 10
Multipleevalued CAM cell. 11
A pixel parallel image associative processor[HS92, GS97]. 11
Dynamic content addressablememory cell. L. 12
Animplementation of computational RAM. 12
Functional memory type parallel processor architecture. 16
Several FMPP architectures according to PE granuality. 17
Flow chart of theminimumvaluesearch. 19
Procedurefor the minimumvauesearch. 19
Thresholdsearchon CAM. 20
Algorithm for global addition. L. 21
Dataflow-chart of global addition. 21
Algorithm for local addition.o 22
Dataflow-chart of local addition. 22
Whole structure of the functional memory for paralel addition. 23
Processing element of the functional memory for parallel addition(a), its memory cell

(D). . . e 23
Layout patternof aPE. L 24
Structureof the FMPP-IP. 24
Processing Unitof the FMPP-IP. 24
Processor DRAM gap[Fro98]. 25
A computer system using an FMPP asapart of mainmemory. 27

Total execution time on the Von-Neumann computer and onthe FMPP. 28

viii List of figures
3.18 Von Neumann system with cache memory and FMPP-based system. 29
3.19 Performance efficiency of an Neumann Computer system/an FMPPsystem. 30
4.1 Logica operationsonaCAMccell. Lo 34
4.2 Block diagram of theBPBPFMPPLSI. 35
4.3 Structureof aPE. 36
4.4 Detalled schematic structure of amemory block. 38
45 AnFMPP memory cell and logical operations. 38
46 ThebuffersP& G.. e 39
4.7 Manchestercarrychain. 39
4.8 Additionbetween2words.. Lo 40
4.9 Multiplication between2words.o 42
4.10 Layout pattern of afour-bit dice of thememory block. 44
4.11 Chip micro photograph of the BPBP-FMPP. 46
4.12 Operating waveforms from read/writeoperations. 47
4.13 Computation time of extremumsearch. 48
4.14 Computation time of knapsack problem. 49
5.1 Vector quantizationof images.o 54
5.2 Nearest neighbor search and codebook optimization. 55
53 Block diagramof the FMPP-VQ. 58
54 Structureof aPE. 60
55 LayoutpatternofaPE.. 60
56 OnebitdiceoftheALU. 61
57 Operandword. e 61
5.8 Searchlineand reference linefor the search operation. 61
59 Twobitdiceof thecarrychain. L oo 62
5.10 Inverter controlled by an NMOSFET. 62
511 XNOR (exclusive-nor)gate. e e 62
512 Temporary word. e 63
513 Resultword. e 63
5.14 Schematicview of twoflags.o 64
5.15 The overflow flag and the part of the local control logic. 64
5.16 Column priority addressencoder. 65
5.17 Two dimensional priority address encoder for the FMPP-VQ64. 66
5.18 Procedure for computing the absolutedistance. 68

List of figures IX

5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
541
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52

Program of theminimumvaluesearch. 69
The minimumvaluesearchprocedures. 69
Timing Diagram of the FMPP-VQ. 71
Whole procedure to perform the nearest neighbor search. 71
Chip microphotograph of the FMPP-VQ4. 73
The detailed block diagram of the FMPP-VQ64. 74
Verilog-HDL description of the operand word and thecarry chain. 75
The chip microphotograph of the FMPP-VQ64. 76
A measured Shmoo plot of supply voltage versus cycletimeinthe FMPP-VQ64. . . 77
Dynamic Current flow on the absolute distance computation. 78
Parallel random-access capability tothe ALU. 79
PE structures of the FMPP-VQ64(a) and the FMPP-VQ64M(b). 80
A single dimension dlice of the absolute distance computation in FMPP-VQ64M. . 82
Two-bitdliceof the ALU. 83
Structure of theoperandword. L 84
Inverter controlled by aPMOSFET. 84
Structure of theresultword. 84
The flow of mode changesinthe FMPP-VQ64M. 84
Layoutof aPE. 87
Chip micrograph of the FMPP-VQ64M. 87
A systolic binary-searched vector quantizer. 89
A systolic full-searched array processor[WC95]. 90
A serid full-searched MSE processor[CWL96] 91
A fully-parallel 256-elements parallel processor[SNK*97] 91
C«RAM implementation of vector quantization for video compression[LP95]. . . . 92
C program for the nearest neighbor search. 93
The assembler program to compute the absolute distance of asingledimension. . . 94
An application specific processor forVQ. L. 95
Schematic diagram of the low-rate video compressionsystem. 96
Four hierarchical stagesfor decimation and interpolation. 98
Block diagram of our coding algorithm. 99
Derivative code vectorsfrom aprimitivevector. L. 101
Experimental real-time low-rate video compressionsystem. 104

Computation amount of each function on decoding of the fixed-rate MSHVQ and

List of figures

5.53 PSNRs of the proposed MSHVQ algorithm and H.263 for “Suzie” 105
5.54 Temporal bit allocation of Suzie for the proposed MSHVQ algorithmand H.263. . . 105
5.55 PSNR transitions from High Random BER (10—2) using Mother& Daughter. 107

5.56 PSNR transitions from Multiple Burst Errorsusing Mother& Daughter. 107

List of Tables

21

31
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6

S.7

5.8
5.9

5.10
5.11

5.12
5.13
5.14
5.15

SIMD distributed-memory parallel processor implementations. 6
Parametersfor a conventional Von Neumann computer. 26
Specof Portege 620CT. 26
Parameters to compare a Neumann Computer system withan FMPPsystem. 30
Primary operationsonthe BPBP-FMPP. 37
Overview of the 1kbit BPBP-FMPPLSI. 45
Component areas of the 1kbit FMPP LS| together with a 256kbit SRAM. 45
Comparison of the structure for logical operation. 46
Parameters and definition for vector quantization. 56
All available SIMD operations of the FMPP-VQ. 70
Other operationsof the FMPP-VQ. 70
LSI specificationsof the FMPP-VQ4. 72
L SI specifications of both of the FMPP-VQ4 and FMPP-VQ64. 74
Comparisonsof power dissipation by activating theinverter at the numerical operation

and by always activating the inverter. The conditionis5V/25MHz. 76
Areafor 1 PE of the FMPP-V Q64 and 8kbit SRAM fabricated by the same 0.7m

PrOCESS. o e e e e 77

Comparison of areas and performance for the FMPP-V Q64 and the FMPP-VQ64M. 85
Power consumption of the FMPP-V Q64M from circuit simulations of aPPE at 25MHz

5.0V, . e e 85
Power dissipation map for al thecomponentsinaPE. 86
The power consumption of the FMPP-VQ64M expected from the measured results

of the FMPP-VQ64. o 86
Areasfor PEs of the FMPP-VQ64 and FMPP-VQ64M. 86
Theareasfor FMPP-VQ64 and FMPP-VQ64M. 87
Number of standard cellsfor control logics. 88

Comparison with the other vector quantizers. 92

Xii

List of figures

5.16 Speed and power dissipation table of the nearest neighbor search among 64 code

VECIOIS. L e e e 93
517 SRAM specifications. 94
5.18 Contentsof compressed 2920bitdata. 103
5.19 Average PSNRsfor 8 standardvideosequences. 106
5.20 Error conditionfMPE9S]. 107

5.21 Average PSNRs from High Random BER (HRB) and Multiple Burst Errors (MBE)

conditions., 108

Chapter 1

| ntroduction

This paper is a summary of a memory-based SIMD (single instruction multiple data stream) shared-
bus parallel processor architecture, which is called the “ Functional Memory Type Parallel Processor”
abbreviated as FMPP. Almost all the current computing systems are based on the Von Neumann
architecture, where a CPU and memory devices are connected with a shared bus. All the data
and programs should be transfered between the CPU and memory through the bus. Although the
performance of the CPU is rapidly improving, the performance of the Von Neumann system is
limited by the performance of the bus or the memory, which phenomenon is called “Von Neumann
Bottleneck.” Thisis because the performance of the memory is not improved faster than that of the
CPU and the width of the busis limited to be narrow. The bottleneck must be alleviated to perform
processing inside a memory device. The memory device implies parallel computation capability,
since it consists of a two-dimensional array of memory words. All the words can work in parallel.
Thetwo-dimensional regular array structure achieves highly dense layout improving four times every
three years. The FMPP architecture allows parallel processing inside memory devices. A processing
element (PE) consists of some amount of memory cells and an ALU. All the PEs connected with a
shared-bus work in parallel according to a single instruction provided through a central control unit
(the SIMD control method). The FMPP is suitable for operations where communication between
processors or external devicesis not so frequent and the same operations are done for huge number
of data set. The processing capability is defined by the processor granuality. Fine granuality makes
the functionality poor. Coarse granuality enlarges the area. A bit-parallel block-paralel (BPBP)
structure is proposed in this paper for middle-grain modest-functional processing. The PE consists
of several wordsand a bit-parallel ALU. Four LSIs have been devel oped and fabricated based on the
BPBP structure. The first emerged LSl is called BPBP-FM PP, which contains eight 32bit PEs and
can be applied for general purpose. The following three LSIs called the FMPP-VQ are for a special
purpose: vector quantization (VQ). A PE consists of 16 eight-bit SRAMs and a 12bit ALU. The
FMPP-VQ can search the vector (pattern) nearest to an input among all the vectors stored in PEs.
It is successfully applied to real-time low-rate video compression by VQ. The first FMPP-VQ LS|

2 Chapter 1. Introduction

contains four PEs to evaluate its functionalities. The second and third attempts integrate 64 PEs to
be applied for real-time low-rate image compression. We have also developed an algorithm and a
real-time low-rate compression system using the FMPP-V Q.

Chapter 2 gives overview of the functional memory. The functional memory is a memory device
with some functionalities. The FMPP can be categorized to the functional memory. The CAM and
associative processor architectures are also discussed. Chapter 3 explains the FMPP architecture
in detail. The BPBP structure is compared with the other two structures, bit-parallel word-parallel
and bit-serial word-parallel. The performance efficiency on the FMPP-based computing system is
aso argued. The BPBP-FMPP is described in Chapter 4. Chapter 5 introduces the FMPP-VQ
architecture, the three LSl implementations and the real-time low-rate video compression system.

Chapter 6 summarizes this paper.

Chapter 2

Overview of Parallel Processor and
Functional Memory

This chapter describes the overview of parallel processor and functional memory. The functional
memory type parallel processor (FMPP) is a parallel processor architecture based on functional
memory. First, we address the Von Neumann bottleneck eliminating the performance of the current
computing system. Several parallel processor architectures are introduced to break the bottleneck.

Then, functional memory and associative processors are described in detail.

2.1 Parallel Processor Architecturesto Break the Von Neumann
Bottleneck

The current Von Neumann computer architecture confronts the bottleneck where the system perfor-
mance is limited by the bus performance. This section gives the brief description of the bottleneck
and shows several parallel processor architectures to break the bottleneck.

2.1.1 Von Neumann Computer Architecture

In the Von Neumann architecture, computers are composed of a central processing unit (CPU) and
a memory unit (Figure 2.1). CPU performs operations according to codes (programs) and data in
the memory unit. They are connected with a bus. At the rise time of computers, thousands of relay
switches and vacuum tubes form a computer unit. As the emergence of semiconductor devices, the
memory and CPU arereplaced with discretetransistors. Now they areintegrated on LSIs(Large Scale
Integrations or Large Scale Integrated circuits). The most popular commercial processor Pentium
integrates over 1 million transistors and itsinternal clock speed becomes over 300MHz. The largest
commercial DRAM (Dynamic Random Access Memory) has 256 million bits on asingle LSl. In
the Von Neumann architecture, all data and codes have to be passed from the main memory to the
CPU through the bus. The bandwidth between them is narrow, since the number of pins pulled
outside LSIs are limited. Pentium has only 64-bit bus. The access time of DRAM is about 50ns

4 Chapter 2. Overview of Parallel Processor and Functional Memory

(20MHz). In these conditions, Pentium can perform 300MIPS (Mega instructions per second), but
the DRAM gives only 160M bytes of data and codes per second to the CPU. The bus degrades the
performance of the CPU, which is so-called “Von Neumann bottleneck.” To compensate the Von
Neumann bottleneck, all of current commercial CPUs have memory hierarchy as shown in Figure
2.1. The memory hierarchy virtually shortens the access time of the DRAM if the accessed data
exists on cache memory (Cache Hit). The actual access time, however, becomes longer because the
actual distance from the CPU to the DRAM becomes longer. That produces severe problemsin some
applications. For example, these hierarchical structure of cache memory is not so effective for image
processing. Image processing usually applies the same operations to image data. The image data
of video sequence amounts to huge size. In the JPEG, the famous DCT-based image compression
algorithm, the image data is divided into a block, each of which includes 8x8 pixels. Each block
has no relation with others. In this situation, the first cache in the CPU can store a single block data,
which accelerates processing. But the second cache between DRAM and CPU does not contribute

the processing speed. It merely prolongs the access time of DRAM.

TTTT
register
files

&

Main Memory

(DRAM) | I
$

Figure 2.1: Von Neumann computer and its hierarchical memory structure.

o)
<
(3]
©
O
=
2]
—

©
<
[}
u <
O
°
c
~

ALU

CPU $=cache

Asfor the power dissipation, an off-chip bus to connect the CPU and memory dissipates alarge
amount of power. Reference [Wat98] mentionsthat an external pin-to-pin I/O connection yields 50pF
of stray capacitance, while an internal 1/0O connection yields only 1pF which is 50 times smaller.
The dissipated power is proportional to the value of stray capacitance. If we implement the CPU
and memory in asingle LSI, the power dissipation must be minimized. Recently, such a challenge
called “Merging memory (DRAM) and Logic” becomes very popular. The deep sub-micron process
on the current VLS! technology actualizes a mixture of logic and DRAM on a single LSI. Some
LSl vendors develop commercial products implementing some amount of DRAM and logics on
a single die[INK+95, WFY*97]. eRAM TMpy Mitsubishi Electric Corp. stands for “embedded
random access memory”[ERA]. The 3D-RAM[INK*95] is one of LSIs of the eRAM architecture.
It integrates Z-compare or a-blend units to be applied to 3D-graphic applications. A single LS|
contains 10Mbit DRAM and an SRAM cache with asingle ALU for Z-compare or a-blend. Severa

2.1. Pardle Processor Architectures to Break the Von Neumann Bottleneck 5

L SIs simultaneously work to complete 3D-graphic applications.

2.1.2 SIMD Paralldl Processor to Solvethe Von Neumann Bottleneck

Several approaches can be taken to break the Von Neumann bottleneck. One approach is to have
multiple CPUswork in parallel, which iscalled “ parallel processors.” Pentium now integrates SIMD
processors, which is called MM X extension, which is suitable for image processing or video game.
Parallel processor is a key technology to obtain more powerful and effective computation on LSIs.
Parallel processor is categorized in two by its memory architecture: distributed memory and shared
memory. In the distributed memory architecture, a processor has its own memory, while all the
processors shares common memory in the shared memory architecture. The distributed alleviatesthe
bottleneck more than the shared, since the bandwidth between memory and processor is extended
according to the number of processing elements (PEs). A complex control method usually makes
it difficult to describe a parallel program and makes the area of the PE larger. Genera pardlé
processors can also be grouped into two major categories by the control method. One is SIMD
that means “Single Instruction Multiple Data Stream.” The other is MIMD that is an abbreviation
of “Multiple Instruction Multiple Data Stream.” On the SIMD, all processors work simultaneously
according to the same instruction. On the MIMD, each processor performs its own instruction. An
SIMD paralel processor can be implemented in a smaller area than an MIMD parallel processor,
since a PE of the MIMD should have its own control logic. All PEs of the SIMD, however, can be
controlled by a common control logic. The number of PEs on a single die should become larger in
the SIMD architecture. Thus, the SIMD distributed-memory parallel processor is a good candidate
to break the bottleneck.

We should consider some more parameters to implement SIMD distributed-memory parallel pro-
cessors. Here, these three parameters are chosen to categorize them : processor granuality, processor
functionality and communication network. They have strong correlation with each other. Fine pro-
cessor granuality usually makes the functionality of a PE poorer. Complex communication network
always makesthe area of an LS| larger. We introduce several implementations of SIMD distributed-
memory parallel processors by those three parameters. Table 2.1 shows the three implementations of
the SIMD distributed-memory parallel processors.

Connection Machine[Hil87] isan SIMD parallel processor. In the first system called CM 1, each
PE consists of 4kbit memory and a bit-serial ALU, which isvery smple. The CM1 consists of 64k
PEs connected with a complex flexible network called “hyper-cube.” A software programmer can
design a network of processors as he want. Connection Machine is developed for general purpose.

Content Addressable Memory (CAM) is a memory device which can associate address from

contents of memory. Detail descriptions are shown later in Section 2.2.1 and Section 3.3.1. It is

6 Chapter 2. Overview of Parallel Processor and Functional Memory

Table 2.1: SIMD distributed-memory parallel processor implementations.

Granuality | Functionality | Network (Type)
Connection Machine | fine poor Complex (Hyper-cube)
CAM | veryfine | very poor Simple (Bus-connected)
IMAP | coarse medium Simple (Bus-connected)

usually regarded as memory than parallel processors. But it can be applied to parallel processing
using its associative capability as shown in Section 3.3.1.

IMAP stands for Integrated Memory Array Processor proposed by a group of NEC[FY092]. It
is an SIMD parallel processor architecture merging SRAM and logic. The IMAP LSI[KNA195]
integrates a 2MB SRAM with 64 PEs. The block diagram is shown in Figure 2.2. A 64kb SRAM
macro is assigned to two PEs. They can directly communicate with the assigned SRAM macro.*
Each PE consists of several 8hit registersand an 8bit ALU. Its peak performance becomes 3.84 GIPS,
but its power consumption is 4W. An image processing system connected to the PCI bus is already
commercially available]NEC].

64kb SRAM x 10

Main Bus

sng AJIOWBa\

Figure 2.2: IMAPLSI.

As described above, various distributed-memory SIMD parallel processor architectures are avail-
able. In the Connection Machine architecture, complex network reduces the integration density. The

18 SRAM macros are redundant.

2.2. Functional Memory and Associative Processor 7

progress of the current VL SI technology enlarges the integration density year by year. The memory
device enjoysthe progress enormously, since itstwo-dimensional array structure and shared-bus sim-
ple network are very much suited to the VLS| technology. Thus, the parallel processor architecture
based on the memory structure may hugely enjoy the VLSI technology. The CAM has the capability
to perform parallel processing inside memory. But itsfunctionality istoo poor. The IMAP integrates
multiple processor and memory devices on a single die. But memory and processor are separately
designed and the processor granuality isrelatively coarse.

In this paper, wefocus on amemory-based SIMD shared-bus parallel processor architecture called
FMPP. FMPP stands for Functional Memory type Parallel Processor. The FM PP architecture enables
fine-grain highly-functional parallel processing inside memory. It allowsnumerical operationsinside
memory. In the next section, we introduce functional memory and associative processor before

describing the FM PP architecture.

2.2 Functional Memory and Associative Processor

Functional memory can be described as a memory including some simple functions such as content
addressing. It is proposed by Kohonen[Koh87] as “associative memory.” The original associative
memory is some kind of conceptual one. It can associate a target value from several key values
like our brain. Kohonen implemented an optical associative memory to retrieve a full-sized image
from an incomplete image. On the other hand, content addressable memory (CAM) isan actua LS|
implementation of associative memories. Conventional memories like DRAMs or SRAMs associate
data from an address, while the CAM associates an address from data. Associative processor is a
parallel processor architecture to perform processing using its associativity. Here we explain the
CAM and the associative processor in detail. Implementations of the FMPP proposed in this paper
are based on the CAM architecture.

2.2.1 Content Addressable Memory

Ogura et a. implemented a 4kb content addressable memory[OYN85] in early 80's as shown in
Figure 2.3. Its memory cdll is shown in Figure 2.4 along with a memory cell of a conventional
6-transistor SRAM. The two pass transistors denoted by dashed circles work as a pass-transistored
XNOR (exclusive-nor) logic. Let the CAM cell store A and supply B and B to the two bit lines b0
and b1 respectively. Note that the supplied valueisinversed: bO= B and b1= B. The output node
C becomeslogic highif (A =1)&(B =0) or (A =0)&(B = 1). Itmeans A& B (XOR). To obtain
words matched to a key value, the multiple bits of a CAM cell form a single match line that works as
awired-NOR of al results from the XOR gates (See Figure 2.5). In theinitial condition, the Match

8 Chapter 2. Overview of Parallel Processor and Functional Memory

lineis precharged. A key valueis supplied to the CAM word, then the PRE is activated. If A = B,
the match line keeps logic high, or it is discharged since an XNOR gate where A[i] # Bi] becomes
true. The search flag connected to the Match line stores the search result. We call the operation
“search operation.” The search operation may have multiple search flags become true. The multiple
response resolver resolves the lowest address among CAM words search flags of which aretrue. The
signal E'r becomesfalseif thereisno true search flag. The garbage flag invalidates the search result.
It is usually used to read all the addresses search flags of which are true. When the lowest word
(the word address of which isthe lowest of all) isread out, its garbage flag becomes true. Then, the
multiple response resolver producesthe second-lowest address. Such an operationiscalled “Multiple
Response Resolution.” The CAM also has a functionality of parallel write operation: writing all the

words whose search flags are true.

key "] [[[

mask registers

flag flag

CAM Word

-
cell cell Match line cell ’—’

J,. Search || Garbage| _,.

CAM Cell Array

l
Multiple Response Resolver

.y
cell cell cell _A|—'
Associated Address <—‘

ER -]

Figure 2.3: Block diagram of a4kb CAM.

The mask register located at the top of the CAM cell array in Figure 2.3 masks specified bits. The
two bit line b0 and b1 become logic low at the masked bit. Thus, the XNOR gate of the bit aways
generates the false output regardless of the bit data. Thus, the specified bit is masked on the search
operation. The mask signal in the CAM cell is aso connected to the mask register. It is used to
prohibit the write operation to the specified bit.

They applied the CAM to Prolog machinesfNO90]. The CAM accelerates the back-track scheme.
The garbage flags support the garbage collection in Prolog. They have been devel oping high-density
CAM LSl implementations] FOT93, ONB*96, ON97]. The latest CAM LSI in [ON97] integrates

2.2. Functional Memory and Associative Processor 9

mask B

b0 @ bl @ b0 @ b1 @

Wl Wi

b ﬂ RN T; ;T

C Y 13%@. = A P A
Match Il» = » Match

Match i T c~ ® Vaich

Figure 2.4: Memory cells of a CAM(left) and a conventional 6-transistor SRAM(right).

bit1[m:0] @
bit0[m:0] @

:Ll/ L L
, | cam []{] | cam || | cAM
mbit CAMword 1 cgy] [lcen [= *]cel E -------
i i F—PREETI —
Match
| | 2e | i Match
bito bitl bit2 Match bitm —”%7

Figure 2.5: Match lineon a CAM cell.

®|

Match

366k-hit on a16.5x16.5 mm? die, which is applied to image processing.

2.2.2 Associative Processors

S.S. Yau and H.S. Fung surveyed associative processors in Reference [YF77]. An associative
processor can generally be described as a processor which has the following two properties:

1. Stored dataitems can beretrieved using their content or part of their content (it is called content

addressing).

2. Data transformation operations both arithmetic and logical can be performed over many sets

of arguments with asingle instruction (it is called parallel computation).

Although, the CAM has only the former property, we can regard the CAM as an associative
processor. Almost all implementations to be categorized into associative processors are based on
the content addressing capability of the CAM. In the rise time of associative processors, they were

applied to variousfields, for example, geometrical problems SKO90], a database accel erator[WS89],

10 Chapter 2. Overview of Parallel Processor and Functional Memory

a Prolog engingfNO90] and etc. But current target applications tend to image processing. This
may be because advantages obtained by these embedded associative processors are soon supposed
by commercial micro processors which have remarkably been improving. In the area of image
processing, however, these associative processors get agreat advantage over the micro processors on
the processing speed and power dissipation.

The architecture of associative processors can generally be classified into three categories ac-
cording to the processor granuality. The three categories are bit-oriented, word-oriented, and block-
oriented associative processors. The bit-oriented associative processors is the most fine grain one,
which PE consists of a single-bit memory cell with an ALU. A single word with an ALU forms
the PE of the word-oriented associative processors. The block-oriented associative processors are
implemented as the bit-parallel block-parallel FMPP in this paper. It consists of several words of
memory cells and an ALU. Comparison of these three architecturesis discussed in Section 3.2. The
word-oriented architecture is the most widely-spread and famous, since it can easily be implemented
to add a specific word-oriented ALU to a CAM word as shown in Figure 2.6. The ALU retrievesthe
single bit data through the match line of a CAM word.

Word-oriented
Logic Unit

CAM Array

EEEEE

N < ~ . /01=1PE

EEEEEEEE

Figure 2.6: General bit-serial associative processors.

2.2.3 Implementations of Associative Processors

Here, several implementations of associative processors are introduced.

A group of Waseda University[Was] proposed a CAM-based hardware engine for geometrical
problemg KNK*92]. They developed a 4kbit CAM to accelerate threshold search, extremum search
and parallel numerical operations. Numerical operations are donein bit-serial in an ALU attached to
aword.

A group of Tohoku University[Toh] develops a multiple-valued CAM [HAK97]. A cdll of the
CAM isafloating-gate MOStransistor similar to EEPROM cells(Figure 2.7). Thefloating-gate MOS

2.2. Functional Memory and Associative Processor 11

transistor stores 4 states by controlling the threshold voltage. They just propose a circuit diagram of
the CAM. They will apply it to fully parallel template-matching operations. They carry out another
research of intelligent vehicles, where a ROM-type CAM is applied to collision avoidance[HK 96].

Digit line

iy Match line

Floating gate _| |

] Word line

Figure 2.7: Multiple-valued CAM cell.

A dynamic associ ative memory processor has been proposed by Sodini et. al. in[HS92]. Asshown
in Figure 2.8 atwo-dimensional network connects all the PEs. A PE consists of associative parallel
processors which can be word-oriented or fully-parallel. A memory cell is called adynamic content-
addressable parallel processor cell as shown in Figure 2.9. Image processing such as smoothing is
introduced as an effective application on the dynamic associative memory processor, with each PE
assigned to asingle pixel. They fabricated a 256-element associative parallel processor LSI[HS95].
Currently, they have proposed and fabricated a pixel-parallel image processor based on the DRAM-
merged logic architecture] GS97]. A PE hasthe similar structure in the dynamic associative memory
processor. But a memory cell is replaced with a conventional DRAM cell. It integrates 128x 128

processors on a 78.6mm? die.

Associative processor array

Analog-to-digital
converter 0 PE 0 PE 0 PE 0
Analog : t : Processed
Imager Processor © P¢E Mg P¢E0 P¢E > images out
<4 PE P PE P PE P
PE Processing element Host computer

Figure 2.8: A pixel parallel image associative processor[HS92, GS97].

12 Chapter 2. Overview of Parallel Processor and Functional Memory

» Match

A
=<
o
]

n Write
¥ word

v vy
By B, Write
trit

Figure 2.9: Dynamic content addressable memory cell.

Computational RAM (CxRAM) is amemory-SIMD hybrid architecture where each column of
memory has an associated processing element[ESS92]. Figure 2.10 shows an implementation of
C«RAM. There are 64 bit-serial PEs. A 1kbit memory column is assigned to each PE. It is applied
to several image processing application including vector quantization. The detail description of

applying vector quantization is explained in Section 5.7 compared with the implementation of the
FMPP.

1 2 3 4 63| 64

/
/

address

row decoder
memory column
memory column
memory column
memory column

°

°

°
memory column
memory column

bit-serial PE | PE | PE | PE PE | PE

instruction ﬁL»
data 4%. broadcast bus

Figure 2.10: An implementation of computational RAM.

2.3. Summary of the Chapter 13

2.3 Summary of the Chapter

Here, parallel processor and functional memory are briefly discussed. Von Neumann architecture
has been used in the current computer system. At the emergence of the computer, the CPU and the
memory are separately fabricated. But now both can be integrated on asingle die. The challenge to
merge memory devices and processors on asingle LSI has just started recently owing to the current
rapid progress of integration density. It extends the bandwidth between memory and processors
considerably. But the speed gap between DRAMS and processors still remains. The gap should
be compensated by memory hierarchical structure. But it prolongs the bus length. If some amount
of processing can be done on memory devices, the system performance will be promoted. The
functional memory architecture attaches simple processing capability to memory devices to enable
on-memory processing. The CAM, the most famous widely-used functional memory can detect an
address from its content. It can be regarded as a parallel processor where each word becomes a
processor. Its two-dimensional structure is very much suited to the current VLS| technology. The
functional memory type parallel processor, FM PP architecture described in the next chapter can be
categorized to the functional memory. It isamemory-based SIMD shared-busparallel processor. The
FMPP integrates fine-grain memory-based PEs in a two-dimensional array. The features of SIMD
and shared bus enhances the integration density. Huge number of processorson asingle LS| perform

massively paralel computing.

14

Chapter 2. Overview of Parallel Processor and Functional Memory

Chapter 3

Functional Memory Type Par allel Processor:
FM PP

In this chapter, we introduce the Functional Memory Type Parallel Processor (FMPP) architecture
in detail. Three structures are available for the FMPP architecture: fully-parallel (bit-parallel word-
paralel), word-oriented (bit-serial word-paralel) and block-oriented (bit-parallel block-parallel).
This paper focuses on the block-oriented implementations. Finally, we compare the performance

efficiency between a conventional Von Neumann computer and an FM PP-based compulter.

3.1 Featuresof the FMPP

The FMPPisamemory-based SIMD share-busparallel processor which can enjoy some direct benefit
from memory VLS| technology. The FMPP architecture is schematized in Figure 3.1.
The features of FM PP are summarized as followg[YWST91, Yas9l].

Memory-Based Simple Structure. The FMPP has a memory-based simple two-dimensional array
structure like an LSl memory. Each processor contains a bit, aword, or a group of words. We
can obtain avery large parallel computation space by the FMPP. A multi-chip construction is
easily implemented as same as for an LSl memory. The memory-based structure enables a
word of the FMPP to be accessed same as a conventional memory. 1/O pins are required for
address, data and control. The number of data and control pins is constant at any number of
PEs, while the number of address pinsis proportional to the log to the base 2 of the number of

processors. Thus, total number of 10 pins slowly increases as the number of PEs.

SIMD control method. All the PE of the FMPP are controlled by asingleinstruction. Itisan SIMD
(Single Instruction Multiple Data stream) machine, where all processors work simultaneously
by asingle broadcast instruction. The silicon arearequired by control logicsis dlightly smaller

than MIMD approaches.

16 Chapter 3. Functional Memory Type Parallel Processor: FMPP

broadcast/listen SIMD-type Control siuction

Memory-based
2-dimensional
Array Structure

Shared bus

Figure 3.1: Functional memory type parallel processor architecture.

Simple communication network through a shared bus. The shared-busisthe most simple way to
connect multiple PEs. It enhances the layout density, while applications on the FM PP should
remove inter-processor communication and reduce communication between processors. An
outer control logic or CPU can accessthe content of each word on the FM PP through read/write
operations word by word like a conventional memory.

Massively parallel computing on huge number of processors. Memory-based simple structure
realizes massively parallel computing. The number of processors can be increased year by

year as progress of memory VLSI technology.

Easy to achieve highly dense layout. Processors of today contain too complex circuits and net-
works. Now, they are semi-automatically implemented by logic and layout synthesizers paying
the cost of silicon area. The two-dimensional regular array structure and simple communica-
tion network of the FMPP allows highly dense layout. All we have to do isto design a layout
pattern of a PE and to put it into array, which can be implemented by interactive manual design

strategies.

3.2. FMPP Architectures According to the PE Granuality 17

Low power computing. Chandrakasan mentions that paralel processing must decrease power
dissipation[CSB92]. Suppose that two processors work in parallel. The clock frequency
of them may be half of that of a single processor if the same through-put rate is assumed.
On that condition, the supply voltage can be dropped. The power dissipation of such a two-
processor systemis0.36 of that of asingle processor system. Thus, the FM PP must decreasethe
power dissipation considerably. In the Von-Neumann system, data transfer between processor
and memory consumes large power. The FMPP also reduces power to perform processing

inside memory to decrease communication between memory and a processor.

3.2 FMPP Architectures According to the PE Granuality

Here we discuss three FMPP architectures according to the granuality of a PE: the bit-oriented
structure called Bit-Parallel Word-Parallel, BPWP: Figure 3.2(a), the word-oriented one called
Bit-Serial Word-Parallel, BSWP: Figure 3.2(b) and the block-oriented one called Bit-Parallel
Block-Parallel, BPBP: Figure 3.2(c).

1bit
1word

(@) BPWP (bit-parallel word-parallel) PE

‘ 1word ‘

a

d =

B T

(c) BPBP (bit-parallel block-parallel)
RN

(b) BSWP (bit-serial word-parallel)
[] memory () logic
Figure 3.2: Several FM PP architectures according to PE granuality.

In the BPWP architecture, each PE consists of aone-bit memory cell and an ALU. We can expect
a large amount of parallel computing in this architecture with the expense of a large amount of
hardware required for all the PEs. Thisis suitable for algorithms which require the same operations
on every hit.

In the BSWP architecture, each PE consists of one word of memory cells and a bit-serial ALU.

An operation on every word is processed in a word-parallel but bit-serial manner. We can treat a

18 Chapter 3. Functional Memory Type Parallel Processor: FMPP

conventional content addressable memory (CAM) asaBSWP FMPP[YWST91], where each word is
considered asa PE. The amount of hardware for aBSWP FMPP is much the same asthat for aCAM,
thus integration density can be relatively high.

The BPWP and BSWP architectures havethefollowing drawbacks. Asfor the BPWP architecture,
the integration density is not high since the same number of ALUs as that of memory cells are
required. The area of each PE should be minimized, which situation makes it difficult to enhance
the functionality of the ALU. In the BSWP, the area of a PE is less severe than that of the BPWP.
We can redlize an ALU with various functionalities. However, computation time is getting longer
as the bit width of words increases. Another problem on the BSWP is the lack of ability for inter-
word operations such as an addition on two words. If we perform an operation that requires multiple
operandsinthe BSWP, both operands and the result should be stored in asingleword and the operation
should be performed all theway in abit-serial manner which consumes much longer processing time
than in a bit-parallel manner (Seelocal addition described in Section 3.3.1).

A block-oriented implementation called Bit-Parallel Block-Parallel (BPBP:Figure 3.2(c)) is pro-
posed to achieve both high parallelism and highly dense layout. A PE called a block consists of a
group of words and an ALU. A block corresponds to a small processor with several registers and
an ALU. It isfaster than the BSWP, while the amount of hardware is expected to increase slightly
compared with that of the BSWP FM PP. The BPBP architecture merges high parallelism of the BPWP
and high density of the BSWP.

The BPBP alows logical and numerical operations on two words. We must carefully define the
number of wordsin a block. If we save both operands and the result at an operation on two words,
at least three words should be included in a PE. Too many words in a block may spoil the degree of
paralelism. The suitable number of words in a block depends on applications. The more complex
operations we require, the more word should be included in a block in order not to spoil the high
integration density of the BPBP. Asfor the BPBP-FM PP introduced in the next chapter, a PE hasfour
words. Thisis because at |east four words are required for numerical operations on two wordsin the
BPBP-FMPP; two words for the operands, one word for the result and one word for the carry. An
application specific FMPP called the FMPP-VQ in Chapter 5 has 16 words in a PE which is defined

by the dimension of the vector.

3.3 Implementations of the FM PP Architecture

Here, several implementations of the BSWP and BPBP architectures are briefly described. Among
these implementations, the BPBP-FM PP and the FMPP-VQ are explained in detail in Chapter 4 and
Chapter 5.

3.3. Implementations of the FMPP Architecture 19

3.3.1 Bit-serial Word-parallel Architecture

At the beginning phase of the research on the FM PP architecture, we regard the CAM described in
Section 2.2.1 as a bit-serial word-parallel FMPP. The CAM has functionalities of search operation,
multiple response resolution and paralel write operation. Of course, we can find words whose
contents are matched to akey in the CAM. In addition to that, we can find the minimum or maximum
(i.e. extremum) value among all the word. It is done to repeat the search operation from MSB to
LSB. The search operation also enables threshold search where all the word above or below some
threshold value can be detected. Numerical operations such as addition or subtraction can be done
on the CAM owing to its search and parallel-write capability.

Extremum and Threshold Search on the CAM

L et us introduce the procedure to search the minimum value stored in the CAM. Figure 3.3 explains
the dataflow of the minimum value search using 4bit CAM words. Figure 3.4 showsthe procedurefor
the minimum value search. Thevalue X showsthe masked bit. The minimum value search repeatsthe
search operations from MSB to LSB. The signal Er is supplied from the multiple response resolver
inthe CAM. If it becomesfalse, the target bit of the key value turnsto true(1). The extremum search
isdonein O(NN). The parameter N means the bit width of the CAM word. It does not depend on the

number of words.

sear ch (0XXX) search (00XX)

search key | QXXX] [00XX]
woo [1010 ml 1010 ml

wordt [0101 0101][0] min=XXXX #(every bit is masked)
woriz [0100 I 110100 ml Er =0 for i = 3downto 0 # Iteration
worss [O111 0111][0] g’(gﬂ (:u%)

CAM search

words flags |f ER = O then

minfi] =1

search (010X) search (0100) minimum value endif
OlOX

esolved address

[0100] 0100 end

[1010][0] |~’m ’:

0101 0101 r

0 100][1] m ER B Figure3.4: Procedurefor theminimum value
0111 [0111][0] search.

Figure 3.3: Flow chart of the minimum value
search.

Thethreshold search isdoneto iterate the search operation similar to the extremum search. But the

logical-OR functionality is required to the search flag, which is not implemented in the conventional

20 Chapter 3. Functional Memory Type Parallel Processor: FMPP

thresholdvalue 00110
keyO IXXXX—
£key1 01XXX

key2 00111
y y

01010][0] [1

00100]|[0] [0] [0

10100|1] (1] |1

00111

search flags

Figure 3.5: Threshold search on CAM.

4kbit CAM[OYN85]. The data flow of the threshold search is schematized in Figure 3.5. The
computational complexity is O(NV).

Numerical Operationson the CAM.

The CAM can beapplied to numerical operations[Y WST91]. Weintroducetwo numerical operations.
Oneisparallel addition between an outer value and all the wordsin the CAM (global addition). The
other is parallel addition between al the inner words (local addition). These numerical operations
are performed to iterate the search and parallel write operations from LSB to MSB. Figure 3.6 and
Figure 3.7 show the procedure and flow chart of global addition. A word (PE) stores an operand A
and acarry bit C. An iteration consists of two search operations and two parallel write operations.
The procedure and flow chart of local addition are depicted in Figure 3.8 and Figure 3.9. Aniteration
consists of four search operations and four parallel write operations. A word stores two operands A

and B and acarry bit C'. These numerical operations are done in O(N).

Functional Memory for Parallel Addition

Asinthe previous section, the CAM has capability of numerical operations. It has some drawkbacks.
1. Operands should be placed in the same word in local addition.

2. A single-bit computation consists of several search and parallel write operations, which con-

sumes processing time.

To compensate such drawbacks, a bit-serial word-parallel FMPP designed for parallel numerical
operations has been proposed, which is called “Functional Memory for Parallel Addition.” All the
PEs are laid out in a two-dimentional array (Figure 3.10). A PE consists of multiple words and a
bit-serial ALU (Figure 3.11(a)). A memory cell isaDRAM cell shownin Figure 3.11(b). The ALU
has functionalities of addition and logical operations between two words. It is implemented in a

3.3. Implementations of the FMPP Architecture 21

for Z =0toN -1 B e BIN-I | eisierzferubior
IfB[i]ZO io} i1]o0i1 i)i i0f | 1 |1ioi1]o}
if (A[1),C) == (0,1) #search : s . P
(Ali],C) = (1,0) #parallel write 0 1]oj1i1]o; ™= o tjoi1]1lo
elseif (A[i],C) = (1,1) #search ol T oo o T Taloalolo
ARLC) = (01) #perdldwite Vil ReRRe en e
endif Search / parallel write
dsif B[ij=1
if (A[z], C) == (1’ O) # search | B[r;n ng}BE]gB;-ﬂB?; 8[21‘] ‘ Bf]gsi]BT]BSﬂi
(Ali],C) = (0,1) #parallel write |
else (A[i], C) = (0,0) # search o TS o]0, e (0T TaT0 1210
(Al7],C) = (1,0) #parallel write 0 0i0iofoi1 0 ofofofol1
. 0 1lof1iolo 0 1i0i0]oj1
endif AN-Y WAL C ANY a2 O] C
end Search parallel write

Figure 3.7: Data flow-chart of global addi-

Figure 3.6: Algorithm for global addition. tion.

0.5um CMOS process. Figure 3.12 shows alayout pattern of the PE. The layout pitch of the ALU is
exactly matched to the height of the two words. The PE has multiple words, which strucutre may not
be in the category of BSWP. But it is cassified to BSWP, sincethe ALU is bit-serial.

3.3.2 Bit-parallel Block-parallel Architecture

The first FMPP architecture appeared in 1989 [NY T89] has the bit-parallel block-parallel (BPBP)
structure for image processing. Here, we cal it a functional memory type parallel processor for
image processing (FMPP-IP). Figure 3.13 showsits structure. PES are connected only to the adjacent
ones, which does not come under the definition of the FMPP. A PE consists of multiple words and
an ALU (Figure 3.14). An ALU complies so-called carry-save adder where addition isdone in every
bit in parallel, but the carry is propagated bit by bit. Addition is done in a bit-serial manner. In the
bit-serial ALU asin the BSWP FMPP, multiplication consumes too many operationsin proportion to
the square of bit-length (O(/V?)). Multiplication by the carry-save adder, however, can be completed
in O(N). The PE of the FMPP-1P is designed with a standard cell library in a 2um CMOS process.
Since the final layout pattern is automatically generated, its area becomes large. They mention that
18 PEs can be implemented in a 1cm? die.

Thisthesis explains two implementations of the BPBP architecturesin detail. Oneiscalled “Bit-
parallel Block-parallel Function Memory Type Parallel Processor (BPBP-FMPP).” Its PE complises
four CAM words and a bit-parallel ALU. The other is called “Functional Memory Type Parallel
Processor for Vector Quantization (FMPP-VQ).” Its PE consists of 16 SRAM wordsand abit-parallel

22 Chapter 3. Functional Memory Type Parallel Processor: FMPP

0 1]ol1]olo oi1lolofa
0 t]1]1]alo 1iojol1lo
0 oiojoi1io 0i0i0j1l1
fori_OtoN 1 0 111070 0 TroTiiete, Search
([Z] B[z] C) (O 0, 1) BIN-Y Bl3jBl2E(Y ;13 P Y Y
els(e|[f]([Z]B([j-](g) (011) 0 1lol1lolo ooo%cl)
» 0 1l1]1]1]o0 1io0j1]o0]1 .
(Ali],C) = (0,1) 0 0lolol1]0 oToTeli: Parallel Write
dseif (A[4], Bli],C) == (1,1,0) el T llolo ol slol s folo
(A[2],C) = (0,1) K L
eseif (A7), B[i],C) == (1,0, 0)
0 1]o]1]o]o oiofo]1io
(H):(170) 0 1{1]1]1]o0 1i0f1lol1
endif ; AP T 010101111 Search
0 1]1]olo]o 1iol1]o]o
end BIN-1] BISIBI2BIL| AN-Y larzlialla 1Al ¢
0 1]o]1]olo oiof1l1io
0 ti1i1i1io0 1ioi1ioi1 .
Figure 3.8: Algorithm for local addition. o olofolz]o oiofilxfo; Parallel Write
0 1]1]o]o]o tio]1]o]o
BIN-1] BISIBI2B(L] AIN-Y A LAl

Figure 3.9: Data flow-chart of local addition.

ALU. Both ALUs have a carry-propagate adder which can computes addition in O(1). To achieve
highly dense layout, they are implemented in a full-custom method. The layout pitch of the ALU
is exactly matched to the width of the word. A PE is implemented in a square region. The PE of
the BPBP-FMPP is 32bit wide and has rich functionalities of all the logical operations, addition and
multiplication, which enlarges the area of the PE. As the result, An implementation of the BPBP-
FMPP has only 8 PEs laid out in a one-dimensiona array. In the FMPP-VQ, a PE is 12bit wide
and designed for a specific application, “nearest neighbour search” of vector quantization. We can

implement 64 PEslaid out in atwo-dimensional array.

3.3. Implementations of the FMPP Architecture

23

Control Command

Row Address Inputs

Memyory Cell Array
Logic Control Signal
\ Generator =
— S HHBTHIHBHE] =4
o Mo H o 2 ®
£ o H g5 Control =
@ © = Word Line = sl | |Circuit S
e[| 25 o5 5
£ E’ = PE Array 3 ©
b S
n% Sense Amplifier g §_
MY o crout| o
Column Decoder <
I A s
Column Address Buffer

Column Address Inputs

/ Output

Figure 3.10: Whole structure of the functional memory for parallel addition.

Global Bit Line
word B(9bit) ‘
I T R R ALU
'—ﬂ word A(géit) AB A
I T VA N ’
Local Bit Line
€Y

Global bit line

WL —

1

[

BL

l_

[

Tr1 l Tr2

;g DRAM

(b)

Local bit line

R —

ALU

Figure 3.11: Processing element of the functional memory for parallel addition(a), its memory cell

(b).

24 Chapter 3. Functional Memory Type Parallel Processor: FMPP

9bit memory cells ALU
-3 B R et s A R]
R a8 P T P e i e I =

32um

[F
& [T
5 i in

2 (A T
H H g
= 18l [te]
ol J'j l'_d\ = [@F
’, il o 8 el .'r.F-F-F.F-FJ s e A AT Ll

v N

i
5 Sy
l‘rl. u\m‘

44um 47um k

|
|
91um

Figure 3.12: Layout pattern of a PE.

word0

(to upper PE)

wordM

to left PE) <+
() ::[T] Ei] S ———— (10 right PE)

i @) @) @)
Figure 3.13: Structure of the T
FMPP-IP

(to lower PE)

registers

Figure 3.14: Processing Unit of the FMPP-IP,

3.4. Parallel Computation Efficiency on the FMPP 25

3.4 Parallel Computation Efficiency on the FM PP

Here we address the parallel computation efficiency on the FM PP compared with a conventional Von

Neumann computer in Figure 2.1.

3.4.1 Von Neumann Bottle Neck on the Conventional Computer

As described in Section 2.1.1, the current conventional computer has a Von Neumann bottleneck
between CPU and main memory. The Processor-DRAM Gap has been becoming larger and larger
as shown in Figure 3.15[Fro98g].

QOO | oo :‘PU/_HPFOC
0
m L‘Moorels LaW" 60 /()/yr
(@)
S 100 | e) Processor-Memory
§ Performance Gap:
e 1wl (grows 50%/ year)
o) »— DRAM
o bR 70/yr
1 O'\—llN(‘OgLDIQII\OOCDO!\—i!N(‘Og!LDIQI\CDCD!O
ERLEREEREEERERER L T
Time

Figure 3.15: Processor DRAM gap[Fro98].

In this situation, the CPU can not display its peak performance as already mentioned in Section
2.1.1. Here, several simulations on a current commercial PC are done to show the Von Neumann
bottleneck. Parameters are shown in Table 3.1. The second column values are taken from the PC
system Toshiba Portege™ 620CT. The spec of 620CT is described in Table 3.2.

Two programs are executed on the PC. One adds an operand on the main memory with a constant
value on a register and stores the result on the main memory (Program A). The other adds two
operands on the main memory and stores the result on the main memory (Program B).

26 Chapter 3. Functional Memory Type Parallel Processor: FMPP

Table 3.1: Parameters for a conventional Von Neumann computer.

Name | Value | Synopsis

tp 10ns. | processor clock cycle

ta 50ns. | main memory access time
D 64 bus width
B 8~32 | bit width to be processed

Table 3.2: Spec of Portege 620CT.

CPU Pentium 100MHz
Data Bus Width | 64
D-Cache Size | 8kB
|-Cache Size 8kB
Main Memory | EDO DRAM
Size 40MB

Access Time 50ns.

(O Linux 2.0.32 (afamous UNIX compatible OS for PC/AT)
C Compiler gcc 2.7.2.3
Option —02 (Highly optimized)

Program A : arrayc[i| = arrayal[i| + const;
Progran B : arrayc|[i] = arrayali| + arrayb[i];
To execute Program B, the CPU should access the main memory three times. twice to load
operands and once to store the result. Similarly, Program A accesses the main memory twice. Thus,

to use above parameters, total execution time for these two programs are described by Equation (3.1)

and (3.2) respectively.

[Exec Time of Program A] = 2 - ¢, + ¢, = 110ns. (3.2
[Exec Time of Program B] = 3 - ¢, + ¢, = 160ns. (3.2

In Portege 620CT, Program A takes 102ns., while Program B takes 160ns. Note that these are

3.4. Parallel Computation Efficiency on the FMPP 27

average values of huge number of iterations. They are amost equal to the values obtained from
Equation (3.1) and (3.2). These results clearly show the Von Neumann bottleneck. The processor
has capability to complete addition in 10ns, while each data transfer between the processor and the
main memory takes 50ns. It isno use to increase the processor clock frequency on the Von Neumann
computer. The execution timeislimited by the DRAM access time.

3.4.2 Parallel Computation on the FM PP

Figure 3.16 depicts a paralel computing system using the FMPP, which structure is similar to the
conventional Von Neumann computer. Some part of the main memory, however, consists of the
FMPP. We assume that the FMPP has a capability to perform numerical operations between two
words simultaneoudly in all the PEs. Parameters are defined as follows.

n number of clock cyclesfor numerical operations on the FMPP
ty FMPPclock cycle

CPU

Main Memory

Register File - (DRAM)

T

Instruction («gpp

Decoder

D-cache

|-cache

FMPP

Instruction

Figure 3.16: A computer system using an FMPP as a part of main memory.

We compare the total execution time on the FMPP system and the Von Neumann system. The

operation performs a numerical operation denoted by * to alarge number of data A/ on the memory
asfollows.

fori=0toM -1
mem[i x 3] = mem[i x 3+ 1]xmem[i x 3 + 2]
end

28 Chapter 3. Functional Memory Type Parallel Processor: FMPP

le+09: T T L | T T ™ T T L T T | T T U

Vonn Neumann ——
le+08 f=1000 - - -
I f=100 - -~

16+07 |

(nsec)

16406 |

100000 F

execution time

10000 F

1000 |

1 10 100 1000 10000 100000 1le+06
M: Number of data

100'. R N Lol Lol

Figure 3.17: Total execution time on the Von-Neumann computer and on the FM PP.

Thetotal execution time on the Von Neumann model for asingle iteration becomes A - (3¢, +t,).
The FMPP simultaneously performs the same operation for al M data within the constant time of
f - ty. The FMPP gets better performance than the Von Neuman computer even when A is small.
Figure 3.17 showsthetota executiontimefor M wheret is assumed to be 50ns as the same val ue of
the DRAM access time. When f = 100 and M = 1000, the FMPP outperforms the Von Neumann
computer by 32 times. Note that we can neglect the time to prepare data structure on the FMPP. It is
becase the same data structure must be prepared on the conventional main memory.

Operations on the FMPP are not always superior to the Von Neumann computers, since all the
current commercial CPUs have cache memory. Once data come to cache memory, CPU can quickly
access the data. If the CPU executes a group of operations for the data size of which is smaller
than the cache size, the CPU can access the data directly from the cache memory. It improves the
performance of the Von Neuman system. But once acache misse occurs, the performanceisdegraded
considerably. Several novel cache architectures have been proposed and developed to decrease the
cache miss count.

Here, we compare the performance between a Neumann computer system with a cache memory
and an FMPP system. A series of N,, operations is performed to a huge number (A7) of groups of
data, each of which includes the number d of data. Figure 3.18 depicts two systems. We suppose the

following conditions.
1. A CPU can accessits cache memory in n clock cycles.

2. The size of cache memory S, > d

3.4. Parallel Computation Efficiency on the FMPP 29

CPU Cache

(/D)

Main Memory M

(S

18l
e

(&) [

&)

Neumann Computer FMPP

Figure 3.18: Von Neumann system with cache memory and FM PP-based system.

3. The CPU can access all the data from its cache memory besides the first load and the last store
operations for the main memory.

4. A PE of the FMPP has d words.
5. The FMPP can complete the same operationsin Ny = f - d - N, cycles.
Under the above condition, the CPU can complete the operations in the following period.

toncry = t(accessand storetime for DRAM) + ¢(Command execution time on the CPU)

= 2-d-ty+n-t,-d-N, (3.3)
On the other hand, the FMPP can complete them f times slower than the CPU as follows.
tonrmpp = f - Np -ty -d (3.4

The performance efficiency Py, is defined as follows.

toncPU (Zdta+ndtpr)M

Pe T = =
1 lonFMPPP f-Np-ty-d
_ (2-t,+n-t,-N,) - M (35)
[Np -ty

The parameter M denotes the number of PEs of the FMPP. There are so many parameters in

Equation (3.5). Some actual values are given in Table 3.3. Using these parameters, Equation (3.5) is
simplified as follows.

toncPU _(5+2Np)1‘/[_5+2Np %
tonFMPPP 5-f-N, S5 N, f

Peffi == (36)

30 Chapter 3. Functional Memory Type Parallel Processor: FMPP

Table 3.3: Parametersto compare a Neumann Computer system with an FMPP system.

Parameter | Synopsys Value
to, by DRAM/FMPP accesstime | 5t,

n Cache access clock count 2

Figure 3.19 shows the performance efficiency according to A// f and N,,. As N, becomes larger,
the performance efficiency asymptotically approachesto 0.4M// f. It suggests that an FMPP system
outperforms the Neumann computer by 40 timeswith A/ = 1000, f = 10. The condition M = 1000
meansthat we prepare 1000 PEs, while f = 10 meansthat the required number of clock cycleson the
FMPP can be 10 times bigger than that on the CPU. Note that f is the number of clock cycles. The
above condition assumes that the clock cycle of the FMPP is 5 times longer than that of the CPU. If
the CPU working at 100M Hz can complete the operations within 100 clock cycles (1us.), the FMPP
working at 20MHz must complete the same operations within 1000 clock cycles (50us.). The FMPP
is 50 times slower than the CPU.

10000 T T

M/f=1000 — |
M/f=100 -----
M/f=10 - |
M/f=1 ---
1000 | M/f=1 -~ 4
100 |]
>
o
C T e e .
L
k3]
=
w y
Q 10 | - : E
e :
]
£
S
[0
o
l -
01} 1
0.01 . el .) .
1 10 100 1000

Np (Series of operations)

Figure 3.19: Performance efficiency of an Neumann Computer system / an FM PP system.
(M=Number of PEs, f=Number of clock cycles on the FMPP system.)

In the above discussion, we assume conditions as follows. On the FMPP computing system, all
the operations are done in the FM PP. On the Neumann computing system, all the data can be obtained

from the cache memory besides the first load and the last store operations. It takes 2 clock cycles

3.5. Summary of the Chapter 31

to access the cache. Actually, some part of required data can be directly obtained from registers. It
takes a single clock cycle to access the registers. Thus, the comparison may not be accurate. But,
even if al the data could be directly retrieved from registers, the FM PP system with a large number
of PEsis superior to the Von Neumann computers.

The current commercial CPU has various functionalities. Almost all operations such as mul-
tiplication can be done in a single clock cycle. In the FMPP, however, a high-performance ALU
enlarges the PE area and makes the circuitry complicated. In this paper, weintroduced several FM PP
implementations which have a capability to complete addition of two words within a single clock
cycle. Adderscan beimplemented with asmall number of transistors, while multipliers cost too many
transistors. The functions of the FM PP must be defined considering a trade-off between performance
and circuit area. In the FMPP-based computing system in Figure 3.16, operations are done both in
CPU and FMPP. They have to cooperate to complete ajob. Operations must be assigned to the CPU
or the FMPP so as to minimize the total operation period.

3.5 Summary of the Chapter

In this chapter, we introduce the FMPP architecture. FMPP is a memory-based SIMD shared-bus
parallel processor which enjoys the current remarkable progress of semiconductor memory devices.
The density of the LSl is doubled every 18 months predicted from the famous Moore's law. The
performance gap between the CPU and the memory device, however, becomeslarger and larger. The
performance of the current computer system is limited by the bandwidth between the CPU and the
memory. The FMPP alleviatesthe performance gap, since operations can be done inside the memory.
Asmentioned here, if SIMD operations can be done inside a memory, the performance will improve
considerably. The performance of the FMPP is linearly improved according to the number of PEs.
The structure of the FM PP similar to that of the memory allows highly denselayout. Communication
between PEs, however, is limited. Therefore we must choose the suitable operations for the FMPP.
The FMPP can be utilized as two ways. One is as a part of main memory on a conventional Von
Neumann computer. The other is used as an application-specific processor. In the former style, an
FMPP device can work as both main memory and co-processor. In the latter style, an FMPP device
work as a processor independently of the CPU.

Here, three FM PP architectures are shown: bit-parallel word-parallel (BPWP), bit-serial word-
paralel (BSWP), bit-parallel block-parallel (BPBP). In the BPWP architecture, every PE attached to
every bit and word consumes hardware cost. No implementation have been found of the BPWP. The
hardware cost of the BSWP architecture is less severe than the BPWP. Lots of associative processors

can be found based on the BSWP architecture. A CAM is one of the most popular functional

32 Chapter 3. Functional Memory Type Parallel Processor: FMPP

memory devices. Its word-oriented structure can be regarded as the BSWP FMPP. Extremum search
or numerical operations are successfully applied to the CAM. A BSWP FMPP for parallel addition
isintroduced. It hasan ALU for every two words. Here, we mainly focus on the BPBP architecture.
It enables operations between two words and operations are done in bit-parallel. We introduce two
implementations. the BPBP-FMPP and the FMPP-VQ in the following two chapters. The BPBP-
FMPP is designed to utilize as a part of main memory. The FMPP-VQ is developed to implement a
low-rate image compression system by vector quantization. 1t can work independently of the CPU.
The performance efficiency of the FMPP-based system is also discussed here. The FMPP-based
system where a part of main memory is replaced with the FM PP shows better performance than the
conventional Von Neumann computing system, if the same operations are applied to huge number of
datasets. If we can prepare an FM PP with 1000 PEswhich has acapability of numerical operations50
times slower than the CPU, it can perform series of operations 40 times faster than the Von Neumann
system. In the FMPP-based system, we must assign operations to the FMPP or to the processor in

order to minimize total execution time.

Chapter 4

An I mplementation of the Bit-Parallél
Block-Parallel FM PP

In this chapter we describe an implementation of the bit-parallel block-parallel FMPP architec-
ture. We have designed and fabricated a prototype LSI[KOT95] BPBP-FMPP based on the BPBP
architecturel KTY093].

The BPBP-FMPP LSI has functionalities of bit-parallel numerical and logical operations on
internal two words. Sincea CAM cell can execute logical operations on an external data and contents
of words, we adopt the structure of a CAM cell as that of a FMPP cell. Using contents of another
word as an external data, logical and numerical operations on two words can be performed.

We realize bit-parallel addition in combination with logical operations and a carry propagation
using a Manchester carry chan[WE85] which propagates the carry in bit-parallel manner. The
structure of a CAM cell enables search operations (content addressing) on the FM PP same as that of
CAMs.

Primary operations on the BPBP-FM PP are summarized as follows.

e Bit-parallel block-parallel computations such as logical operations, addition, subtraction and

multiplication.

e Search operation.

Logical operations on flags.

e Parallel write operation.

Multiple response resol ution.

41 BPBP-FMPP

The BPBP-FMPP can perform parallel numerical operations on interna two words simultaneously

on al PEs. It has various functionalities as a RAM, a CAM and a parallel processor. It performs

34 Chapter 4. An Implementation of the BPBP FMPP

addition of two wordsin aPE in O(1). Multiplication is done in O(m) (m stands for the number of
bits of a multiplier). These operations are simultaneously done in every PE. Each PE contains four
32bit words. A single LSl chip contains eight PEs.

4.1.1 Logical Operationson the CAM Céll

We utilize the structure of a CAM cell asthat of an FMPP cell, since the CAM cell has a possibility
of logical operations on an external operand and contents of words. Logical operations on two words
can be done on the CAM cell if a content of another word is given as an external operand as shown
in Figure 4.1. Suppose that the CAM cell stores ¢ and an external data is given through b0 and b1.
The complemental signals p and p from b0 and b1 produce p & ¢, which iswithin the original CAM
functionality. If one of the bit lines b0 or bl is dropped to the ground level, logical AND (p - q) or
logical NOR (p|q) operation can be done.

b0 bl

b0 01 OL

Q|

Nl
J
L]

X

E_r
RO
o
3 =

3
R e

o —|
o
3
3
s}

L

Figure 4.1: Logical operations on a CAM cell.

4.1.2 Block Diagram

Figure 4.2 shows a block diagram of the 1kbit BPBP-FMPP LSI. There are eight PEs, address 10,
data IO and other components such as sense amplifiers or control logics.

Figure4.3 depictsthe structure of aPE, which comprisesamemory block, variousflags, amultiple
response resolver(MRR) and control logics. The memory block is the essential part of the FMPP,
where addition, multiplication and logical operations among two words are performed. The number
of wordsin asingle PE is four in this implementation, since at least four words should be required
for addition: two words for operands, the other two words for temporary values and the result. They
are connected through a shared bus inside the PE called the “local data bus.” The word in a memory
block is hereafter called “an operand word.” A memory block comprises four 32bit operand words
of FMPP memory cells (WO ~ w3), two 32bit buffers of SRAMs (P, G) and a carry chain. These
SRAMSs and the carry chain form an arithmetic logic unit (ALU). The global data bus connect all the
memory blocks.

4.1. BPBP-FMPP

35

data bus
addregs bus A flagin flagout
5 $32 A
data 10—
| address reg. | | data reg.
C ™ | address maskreg. | [* | datamaskreg. | |« C R
bit0 bitl RDT mask
s A
| address 10 32T32T L
chip {
sefvet sense amp. —{C ™S Pin
5 global data bus \“\ \“\ L W
address 32% 3oR 3R r
vy Ty v Yy v
PEO
PE1
PE7
1 l

S: sense amp.

R: output register

Pout

C: control logics

Figure 4.2: Block diagram of the BPBP FMPP LS.

4.1.3 Primary Operations

Table 4.1 summarizes primary operations on the BPBP-FMPP. In the memory block, addition,

subtraction, multiplication and logical operations are available as a parallel processor. They are
explained in detail in Section 4.2. As a CAM, the BPBP-FMPP searches for the operand words
matched to a given key data, which functionality is called the search operation. The result from the

search operation is stored into master or ave flags. The state of these two flags defines a “ sel ected

word.” The multiple response resolver(MRR) resolves a single operand word among the selected

words, which is called multiple response resolution. The BPBP-FMPP can perform read/write

operations similar to conventional RAMs. In addition to that, the parallel write operation is also
available. The FMPP writes data to all the selected words, or to multiple words defined with the

address masked by the address mask register located at the address 10.

The block flag (BF) prohibits operations of the block on multiplication. The overflow flag(C32)

36 Chapter 4. An Implementation of the BPBP FMPP

memory block

~
r wO0
H | wil
H l w2
H | w3 1

master flags slave flags

mO0 s0

ml sl

s2

s3

1
I
1
I
1
I
|
J

(N)

(" o h
|0say asuodsay adninin
L J

overflow

iy

global data bus

prohibit operations PE

memory block

Figure 4.3: Structure of aPE.

stores an overflow value from addition. The temporary flag(TF) temporarily stores aresult from the
search operation.

The operation called the block transfer is used to communicate between blocks (PEs). A block
can communicate with itstwo adjacent blocks. Asfor interchip communication, however, the BPBP-
FMPP has data and address buses for both input and output in order to decrease the number of 10
pins. Processors on separated L SI's should communicate with each other one by one.

4.1.4 DataMask and Address Mask Operations

Two mask registers, the address mask register (AMR) and the datamask register (DMR) define masks
on address and data portions respectively. The mask on the address portion is used to select multiple
words. For example, if al bits without L SB are masked, we can choose all the odd or even words by
L SB of the address. It is used on the parallel write operation and the search operation.

The mask on the data portion is used in three different ways. One is the mask on the search
operations. The masked bits becomesthe “don’'t care” state. These masked bits are always matched.
It isused on the multiplication explained in Section 4.2.5. On the search operation, a key data stored
inthe DR masked by the DMR is compared with the content of aword in the PE. If the address mask
is set, only the specified PEs perform the search operation. The other is used on the partial write

4.1. BPBP-FMPP

37

Table 4.1: Primary operations on the BPBP-FMPP.
operation comment #step
Operations as a parallel processor in a block
logical operations WixWj —WEk 2
addition/subtraction Wi+tW; Wk 6
shift/rotate left Wi <<1—-Wj 5
multiplication WixWj5; —-WEk Im
Operations as a CAM
search operation Results are stored in temporary flags 2
multiple response resolution | Select a single word from multiple selected words. 1
Operations as an RAM
read/write Read or write asingle word. 1
parallel write Write multiple words in parallel. selected words or 1
address mask registers define target words.
partial write write data only to the specified bits. 2
Communication between blocks
block transfer transfer datain aword into the upper or lower block. 2

x isone of logical

i,j,k €0~ 3.

AND, NAND, OR, NOR, XOR, XNOR operations.

m denotes the number of bits.

operation. The content of the masked bits does not change on the partial write operation.

415 Detailed Structure

of the Memory Block

The detailed schematic diagram of the memory block is shownin Figure 4.4. 1t showsafour-bit slice

of the memory block including four operand words (WO~W3), two buffers (P and G) and a carry

chain connected through the local data bus (LP and LN). The detailed structure of each component is

discussed here.

Figure 4.5 shows amemory cell of the operand word, which is designed based on a conventional
CAM cell[OYN85]. When the data shown in the right side of Figure 4.5 are given, we can get

results on OL through threelogical operations such as XNOR (exclusive-nor), AND and NOR. In the

memory block, one word provides a key data through Tr2 and/or Tr3 and another word receives the

data through TrO and Tr1l. Figure 4.6 shows two buffers P and G. They receive the result from OL,

38 Chapter 4. An Implementation of the BPBP FMPP

and then rewrites it to any word in amemory block through LP. A four bit dlice of the Manchester
carry chain is shown in Figure 4.7[WE85]. It propagates a carry in bit parallel from P and G for

numerical operations.

LP LN LP LN LP LN LP LN
_—;ty_l_|>q_|.|+j: _—;tq.|_|_|>c1_|+pj: _—;tq.|_|_|>c1_|+pj: _—;tq.|_|_|>c1_|+pj:
WO < oL| ol| N oL| N7 oL| N7
Wl < :xty_l_|>q_|.|+5: :xtm:/’: :xtm:/’: :xtq.|_|_|>q_|.|;5:
= = =R =R
W2 < :xth: :xtmj: :xtq.|_|L_|>q_|+Fﬁ: :xth:
~~ ~~ ~ ~
W3 < :—;EMj: :xtmj: :xtq.|_|L_|>q_|+Fﬁ: —tEMj:
~~ ~~ ~ ~
= = = = Match Line
ayy) Ry I ey R Ryl
co—|_Co C1 Carry Chain C2 c3 —c4

Figure 4.4 Detailed schematic structure of amemory block.

refin
|
we

‘-ﬂ | _II_ LP LN OL

Tr2 q.—M‘:_m Tr3 P T) m
5 T |0 e
mask wr0 we wrl 0 p m
LP LN

OL

Figure 4.5: An FMPP memory cell and logical operations.

4.2 Detailed Operation Strategies

Here, operaion strategies on the BPBP-FMPP are described in detail, such as logical operations,

addtion, search operation, multiplication and multiple response resol ution.

4.2. Detailed Operation Strategies

39

to/from memory cells

lE"’ Carry In
v

Cn Pn

to/from the Manchester carry chain

Figure 4.6: The buffersP & G.

4.2.1 Logical Operations

—| match line

I CKm-

Figure 4.7: Manchester carry chain.

The BPBP-FMPP has functionalities of all available logical operations such as AND, NAND, OR,
NOR, XOR and XNOR between any conbination of two operand words. The result can be written in

any operand word.

The XOR operation wO&w1—w?2 isdonein two steps as follows.

Step 1. w0 ® wl — P

Step 2. P — w2: throughwrl in P.

On the XNOR operation, the signal wrO in P is activated instead of wrl at Step 2. Then the

complemental value is written to w2. Other logical operations can be done to fall one of local data

bus into the ground level accoding to Figure 4.5.

4.2.2 Addition and Subtraction

In the BPBP-FMPP, numerical operations are performed by the comibination of logical operations

and a carry propagation accoding to Equations (4.1)-(4.4).

Ci=Gi+PF-Ci

P, = A;|B;
Si=Ci 1@ P

(4.1)
(4.2)
(4.3)
(4.4)

40 Chapter 4. An Implementation of the BPBP FMPP

The Manchester carry chain as shown in Figure 4.7 propagates the carry(C) from the carry
propagate (P = A® B) andthecarry generate (G = A- B) inparallel. Notethat A and B denotetwo
operands of numerical operations. Theresult Sum isgivenas P& C (= P& C). Four FMPP memory
cellsarerequired so as not to destroy two operands stored in two operand words. The other two words
temporarily store P and C, and one of them finally stores Sum. The two buffers P and G store P
and G respectively. Eight 4-bit Manchester carry chains are connected in serial to propagate a 32bit
carry. We use no carry-lookahead scheme, since complex wires from the carry-lookahead unit may
break the regularity. Thus, the operation for propagating carry must be critical. Carry-propagation
time is derived as 170ns. from the worst-case simulation. To shorten the time for addition, carry
propagation and another operation are done simultaneously. Addition isdonein six steps as follows

(see Figure 4.8).

Initial condition: wO stores A. w1l stores B.

Step 1: ProduceG = A - B and storeittoG.G= A - B

Step 2: Produce P = A@ B and storeittoP.P= A&@ B

Step 3: Write P into w2. At the same time, carry propagation is done in the carry chain. w2= P
Step 4: Store C intow3. w3=C

Step 5: Perform XNOR operation between w2 and w3. TheresultiswrittentoP. P= (A® B) & C

Step 6: Theresultin P iswrittentow2. w2= (A® B)® C = P® C = Sum

Addition takes 1200ns, since the developed LSl works at 5SMHz clock frequency.

4 N\ 4 N\
w
wl
w2) ADB A®B
wa (1| 5
P \r §
. \

Ve
o
-

arry propagation / -
step 3 step 4

Figure 4.8: Addition between 2 words.

4.2. Detailed Operation Strategies 41

4.2.3 Shift/rotate L eft Operation

The shift/rotate |eft operation shifts one of the operand word one-bit |eft. The carry chain propagates
the target valueto one-bit left. The shift left operation are done according to the following procedure.

Initial Condition: wO stores A

Step 1. G=0

Step 2: wO—P

Step 3: carry propagation

Step 4 C —wO0 (w0 becomes 4 << 1))
Step 5: wO—P

Step 6: P —w0

To perform the rotate left operation, two carry propagations are done. At the first carry propaga-
tion, the overflow value of the carry isstored in C32. Itisused asthe LSB of the carry on the second
carry propagation.

4.2.4 Search Operation

On the search operation, the XOR operation between a key value broadcast to the PE and an operand
word (WO~3) isdone. Theresult is stored to the buffer P. If the key value is matched to the operand
word (described as the matched state), all bitsin the buffer P become true, which is equivalent to that
the node Pn in Figure 4.6 becomes the ground level. If the key value is not matched (described as
the unmatched state), the unmatched bits become false. The two match lines are precharged prior to
the search operation. When one of the match lines is fell to the ground level, the other match line
keeps the precharged level on the matched state, while it is discharged on the unmatched state. The
temporary flag receives the result from the match line, which is connected to the master flags and the
block flag. To obtain matches of all the operand words, we should repeat the search operations four
times. The results are stored in the master flags.

4.2.5 Multiplication

Multiplication can be done by accumulation of the search operations, additions and shift-left op-
erations. The following procedure shows wOxwl — w2. Figure 4.9 also shows flow of the

multiplication.

Initial condition: wO stores 4, w1l stores B. w2= 0.

42 Chapter 4. An Implementation of the BPBP FMPP

Stage 1: Set i = m and w2=0. (m denotes the number of bits of the multiplier A.)

Stage 2: Perform the search operation to search whether the ¢th bit of the multiplier Binwlis1or
not. Set the BF to 1 if thesth bitis 1.

Stage 3: Add the multiplicand A in wO to a partial product £, in w2. The result is stored to w2.
Addition is prohibited in the PE whose BF is 0.

Stage4: Setitoi — 1. If 4 =0, then halt the procedure.

Stage 5: The shift left operation shifts P, in w2 to one bit left in every PE. Return to Stage 2.

N TN
oL —
TN
wo F—
=N — I— N S Y B (g S
-_— search 0 or 1 — <i=i-1
0 — — e\ Stages
- , :
|l |0 || o0
) T -
o — -
Initial condition Stage 2 if 1
1
] -
N

Stage 3

Figure 4.9: Multiplication between 2 words.

Multiplication takes 9xm steps for the m-bit multiplier. For example, 16bit multiplication takes
144 steps, i.e. 28.8 pusec.

The 1kbit BPBP-FMPP performs 6M(10°) additions and 280k(10%) multiplications per second.
The performance is not enough, since the developed LS| has only eight PEs. Thisis mainly because
we use an old-fashioned 1.2um CMOS process and the die size is small. The current sub-micron

process gives sufficient number of PEsinasingleLSl.

4.3. 1kbit BPBP-FMPP LS 43

4.2.6 Multiple Response Resolution

In the BPBP-FM PP, multiple response resolution (MRR) is available like CAM. In CAM, the search
flag and the garbage flag defines the word to be resolved. A word isresolved if its search flag istrue
and its garbage flag is false. In the BPBP-FMPP, any combination of the master and slave flags can
define a word to be resolved. A resolved word is called a selected word as mentioned before. The
BPBP-FMPP can resolve the top-most word among all the selected word. The BPBP-FMPP has the

functionality of logical operations to perform the extremum search described later in Section 4.4.1.

4.3 1kbit BPBP-FMPP LS

Here, we give an overview of the 1kbit BPBP-FMPP LSI, evaluate its layout density and show some
test results.

43.1 LSl Overview

The BPBP-FMPP LSI has already been fabricated using a 1.2um CMOS process. Figure 4.10 shows
the layout pattern of a four-bit slice of the memory block. It isimplemented in a rectangle region,
since the layout pitches of al the components are exactly same. Table 4.2 shows an overview of
the LSI, which contains 1kbit(32bitx 32word) memory cells on a 43 mm? die and achieves 5SMHz
clock rate. In order to enhance flexible control schemes for the first fabrication, most of the 10 pins
provide primitive control signals. Its die micro photograph can be seen in Figure 4.11. Eight PEs
occupy over 80% of the core area except for IO PADs. The memory block is located at the left side
of the PE. Memory blocks, master flags and sense amplifiers are implemented with the full-custom
design method in order to achieve high density and optimizing performance. The other components
such as slave flags and 10 registers are implemented with standard cells to enhance productivity
although paying a penalty in area. The power dissipation is 100mW when no operation is done, that
is, only clock signals are provided. The maximum power dissipation is 300mW when the parallel
write operation writes al 32 wordsin parallel.

The 1.2um 1poly 2metal CMOS process is equivalent to the process used for a 256kbit
SRAM[SSN*90]. Table4.3 summarizes component areasin the memory block together with the cell
areaof a256kbit SRAM. Compared with a256kbit SRAM, the memory cell area of the BPBP-FM PP
is 60 times bigger than that of the SRAM cell. Using a0.5xm CMOS technology for adMbit SRAM,
the area of amemory block becomes 4756:m?, which valueis derived by shrinking the process from
1.2 to 0.5 um. Including the area for flags and the multiple response resolver, 200 blocks (25kbit)
can be integrated on 60mm? area. The die size including peripheral circuits and 10 PADs will be
75mm?. Such an FMPP should be faster than the 1kbit FMPPs because the transistor size becomes

44 Chapter 4. An Implementation of the BPBP FMPP

500um iz e aa

Buffer P,

*Carry Chair
||||||| s

210um

Figure 4.10: Layout pattern of afour-bit slice of the memory block.

smaller. We can estimate that at least the 25kbit FMPP works at 20MHz clock rate. The 1kbit
BPBP-FMPP performs 6M (6x 10°) additions per second, while the 25kbit FM PP working at 20MHz
clock rate performs 600M additions per second. These performances are derived by asingle LS. If a
1Mbit FMPP can be prepared, it performs 24G additions per second. Such a highly integrated FM PP
can be achieved in the future, since the integration density of the FMPP will increase proportionally

according to innovationsin the LS| process technology.

4.3.2 Test Reaults

We have been running lots of test sequences using an LS| tester HP82000 ™. Almost all operations
can be performed correctly. We, however, found a critical fault that one of the local data bus (LN in
Figure 4.5) does not work correctly. The memory cell can not pull down LN to the ground. Thus, no
logical operation except AND operation can be performed. At present, the source of the fault can not
be detected.

4.3. 1kbit BPBP-FMPP LS 45

Table 4.2: Overview of the 1kbit BPBP-FMPP LSI.

Area 43.5mm? (5824mx 7420.m)
Operating frequency 5MHz
1O Pins 134 (8 pinsfor power)
Package QFP160
Transistor 59000
Power dissipation 100mW (nop)

300mW (parallel write)

Table 4.3: Component areas of the 1kbit FMPP LS| together with a 256kbit SRAM.

area(um?) | wxh(um) | # Transistor

1bit dlice of amemory block 27645 | 53.4x517.7 79
averages per one word 6889 | 53.4x129.0 19.8

amemory cell 4133 | 53.4x77.4 13

P& G, etc. 7561 | 53.4x141.6 20

1hit dlice of acarry chain 3551 | 53.4x66.5 7

1bit memory cell of a 256kbit SRAM 109 8.5x12.8 6

Figure 4.12 shows operating waveforms of read/write operations. It repeats read and write
operations. The minimum access time is derived as 80nsec. Another test pattern shows that the
critical signal path, 32bit carry propagation takes 175nsec., which is amost the same with the value

obtained by the circuit simulation.

4.3.3 Comparison for the Circuit Areas between CMOS and CPL L ogics

Thestructure based onthe CAM and CPL (Complementary Pass-transistor L ogic) of the BPBP-FM PP
reduces an area for logical operations between two words compared with that based on the CMOS
logic. The former requires only four FMPP cells, while the latter requires four SRAM cells and
CMOS logic gates for XOR, AND and OR. Table 4.4 shows the area, the number of transistors and
signal delay for each structure. Note that we exclude 32 transistors from the number of transistors,
which both structure requires for four 8-transistor SRAM cells. The area for the CMOS structure
is twice as large as that for the CAM structure. As for the transistor count for logical operations,

the CMOS structure is three times bigger than the CAM structure. Moreover, the CAM structure

46 Chapter 4. An Implementation of the BPBP FMPP

5.8mm

| LR R, 0] e e

7.4mm

Figure 4.11: Chip micro photograph of the BPBP-FMPP.

performs logical operations faster than the CMOS structure.

structure area(um?) | #transistor | signal delay(nsec.)
CPL(CAM) 34,800 20 15.8
CMOS 68,900 60 19.8

Table 4.4: Comparison of the structure for logical operation.

4.4 Applications of the BPBP-FM PP

Since al the PEs of the BPBP-FM PP work together, it is hard to use the bit line as a communication
path between processors. It is only used for the communication between processors and a host.
Therefore algorithms on the FM PP should remove inter-processor communication. Asfor the BPBP-
FMPP, it is suitable for the algorithms which require the same operations on every word or every
two words among a large amount of words. We evaluate the performance of the BPBP-FMPP
for a few applications in comparison with the performances obtained by sequential (word-serial)

implementations on an engineering workstation (EWS: cycle time 25nsec.). We evaluate the cycle

4.4. Applications of the BPBP-FMPP 47

access time

0
> clock
Z | read enable

<O>
2| bit lines

<1>

. 200ns .

write 00 read 11 write 01 read 10 write 11 read 00 write 11 read 00

Figure 4.12: Operating waveforms from read/write operations.

time of the BPBP-FMPP is 200ns. from circuit simulations.

4.4.1 Threshold Search and Extremum Search

The threshold search and the extremum search on the BPBP-FM PP are shown, which are frequently
used in many applications.

In the threshold search contents of aword w are compared with an external datad. In the CAM-
based BSWP FMPP, the threshold search is implemented to repeat search operation from MSB to
LSB (See Section 3.3.1). The FMPP can performs the same operation to subtract d from w. If w
is less than d, the C32 becomes true. Then, its master flag receives the value from the C32. The
MRR detects all the words which are less than d. The FMPP can perform the threshold search in a
bit-parallel manner, while an implementation of CAM should be in a bit-serial manner.

The extremum search finds the maximum or minimum value among all words. It isdoneto repeat
search operations and the multiple response resolution from MSB to LSB, which isdone in bit-serial
similarly to the CAM implementation. Figure 4.13 shows the computation time of the BPBP-FM PP
in comparison with that of a sequential implementation. Both two computation times are quite
similar. In the developed BPBP-FM PP, response time of the multiple response resolver increases in
proportion to the word count, which linearly increases the computation time. An ideal FMPP can
solve the problem in constant time, where the multiple response resolver work in constant time at
any number of words. It isimportant to implement a fast multiple response resolver to accelerate the

extremum search. We implement a fast response resolver on the FMPP-V Q described in Chapter 5.

48 Chapter 4. An Implementation of the BPBP FMPP

Computation time
usec T T T T

BPBP-FMPP —

Sequential e e m==e
Implementation =~ " ==

100 E

10 ¥ -

Ideal FMPP E

1 L I I I I
0 20000 40000 60000 80000 100000

Number of words

Figure 4.13: Computation time of extremum search.

4.4.2 Knapsack Problem

Knapsack problem is one of typical NP-hard combinatorial optimization problems . We should
choose the combination of luggage with maximum sum of profits under the constraint that sum of
weight iswithin alimit. We assume n as the number of luggage, p,, as the profit of the nth piece of
luggage, w,, asthe weight of the nth piece of luggage and ¢ asthe limit of the weight. The algorithm
for a BPBP FMPP is developed from that of a BSWP FMPP which is called parallel exhaustive
search[YTT88]. The idea of the parallel exhaustive search on the BPBP FMPP is as follows. We
assign every possible group to each PE (block) one by one. The weight w; and the profit p; of the nth
piece of luggage are broadcast using parallel write operation and block ;j which should contain the
nth piece of luggage compute W;(= 3" w;) and P;(= Y- p;) using parallel addition. The comparison

of W; with ¢ isthe threshold search. We can obtain the maximum P; using the extremum search.

Computation time does not depend on the number of luggage except for the operations to prepare
data structure on the BPBP FMPP. It completes within n parallel write operations. Figure 4.14
shows the computation time of knapsack problem on the BPBP FMPP, on a BSWP FMPP and on
an implementation of sequential exhaustive search. The BPBP FMPP is 130 times faster than the
BSWP FMPP, and 100,000 times faster than the sequential implementation at 20 pieces of luggage.
The FMPP can solve knapsack problem much faster than the sequential approach. But huge number
of PEs should be prepared, which drawback is common to both BSWP and BPBP FMPPs. If we
want to solve a problem with n pieces of luggage, we must have 2"+2 words.

4.5. Summary of the Chapter 49

1000

aal Sequential Implementation

ot |

""""" a BSWP-FMPP

S
1 |
€

0.1 |

BPBP-FMPP
001 pTTT |
0.001 ‘ : L L]]]
2 4 6 8 10 12 14 6 1

number of luggage

Figure 4.14: Computation time of knapsack problem.

4.5 Summary of the Chapter

We propose abit-parallel block-parallel(BPBP) FMPPin thischapter. The BPBP-FMPP LS| hasbeen
designed and fabricated in a 1.2um CMOS process. It contains eight PES implemented in the area
of 43.5mm?. A single PE contains four 32-bit operand words. It can perform numerical operations
such as addition and subtraction between any combination of two operand wordsin bit-parallel. Such
numerical operations are done by the combinations of logical operations and a carry propagation.
The pass-transistor logics in the ALU decreases the circuit area considerably. We estimate that the
required area of our implementation is half of that of a conventiona CMOS implementation. The
FMPP is a memory-based SIMD shared-bus parallel processor. Therefore, we can easily get highly
dense layout because of its two-dimensional regular array structure.

We have been running lots of test sequences using an LS| tester. The 32-bit carry propagation
which issupposed to be a critical operation takes 175nsec. Thus, the BPBP-FM PP operates correctly
5.7MHz. Unfortunately, a critical fault was found in a memory cell. Detailed tests can not be
continued.

A single PE consistsof abit-parallel ALU and agroup of words, which structure enabl esoperations
between words. Numerical operations can be completed in O(1), while in the bit-serial word-parallel
implementation it takes O(bit-width). The threshold search can be donein O(1) using the numerical
operation capability. A famous NP-hard problem, knapsack problem is suitable for the BPBP-FM PP.
The BPBP-FM PP can solve knapsack problem of 20 luggage 100,000 times faster than the sequential
approach.

50 Chapter 4. An Implementation of the BPBP FMPP

The BPBP-FMPP has a possibility to enhance the current Von Neumann computing system
considerably. To enjoy such enhancement as much as possible, huge computation space should be
prepared. We have to consider more dense and powerful PE structure.

The developed BPBP-FMPP LS| have various functionalities. The rich functionalities and 32bit
word structure diminishes the number of PES on a single LSI, which results that only eight PEs
are available. The 32bit structure also decreases the processing speed. As shown in Figure 4.11,
peripheral circuitry besidesthe memory block occupieshalf of the PE area. To enhancetheintegration
density, the bit width of words and an ALU should be decreased to be optimized for some specific
applications. Theperipheral circuitry isalsominimized. Inthenext chapter, we explain an application
specific FMPP called FMPP-VQ. The FMPP-V Q64 L Sl integrates 64 PEs. A PE consists of 16word
8bit SRAMs and an 12bit ALU.

Chapter 5

Functional Memory Type Parallel Processor
for Vector Quantization: FMPP-VQ

An application specific FMPP caled “FMPP-VQ” is discussed in this chapter. The FMPP-VQ
accel eratesthe nearest neighbor search on vector quantization (V Q). It can beapplied to low-ratevideo
compression. Three LSIsare aready available: FMPP-VQ4, FMPP-V Q64 and FMPP-VQ64M. The
FMPP-V Q4 integrates 4 PEsto evaluate itsfunctionality. Thelatter two L SIsintegrate 64 PEs, which
can be applied to actual low-rate video compression. The FMPP-VQ64 and FMPP-VQ64M achieve
both of high performance and low power. We have aso developed a low-rate video compression

system and a multi-stage hierarchical vector quantization algorithm using the FMPP-V Q.

5.1 Introduction

We can currently use cellular phones and PHS' for the mobile sound communication. Visual
information is important to communicate each other because we can easily recognize and analyze
information with our eyes. In the mobile communication, transmission of information is restricted
within a limited bandwidth. Visual information, however, involves a huge amount of data. For
example, aframeof full-color imagesincluding 176 x 144 pixel samountsto 76kbytes. The PHSwhich
achieve awide bandwidth of 32kbps cannot send even asingle frame per second without compression.
Thus, some kind of data compression technique must be applied. In addition, the data compression
technique should al so below-power consuming, sinceall of electricinstrumentsfor mobile computing
are driven by batteries. In the JPEG or MPEG algorithms the discrete cosine transformation (DCT)
compresses space redundancy of an image. Such DCT-based image compression algorithms achieve
both high quality and high compression ratios, but consume large amount of hardware and power both
during compression and during decompression. On the other hand, vector quantization (VQ)[GC83]
is a promising candidate for low-rate and low-power image compression, since it requires much

less hardware for decompression. During compression, however, it requires a large amount of

1Personal Handy-phone Systems available in Japan.

52 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

computation time. The most time-consuming factor in compression is the “ nearest neighbor search,”

which searches for a vector nearest to an input among several vectors.

The memory-based SIMD shared-bus parallel processor architecture, the FMPP iswell suited for
computing the nearest neighbor search. We propose an implementation of the FM PP architecture to

accelerate the nearest neighbor search.

The developed hardware is caled “FMPP-VQ”, to signify an FMPP for Vector
Quantization[KKT96]. It has as many processing elements (PEs) as code vectors. A shared bus
connects al PEs. The nearest vector is searched exhaustively in parallel. Each PE has conventional
memories to store code vectors and an arithmetic logic unit (ALU) based on pass-transistor logic
to compute the distance between an input vector and code vectors. The nearest vector is obtained
using the CAM-based parallel search. These procedures are done in O(k), where k£ stands for the
dimension of vectors. The number of code vectors does not affect computation time. In the nearest
neighbor search, only input vectors are broadcast to PEs from a shared data bus. The distance is
locally computed in each PE. Thus, memory-based PEs perform effective computation to obtain an
input vector broadcast through a shared bus. Code vectors can be easily updated, since they are
stored in conventional memories. All PEs can be laid out in a memory-like regular-array structure,
which minimizes circuit area. A large number of PEs can be integrated on asingle LS| and used to
perform massively parallel computation. We have designed and fabricated three L SIs of the FM PP-
VQ architecture. Thefirst LS| called “FMPP-VQ4” was fabricated in 1996, which integrates four
PEs to evaluate functionality of the FMPP-VQ. It isamost fully functional. Then we designed and
fabricated the FMPP-V Q64 integrated 64 PEsin 1997. PE arrays are fully-functional, but its control
logic has some design errors. These two LSIs work at 25MHz clock cycles. The power dissipation
of the FMPP-V Q64 is 20mW at 25MHz clock frequency and 3.0V power supply. It performs 53,000
nearest neighbor searches per second. It can be applied to the image compression on the mobile
computing field. The third LSl called FMPP-VQ64M is developed to achieve higher performance
and lower power. Its performance is doubled, while its power dissipation is half compared with the
FMPP-V Q64.

We develop a video compression system using the FMPP-VQ64. It consists of the FMPP-V Q64
LSl and an FPGA for control logic, attached to personal computers. Images compressed by vector
quantization can be easily decompressed. A seria commercial processor for PDA has enough power
to decompress the compressed images in real time. The developed compression algorithm can
compress a frame of a QCIF (176x 144) video sequence into 2920bits. The quality of compressed
images is over 30dB for some standard video sequences like “Suzie” or “Miss America” We aso
develop an evaluation encoding system consists of a host computer and an FMPP-VQ64 LS. It
compresses 10 QCIF frames per second in real time. A PHS terminal can send 10 frames per second

5.2. Vector Quantization of Image 53

viathe 29.2kbps mobile wireless channel. The agorithm is very robust to noise, since indexes from
the nearest neighbor search is coded with a fixed length.

Inthischapter, Section 5.2 givesabrief introduction of vector quantization. Section 5.3 showshow
to accel erate the nearest neighbor search on the FMPP architecture. The architecture and structure of
the FMPP-VQ isexplained in Section 5.4 The detail description of the FMPP-V Q4 and FMPP-V Q64
are shown in Section 5.5. The FMPP-VQ64M are described in Section 5.6. The FMPP-VQ64M
is now under test. We compare the FMPP-VQ with some other vector quantizer and commercial
sequential processors in Section 5.7. Section 5.8 gives a description of the compression algorithm

and the experimental real-time low-rate video compression system.

5.2 Vector Quantization of Image

Vector quantization (VQ) can be defined as a form of pattern recognition where an input pattern
is “approximated” by one of a set of patterngGG92]. It is mostly applied to image compression.
An input image is first divided into meshes which includes vk x vk pixels. Each mesh is then
approximated by one of a set of patterns. We call a mesh an input vector # and a set of patterns
a codebook Y. A vector in a codebook is referred to as a code vector ;. For VQ to be put into
practical use, there are two issues that need to be addressed. One is the acceleration of the “nearest
neighbor search (NNS).” The NNS searches for a vector nearest to an input vector among a large
number of vectors. This requires a substantial amount of time on conventional serial processorsin
relation to the dimension and the number of code vectors. The other issueisthe design of an optimal
codebook. The quality of reconstructed images obtained from a common set of images using DCT-
based compression algorithms is independent of the algorithm used. In VQ, however, the quality
of the compressed image depends on the codebook design. The proposed hardware, FMPP-VQ is
designed to satisfy these two considerations, acceleration of nearest neighbor search and optimization
of codebooks.

We should perform optimization sequence to find an optimal codebook. For example, the
LBG[LBGS80] agorithm isone of the most famous algorithmsto find an optimal codebook. It usually
requires long training sequence to obtain an optimized codebook.

Figure 5.2 explain the nearest neighbor search and codebook optimization for two-dimensional
vectors. In the LBG algorithm, a code vector is rearranged into the center of gravity among al the
nearest vectors.

Table 5.1 shows parameters and definition for vector quantization.

The nearest neighbor search (NNS) can be defined as Equation (5.1).

inearest = mjn_ld(f,y';) (51)

54 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Vk

input vector

¥ B

E code vectors
] (codebook)
% nearest vector

Y

Figure 5.1: Vector quantization of images.

d(Z,y;) - distance between Zandy;

To compute the distance between vectors, two measurement methods are well known. Oneisthe
absol ute distance (mean absolute error (MAE)) in Equation (5.2).

k—1
d(Z,5) =Y |z; — yil (5.2
j=0
The other is the squared distance (mean squared error (MSE)) in Equation (5.3).

k—1
d(Z,4;) = z%(%' — i)’ (53)
=
The squared distance requires multiplication to compute the second power products, which wastes
the silicon area. On the other hand, the absolute distance requires no multiplication, but it may fall
into a local optimum solution. Code vectors for images, however, are spread out sparsely in the
Euclidean space. The absolute distance has enough quality for image compression.
The FMPP-V Q performs the nearest neighbor search to simultaneously compute all the absolute
distances between a broadcast input vector and code vectors. The memory-based architecture of
the FMPP enables optimization of the code vectors, since they are stored in memory cells in the

FMPP-VQ. It can be accessed as the same manner than conventional memory devices.

5.3. Vector Quantization on the FMPP 55

. O d . O .
o . L] L]
° o . .
Nearest neighbor search\o - 0 .
o nearest vectors fo) :
O\:) . \ . M .
Codebook optimjzation ™ ftecemeroigaiy

* input vectors O code vectors

Figure 5.2: Nearest neighbor search and codebook optimization.

5.3 Vector Quantization on the FM PP

The first FMPP LS called the BPBP-FMPP described in Chapter 4 appeared in 1994[KOT95]. It
involves 8 processing elements. Each processing element (PE) consists of several words of CAM
(Content Addressable Memory) and an ALU. The ALU can perform addition and logical operations,
which are implemented using a CAM-based pass transistor logic. The BPBP-FMPP can search for

the minimum value among all words.

The NNS of vector quantization can be an application very suitable for the FMPP. It requires
an input vector and a set of code vectors. In order to compute the NNS in the FMPP, PEs store
code vectors and an input vector is broadcast to al PEs through a bus. First al distances between
the input vector and the code vectors are computed. The code vector nearest to the input is then
extracted. PES can compute the distance locally without communication between PEs. The absolute
distance X|Z — ¢/| can be calculated with a combination of subtraction and logical operations aready
implemented in the BPBP-FM PP. The minimum absol ute di stance can be extracted using its minimum
value search capability. Thus, the FMPP architecture effectively accelerates the NNS. Code vectors
can also be easily optimized since they are stored in a conventional memory (CAM) and can be read

or written in the same manner with a conventional memory.

We have designed an LS| called the FMPP-VQ to be optimized for the NNS. To confirm the
functionality of the FMPP-VQ, we have developed and fabricated the FMPP-V Q4 which contains
four PE§KKT*97]. It operates properly at 25MHz. Four PEs are enough to verify paralel SIMD

56 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Table 5.1: Parameters and definition for vector quantization.

Parameter/Definition | Synopsis
k dimension of vectors
N number of code vectors
m bit width of vectors
Y codebook
i ith code vector in Y
Yij jth element of ith code vector
x input vector
T J th element of input vector

operations, but insufficient for actual image compression. We have developed and fabricated the
FMPP-VQ64[KNT*98] with 64 PEs for real-time low-rate image compression. The FMPP-VQ64
is fully-functional and performs 53,000 NNSs per second, while its power consumption is 20mw
at 25MHz clock frequency and 3.0V power supply. We have also developed an image compression
algorithm using vector quantization for the FMPP-VQ. A low-bit rate image compression system is
now under development, sending 10 frames of QCIF (176x 144) video sequence through a 29.2 kbps
wirelessline of the PHS. Theimage compression system consists of asingle L SI of the FMPP-V Q64,
an FPGA for control logic and a host computer. The FMPP-VQ achieves both of high performance
and low power. But the simple control logic does not work because of some design faults. We have
designed and fabricated an modified versions of the FMPP-V Q64 called FMPP-VQ64M. It contains
more sophisticated control unit to manage the nearest neighbor search. Its throughput isincreased to

91,000 NNSs per second, while its power consumption is estimated to be 20mW.

5.4 Architecture and Structure

The features of the FMPP-VQ are summarized as follows.

e The bit-paralléel block-paralléel structure is adopted.
e The absolute distance X|Z — 4] is used as the distance measure.
e The nearest neighbor search is computed in O(k). (k£ denotes the vector dimension.)

e 16 dimensional vectors are used.

5.4. Architecture and Structure 57

e Code vectors are stored in SRAM cdlls.

e A pass-transistor based arithmetic logic unit (ALU) computes the absolute distance between 7
and y;

e The minimum distance is extracted using the CAM-based search procedure.

The distances between a broadcast input vector and code vectors are computed on all the PEsin
an SIMD manner. We can get the nearest neighbor vector by finding the minimum value from all the
distances. Since conventional adders consume hardware, we use an adder based on a pass-transistor

logic.

5.4.1 Nearest Neighbor Search on the FMPP-VQ

Required operations for the nearest neighbor search are listed as follows.

1. Absolute distance measurement. | — ;|

1.1 Subtraction. z; — y,;

1.2 Absolute value computation(ABS). |z; — ;]

k—1
1.3 Accumulation. Y |z, — vl
=0

2. Minimum vauesearch. min|Z — ¢;
1

The FMPP-VQ is designed to perform these operations. Absolute distances are computed on all
the memory-based PEs, and then the minimum value is searched in paralel. The size of codebooks
does not affect the time to compute the NNS, since al the distances are computed in parallel and we
use the minimum search procedure similar to that on conventional CAMs[OY N85, OY Y 86].

In order to compute the absol ute distance, the capability of numerical operations areimplemented
in the PE. In the FMPP-VQ, numerical operations are done using the same strategies as the BPBP-
FMPP according to Equations (5.4)-(5.7).

Ci=G;+P,-C;_, (5.4)
P, = 4| B; (5.6)

S;i=Ci1® E (5.7)

58 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Inthe BPBP-FM PP, addition is composed of several individual operations: logical operations and
carry propagation. It takes 6 steps to complete addition. On the other hand, numerical operations on
the FMPP-VQ can complete in asingle cycle. The carry propagate (P) and the carry generate (G)
are produced simultaneously. Then, they are sent to the carry chain. Finally the XNOR operation
between the carry and P is done. There is no buffer or word to save P, G and C. The required
number of transistors can be reduced compared with that of the BPBP-FM PP,

5.4.2 Structure of the FMPP-VQ

Figure 5.3 shows ablock diagram of the FMPP-V Q. Each PE stores a code vector ¢; in acodebook Y
and computes |7 — 7;|. All PEsarelaid outina+/N x /N two-dimensional regular array structure
and connected through ashared bus called the “global databus.” Aninput vector isbroadcast element
by element through the global data bus. In the PE, the absolute distance of each element |z; — y;;| is
accumulated element by element. After all elements are broadcast, the minimum value is extracted

as the same manner as the conventional CAMs.

¥ ={xo, 71,2, +, Tp_1}
v global data bus
T T (=)
Y1 [y\/ﬁ-[
™1 - N 1 ®© ©¢ ¢ ¢ ¢ o ¢ o .]
Uz — @) \)
Control logic. etc.” | (\ ()
Codebook
words] PE | [i
\)
?JN—1|:

imz‘n = mlln _1|:[,_" — ij| address <«—
Ep —
Figure 5.3: Block diagram of the FMPP-VQ.

The PE contains 16 codebook words for a code vector and an ALU to compute the absolute

distance. To accumulate the absolute distance of the /th element to the (I — 1) accumulated result,

5.4. Architecture and Structure 59

Equation (5.8) is performed. Since the FMPP-VQ is an SIMD parallel processor, all PEs must
perform the same operations. To compute the absolute distance |« ; — v;;|, operations should be given
individually to each PE according to the values of x; and y;;. There are two ways to compute the
absolute value, depending on whether an element of a code vector is greater than (Condition 1) or

less than (Condition 2) an element of an input vector.

-1
l D1z — il + v — @ (yi > ;2 Conditionl)
7=0

Dol — il =

: -1 (5.8)
7= S olzj— il + v —x+1 (y <z Condition2)
j=0

The FMPP-V Q computes the absol ute distance to repeat Equation (5.8) from{ = 0tok — 1. To
compute the NNS of these two conditions on an SIMD processor, we divide Equation (5.8) into the

following three operations.

Operation 1 Compute y; — ;.

Condition 1 [(y; — z; > 0)] Nothing done.

Operation 2
Condition 2 [(y, — z; < 0)] Computey; — ;.
-1
Condition 1 Accumulatey, — z; 10 Y _ |z; — vyl
Operation 3 J=0

-1
Condition 2 Accumulate (y, — z; + 1) to) |z; — ;1.
7=0

The overflow bit of the carry ismemorized at the subtraction of Operation 1. It isused to control
the following two operations.

Figure 5.4 shows the structure of the PE. A codebook word CW(j) stores y;; in a code vector
y;. For vector quantization of image, the dimension of vector & is usualy 16. Thus, each PE of
the FMPP-VQ has 16 codebook words. A memory cell of the codebook word is a conventional
6-transistor SRAM. The operand word OW stores an operand on every operation. The result word
RW stores }° |z; — y;;|. The temporary word TW stores results from operations. The local data bus
(IbO, Ib1) connects operand words and the other wordsin the ALU. There is no conventional adder
inthe ALU. Instead, the operand word, carry chain and the XNOR gate work together for addition or
subtraction according to Equation (5.9), which can be obtained from Equations (5.4)-(5.7).

Ai+Bi= (A0 B;)+Ci 1 (5.9)

The operand word is designed using the conventional SRAM-based CAM[OYN85]. Logical
operations required for addition are executed using pass transistors in the operand word. The carry

chain is also composed of pass transistors, which accelerates carry propagation. Thus, addition

60 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

can be done in bit-parallel. A codebook word consists of 8bit-wide SRAMs, while the ALU is
12bit-wide because the distance between an input vector and a code vector may grow as wide as 12
(= m+ |log, k] = 8+ |log, 16])bit. The overflow flag OF stores the overflow bit from the carry
chain. The OF is connected to the local control logic (LCL), which controls several input signalsin
the PE for Operation 2 and 3. The search flag SF isused to store the result from the search operation.
On the search operation, asearch key is given from the global databus. Then, it iscompared with the
value stored inthe OW . If the search key isequal toit, the SF becomestrue. Thesigna C'r from the
SF islinked to the local priority address encoder. Its detailed description is given in the following

section.

Upper PE

bo [cwe H—"*

[]
Codebook
Words e x16

[

H cwas)

—
8bit

12bit

Local
control [*
logic

local data bus

local data bus
I

Result Word RW

Codebook Words

Operand Word OW
1] D [y SF

search
lines

Control Lines
 Address Bus

706um

address encoder 4

\
£
Local priority address encoder

‘ Carry Chain ciz OF

L

XNOR
4 ALU

1 Temporary Word TW [T
[———

Lower PE
global data bus .

Figure 5.4 Structure of a PE.

Figure 5.5: Layout pattern of a PE.

5.4.3 Detailed Structure of the PE

The block diagram of the PE is already shown in Figure 5.4. Here, transistor level structures of the
PE is described in detail.

As shown in Figure 5.4, the PE of the FMPP-VQ consists of operand words, the ALU, the flags
and the local control logic. All of these components are laid out in a sguare region to satisfy the

5.4. Architecture and Structure 6l

two-dimensional regular structure. Since the operand words is 8-bit wide and the ALU is 12-bit
wide, the flags and the local control logic are laid out in the empty space at the side of the operand
words. The layout pattern of the PE is shown in Figure 5.5. It isimplemented in arectangle region
to satisfy the two-dimensional regular array structure. In the left side of the PE, there is the local
priority address encoder to search for the nearest vector.

Operand wordsand the ALU

The memory cell of the operand word OW is a conventional 6 transistor SRAMs already shown in
Figure 2.4. Figure 5.6 shows one bit slice of the ALU. All three words, the result word, the operand
word and the temporary word consist of an 8 transistor SRAM cells. Between the operand word and
the temporary word, the carry chain and the XNOR gate are placed.

w | we T 1.4
A 5 ﬁj ;
- b0 B —¢ jj L —e<lb1
] |J] Pass Trsfor
B logical operations
WE
LDXNOR(FT)
IbO, Ib1 : Local Bit Lines D AND(G) '
i - : WO, W1 : Address Line Reference line
: P H —
i Control — : WE, WE : write enable o g .
: G OW T
g Control B Search
; : Search line
= Figure 57 Operand word.
é carry | :
i chain | i pre
D > Operand Word (12bit)

§ i XOR XOR XOR XOR STEP1
e | ! Precharge

XNOR gate Lgs <|¢ ‘lE: . Search L|ne
... i Reference Line

T™W § dis B—| l_STEPz
: Discharge
- B— (if XOR == 1)

e Fi gure 5.8: Search line and reference line for the search
Figure 5.6: One bit slice of the ALU. operation.

Figure 5.7 shows a memory cell of the operand word OW. It stores an operand in the SRAM
cell and produces logical AND (G), XOR (P) and XNOR (P) values between a stored value and a
broadcast value through the local bit lines. The four pass transistors create logical AND and XNOR.
Thetransistor Ts isused for the search operation. Figure 5.8 showsthe search line and the reference
line for a single 12-bit operand word. The search line is precharged before the search operation.

When all the XOR values are fixed according to abroadcast key data, the reference lineis discharged.

62 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

If the key data is equal to the value in the operand word , al the XOR values becomes false. Thus,
the search line remains high voltage. If not, it isdischarged. This capability isamost same as that of
conventional CAMs. The search line is connected to the search flag. Figure 5.9 shows two bit dlice
of the carry chain. It producesthe carry C from the carry propagate P and the carry generate G. The
input node P and P and G are connected to the equivalent output nodes of the OW. The functionality
of the carry chain is entirely same asthat in the BPBP-FMPP. In the BPBP-FMPP, the carry chainis
activated by the clock signal, while thereisno clock signal in Figure 5.9. Its areais decreased, but it
may be activated whenever the states of input signals are changed. 1n the FMPP-V Q64, the inverter
inthe OW isactivated by a control signal in order to eliminate unnecessary state changes of the input
signa P. Figure 5.10 shows the schematic diagram of the inverter controlled by an NMOS FET.

0 <0 Pl Gl

Pull-up Buffer

Figure 5.9: Two bit dslice of the carry chain.

Figure 5.11 shows the XNOR (exclusive-nor) gate which produces the sum from the carry

propagate and the carry. It consists of 6 transistors.

A(P)
our AP E: E: B(C)
Control .—| I_-é XNOR(S)
N4

XNOR= A® B

Figure5.10: Inverter controlled by an NMOS
FET. Figure 5.11: XNOR (exclusive-nor) gate.

Figure 5.12 shows the temporary word TW. The input node P is connected to the correspond
output node of the OW. The control node Pin is activated at the complement operation in the

absolute value computation. Theinput node S is connected to the corresponding node of the XNOR

5.4. Architecture and Structure 63

gate.

PIN D
WE W
p _I__C’ wo 5
wob>g 'j L an i b
o D 4 |J ta Al]
w1 4 bl 1bo |J
ED
o= = T
S:Sum BIT, BIT : Local Data Bus \E;\g’ ?/:/le ,L'Zgzlrezast?_iﬁgs
W : Sum write WO, W1 : Address Line ' '

P : XOR from OW WE, WE : Write enable WE, WE : write enable
PIN : XOR write

b
s

o
=

%’HF

Figure 5.13: Result word.
Figure 5.12: Temporary word.

Figure 5.13 shows the result word RW. It is an 8-transistor SRAM cell which has a CMOS
pass-transistor switch.

The operand words consists of the 6-transistor SRAM cell, whilethe other words hasan additional
CMOS switches to cut off the inverter loop in the SRAM cell. This is because the operand word
are always modified by the driver outside of the PE, while the other words may be modified by the
internal words in the PE. The CMOS switch must be off on the word that the other internal word is
going to write.

Two flags and the local control logic

Figure 5.14 shows the schematic diagram of two flags, the search flag SF and the overflow flag OF.
The input node IN of the SF is connected to the search line in the operand word. That of the OF is
connected to the MSB of the carry in the carry chain. These two flags are also connected to the local
databusfor test. Their values can be read or written directly from the data bus. The detailsiswritten
in Section 5.5.4.

Figure 5.15 shows the OF and the part of the local control logic connected to it. The OF stores
the overflow at the subtraction on Operation 1 in page 59. Then thelocal control logic producesthe
signals PIN and C0 according the the value of the OF at Operation 2 and 3. The other part of the
local control logic defines the operation mode of the PE whether it operates by SIMD operations or
by block-oriented operations, which is explained later in Section 5.5.4.

64 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

C_lZ XOR To Temporary Worc
© PIN
- T N
m N XOR, C1, C2 : Control Line
& ° S
| —a Tow
S b1 ‘ D |
D R Multiplexor - - - - - - - '
WE C2=0: CO=OF(C12)

C2=1: a):c1

WO, W1 : Address Line
WE, WE : write enable Figure 5.15: The overflow flag and the part of
IN - input thelocal control logic.

Figure 5.14: Schematic view of two flags.

Priority address encoder

The priority address encoder is used to extract the minimum value. It consists of comparison lines,
a priority encoder and an address encoder. The comparison lines rapidly confirm whether there is
any true search flags in the FMPP-VQ. The priority encoder resolves the word which contains the
minimum value. Figure 5.16 shows the column priority address encoder for 8 PESs. It isfor 64PEs of
the FMPP-VQ64. The precharged comparison lines are rapidly discharged if thereis any true search
flag. Itisdone asthe same manner with the search and referencelinesin the OW. The priority address
encoder consists of a priority encoder and an address encoder. It resolves the topmost word among
al the words whose SFs are true and then outputs its address. The local priority address encoder is
asingle PE dlice of the priority address encoder.

Figure 5.17 showsthe structure of the two dimensional priority address encoder. Therow priority
address encoder has the same structure with the column one. Comparison linesin the row and column
priority address encoder work to output E'r which becomes falseif thereis no true search flag. The
priority encoder in the row priority address encoder resolves the lowest row and the address encoder
outputs the row address. The column address of the resolved row is selected by the AND gates and
wired-OR logic placed below the row priority address encoder.

5.4. Architecture and Structure

premrr J pre [T

Local Priority
address encoder

SF#1 I[L
b

SF#2 -
b

i ér]

comparison lines
S LY

-

'-0-

SFH#6 | [‘\H
SF#7 —] [‘\H' %q

Qurz our._ouro

@Q@Jj
oY
I,

Priority encoder Address encoder

Figure 5.16: Column priority address encoder.

66 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Column H — L
Priority
o T

)
IS

o 2

= S =

o S

@ =

] o
S
°

g -
2
S
k=)
S
o
c
IS
=)
o)
(@]
[%]
e 3
£ 35
5 ®
2N o1
T o
: 3
o (7}
o k=]
I I I I I I I |
refl%[:L
] comparison lines T Er
ref2
%[j [Priority encoder]
Address encoder > row address
; | | | | | I I » column address
Wired OR

Row priority address encoder

Figure 5.17: Two dimensional priority address encoder for the FMPP-V Q64.

5.4. Architecture and Structure 67

5.4.4 Nearest Neighbor Search Procedure

The nearest neighbor search consists of the absolute value computation and the minimum value
search. Here, the absolute distance computation and minimum value search method is described in
detail using the data flow in the PE.

The absolute residual value of single elements of 7 and ; is accumulated to the last absolute
distance according to Equation (5.8) (in page 59). Each element z; of Z is given one by one to
every PE through the global data bus. Every time an element z; of & comesto aPE, 3 |z; — y;5| is

computed according to the following procedure.
Stepl: [code2operand(j)] The jth element of ;, v;; is sent to the OW.

Step2: [subtraction(z;)] The inverse value of z;, 7; is broadcast to all PEs. Then,
the subtraction, y;; — =, isdone. The result is stored in the
TW. The overflow value is stored in the OF.

Step3: [temp2operand] The value stored in the TW istransfered to the OW.

Step4: [complement] The TW becomes the complement value of the OW. The
PEswhere (y;; — z;) < 0 perform the operation.

Step5: [temp2operand] Same as Step 3.

j—1
Step6: [addinner] Addition between) |z; — | and the OW is done. if
=0
(yij — x;) < 0O, the Oth bit of the carry is set to 1 at the
addition.
Step7: [tempZresult] The value stored in the TW is transfered to the RW . RW
J

becomes > |z, — vyl
=0
It consists of 7 steps (operations). Four operations code2operand, temp2operandx2,

temp2result transfer values from any word to any. There are 3 operations subtraction, com-
plement, addinner between these transfer operations, which correspond to Operation 1, 2 and 3 in
page 59 respectively. Figure 5.18 shows the flow of a single-dimension slice of the absolute distance
computation. The upper PE represents Condition 1 and the lower one represents Condition 2. The
OF stores an overflow value on the subtraction at Step 2. The OF and the local control logic in
Figure 5.15 disable the complement at Step 4 and determines the carry on the addinner at Step 6.
Note that the subtraction adds the 2's complement value of z; (=5) and a value stored in the OW.
The absol ute distance can be computed to repeat the flow 16 (=k) times.

After all elements of & are given, the CAM-based parallel search procedure finds the minimum
value. The output signal Er from the comparison line in Figure 5.17 becomes false if a broadcast
search key is not matched to any operand word. Figure 5.19 shows a program of the minimum value
search. The definitions of these operations are given later in Table 5.2 and Table 5.3. Figure 5.20
is the procedure for the minimum value search among four 5bit values. The minimum distance can

68 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

0110
O— © @ —
initial state code2operand(j) subtraction(5)
% o110)
Condition 1 g [1000 (8) 71 1000 (8) 711000 (8)
CO] B | 10110 (6) | 14 P™o110 (§)| 1 |
]] 0001 (1)
| | (add -5 and OW)
Condition 2 70101 (5) 710101 (5) 10101 (5)
| B | 10011 (3) | 11 P™oo11 (3) o|
]] 1110 (-2)

@— | @ — 06— © — @

temp2operand complement temp2operand addinner temp2result
0110 (6) ‘|0110 (6) 0110 (6) 0110 (6)
1000 (8) 71000 (8) 1000 (8) 1000 (8) > 1001 (9)
0001 (1) 1| > 0001 (1) 1| 0001 (1) 1|CO:O 0001 (1) 1| 10001 (1) 1|
0001 (1) —| 0001 (1)31Sable 0001 (1) 1001 (9) =1001 (9)
XNOR 0 and OW)
0011 (3) 0011 (3) 0011 (3) 0011 (3) 0011 (3)
0101 (5) 10101 (5) 0101 (5) 0101 (5) > 0111 (7)
—r—Co=1 — —
1110 (-2) o| > 1110 (-2) o| 0001 (-2) o| 0001 (-2) o| 10001 (-2) o|
1110 (-2) — 0001 ('7)‘enjab|e 0001 (-2) 0111 (7) = 0111 (7)

Figure 5.18: Procedure for computing the absolute distance.

be extracted to repest a set of the search and mrr operationsfrom MSB to LSB 12 (= m + |log, k])

times. The place which contains the minimum value is extracted by the priority address encoder.

54.5 List of Operationson the FMPP-VQ

All possible operations of the FMPP-VQ are listed in Table 5.2 and Table 5.3. The operations in
Table 5.2 are done according to the SIMD manner. These SIMD operations fall into two categories.
numerical and logical operationsand transfer operations. On addinner operation the other operandis
supplied from the RW through the local data bus. On subtraction, an external datais given through
the global data bus. Note that complement operation is performed as an exclusive-nor between
the OW and zero value. The transfer operations moves data from one word to another. Before a
numerical or logical operation isdone, one of two operands should betransferred to the OW by one of

any2operand operations. The search-flag oriented operations are related to the SF. On the search

5.4. Architecture and Structure 69

min=All 1 # All bitsare 1
mask=All 1 #(every bit is masked)
fori=m+ |log, k] —1to0 # FromMSBtoLSB
mask|i] = 0# Thetarget bit is unmasked.
min(i] =0
search(min,mask)
mrr(Eg,)# Confirmation

if Er = Othen
min(i] = 1
endif

end
search(min,0) # Search the minimum value.
mrr(,address) # resolve the address of the PE

Figure 5.19: Program of the minimum value search.

search (0XXXX) search (00XXX) search (010XX) search (01000)

search key
-0 101070}, ¢ 10107][0]
ee QI011][1 1 1 01010 .
e JL00T][1) *=~[01007][0] [1]
e QII1Y[1F [0111fJof P111[0]
ow SF PE2 €—— mrr(01001) 4—01001

the minimum value

confirmation
confirmation
confirmation

|_<

m
1l
o

confirmation

Figure 5.20: The minimum value search procedures.

operation a search key is given through the global data bus. It is simultaneously compared with all
data in the operand words. An SF becomes true if it is equal to the search key. It is masked by the
mask signal. The mrr operation produces Er which indicates whether there is any true search flag
or not and also obtains the top most PE address whose SF istrue. The writecode operation is used
to write code vectorsto the OW . Of course, the readcode operation to read out the OW is prepared,
but it is not used on the nearest neighbor search. It isfor test operations described in Section 5.5.4.
In the FMPP-VQ, each operation takes two clock cycles. Figure 5.21 shows the timing diagram
of the FMPP-VQ. All the control signals to the PEs are activated at the first edge of the clock. Itis
deactivated at the second edge. The address or data inputs are fixed ahead of thefirst edge. It isheld
until the end of the second edges. It takestwo clock cyclesto perform an operation of the FMPP-VQ.
In order to modify the values of a word by an internal word on addinner or transfer operations, the

local data bus should be precharged prior to these operations, which takes two clock cycles. Thus

70 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Table 5.2: All available SIMD operations of the FMPP-VQ.

operation synopsis #cycle

numerical and logical operations

subtraction(data) | OW — data — {OF, TW} 2
addinner RW + OW + OF — TW 4
complement OW — TW if OF =0 2
transfer operations
code2operand(w) | transfer CW(w) to OW 4
tempZ2result transfer TW to RW 4
result2operand transfer RW to OW 4
temp2operand transfer TW to OW 4
Table 5.3: Other operations of the FMPP-VQ.
operation Synopsis #eycle
search-flag oriented operations
search(key,mask) SF = 1if OW = key&mask 2
mrr(Eg,address) resolve the topmost PE whose SF istrue. 2
Er becomesfaseif thereisno true. SF
address isthe address of the topmost PE.
To write a codebook to codebook words
writecode(address,data) | datawriteto CW(w) 2

these operation takes four clock cycles, while the operations where an operand is given from the
global data bus such as subtraction does not need any precharge cycle.

Figure 5.22 shows the whole procedure to perform the nearest neighbor search. The initflag
operation isrequired on the FMPP-V Q64 because of the design fault. The required number of clock
cycles Ny ys isdescribed in Equation (5.10).

NNNS = tabs + tminimumsearch + tothers = 24k + 2(m + UOgZ kJ) + 8 (510)

It takes 470 clock cycles when k=16 and m=12: 416 cycles to compute the absolute distance, 50
clock cyclesto obtain the address where the nearest neighbor vector is stored and 4 clock cycles for
the other operations. Note that the number of clock cycles does not depend on the number of PEs n

(i.e., size of acodebook).

5.4. Architecture and Structure

1 clock cycle (25MHz)

clock

- AN\

output strobe

perform an operation nop

precharge cycle actual operation

code2operand

Figure 5.21: Timing Diagram of the FMPP-V Q.

for i = 0to 15 # compute absol ute distance
begin #416cycles=24* 16
initflag()
code2operand(:)
subtraction(z;)
temp2operand
complement
temp2operand
addinner
temp2result end
result2operand # 4
mask=00111111111111
searchval=0b000000000000
for i = 11 downto O # extract minimum value
begin #48=12*4
mask[i]=0
search(searchval mask)
mrr(ERg,)
searchval[i]=1if Eg =0
end
search(seachval)# 2
mrr(,min;) # 2

lyi — il

i-1
Zicolys — =il + lyi — il

Figure 5.22: Whole procedure to perform the nearest neighbor search.

72 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Table 5.4: LS| specifications of the FMPP-V Q4.

Process 0.7pm double-metal single-poly CMOS
Diesize 26.3mm?
Areafor 4 PEs 1.12mm?
#10s 116
Power dissipation 3.8mW @(25MHz,5V)

5.5 Implementations of FMPP-VQ LSIs

In this section, two LSl implementations of the FMPP-VQ architecture are introduced. The first
LSl contains four PEs called “FMPP-VQ4,” whichisfor evaluating functionalities of the FMPP-V Q.
Almost all functionalities are verified, but we found several faults. Secondly, we have designed
and fabricated an LS| with 64 PEs called “FMPP-VQ64.” It can be applied to low bit-rate image
compression using vector quantization. It works properly at 25MHz and achieves high performance

and low power.

551 AnLSl Including Four PEsand TEGs. FMPP-VQ4

We have implemented an LSl called “ FMPP-VQ4” including four PEs and sometest circuitriesusing
a0.7 um double-metal single-poly CMOS process. Four PEsand a12bit sense amplifier are shownin
the chip microphotograph of Figure 5.23. Table 5.4 shows specifications of the LSI. All the primitive
control signals to the PEs and sense amplifiers are assigned to the primary input signals of the LS,
which increase the number of 10 pinsand chip area, while enhancing testability and controllability of
the FMPP-VQ. All functionalities to perform the nearest neighbor search work properly at 25MHz,
which is the same value obtained from circuit smulations. Inthe LSI, a2bit ALU, a sense amplifier
and 32bit carry chain areimplemented. Unfortunately, they can not work correctly because of a short

circuit between the power and ground nodes.

In the FMPP-V Q4, several faults are found. The most critical fault is as follows.

e At the code2operand operation, 4 MSBs of the operand word becomes unknown state. It is
because the local bit lines of these bits are floated on the operation.

Inthe FM PP-V Q64, these 4 M SBs are connected to the ground node at the code2operand operation.

5.5. Implementations of FMPP-VQ LSIs 73

[
]

Sense Amp.

32bit Carry Chain

0
Cs
£
@©
)
%)
=
[
o

Figure 5.23: Chip microphotograph of the FMPP-V Q4.

552 AnLSI Including 64 PEsand Control Logics. FMPP-VQ64

We have implemented and fabricated the FMPP-VQ64 LS| using the same 0.7um CMOS process
as that of the FMPP-VQ4. Figure 5.24 shows its detailed block digram. It is controlled by a 5-bit
operation code supplied to the 1O control logic ICL and the global control logic GCL. The control
signals from the GCL to 64 PEs are doubled to decrease the load capacitance and to enhance the
performance. Upper and lower 32 PEs are controlled by individual drivers. To equalize the distance
fromthe ICL to every PE, theglobal databusislaid out asthe shape of an H character. To enhanceits
testability it has been designed such that all primitive control signals to the PE can be directly given
from the 10 pins. The number of 1O pinsis 50 except the primitive control and power supply pins.
It is fully functiona by the primitive control signals. But the control logics do not work correctly.
In the FMPP-VQ4, all the circuitries can be simulated by the transistor level simulator HSPICE™,
while in the FMPP-V Q64 the transistor level ssmulation is impossible since the number transistors
amountsto several hundred thousand. To simulate the whole circuitries of the FMPP-V Q64, we have
developed a behavioral HDL description of the PE. Figure 5.25 shows the Verilog-HDL description
of the operand word and the carry chain. The whole circuit of the FMPP-V Q64 is ssimulated in the
logic level by thelogic simulator Verilog-XL. Thefault of the control logics occurs because the HDL

description of the PE does not follow their accurate behavior.

74 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Local Priority Address Encoder

N
PE#3
i g
operations _
P & operations
9]
mask : ; g _L
A j« o
o ; T) |8
g : : i S
9 : ! :) -
. H H w -
— |35 LGlobal Data Bus ——/ ; ; 8 = O
Ol& a P oo 15l O
8 H N) g O
o ; BERE
JI\ P =
: < O
N = L
, | I nr
: : ; ; Er
. e hressessssessssssssssesssssssesssssssens R TR RN R >
min. distance [Global Priority Address Encoder [—>Address for

min. distance.

Figure 5.24: The detailed block diagram of the FMPP-V Q64.

Figure 5.26 shows the chip microphotograph. LS| Specifications of both the FMPP-VQ4 and
FMPP-VQ64 are described in Table 5.5. Figure 5.27 shows a measured Shmoo plot of supply
voltage versus cycle time. While the recommended supply voltage of the target processis 5.0V, the
FMPP-V Q64 LS| works properly at 3.0V/25MHz and at 2.5V/20MHz. The power dissipation of the
FMPP-V Q64 is 20mW under the condition of 3.0V/25MHz.

Figure 5.28 shows the dynamic current flow of the power-supply pin during an iteration of the
absolute distance computation. The operating conditionis at 25MHz/5V. The current flow has peaks

when operations such as subtraction, complement and addinner are executed.

Table 5.5: LS| specifications of both of the FMPP-V Q4 and FMPP-V Q64.

FMPP-V Q4 FMPP-V Q64

Process 0.7um double-metal single-poly CMOS
Diesize 26.3mm? 52.6mm?
#10s 116 148
Power 9.30mMW@(20MHz,2.5V)
dissipation 3.8MW@(25MHz,5V) | 20.5mW@(25MHz,3.0V)
128mW@(25MHz,5.0V)
Areaof a PE array 2.43mm?(2x2) 23.5mm?(8x 8)
Areaof aPE .28mm? 37mm?

5.5. Implementations of FMPP-VQ LSIs 75

nodul e operandword (cl , sum pp, bO, bl, search, sin, cO_, wo, wi, we);
out put cl_, sum pp;
i nout boO, bl;
i nout search, sin,c0_, w0, wl, we;
reg g, cl,;
al ways @ b0, w0, we)
#10
case(b0, w0, we)
3’ b011: @=0;
3'bl11: g=1;
endcase
not not O(we_, we) ;
and andO(write0, w0, we);
and andl(witel, wl, we);
bufifl (weakO, weakl) bufO(bO, q,wite0);
notifl (weakO, weakl) notl(bl,q,witel);
not not2(c0,c0);
xor xor0(sum q, b0, c0);
or orO0(pp, x0, x1);
not not4(qg_,q);
not not5(bl_, bl);
not not 6(b0_, b0);
and and2(x0, g, b0_, bl);
and and3(x1,qg_, b0, bl);
/1 adder
al ways @ b0, c0, q)
begi n
c1=(b0&&c0O) | | (b0&&Q) | | (q&&cO) ;
end
not not3(cl ,cl);
/1 search
bufifl bufsearchO(search, sin, pp);
endnodul e

Figure 5.25: Verilog-HDL description of the operand word and the carry chain.

Asdescribed in Section 5.4.5, the FMPP-V Q computes the nearest neighbor search (NNS) in 470
clock cycles. Thus, the FMPP-VQ64 completes the NNS in 18.8usec at 25MHz. It can perform
53,000 NNSs per second.

In order to eliminate unnecessary state changes in the ALU, the inverter in Figure 5.10 is only
activated at the numerical operations. To evaluate the effect, power dissipations are measured. Table
5.6 showstheresults. Unfortunately, activating the inverter only at the numerical operation increases
the power. It may be because the input nodes of the inverter has high probability of high voltage.
When the inverter is deactivated and the input node of inverter is high, the output node is floated,
which leads short-circuit current in the XNOR gate or the carry chain. To eliminate the short-circuit
current, the inverter must be deactivated by both of NMOS and PMOS FETs. But it makesthe circuit
arealarger. Therefore, in the FMPP-VQ64M, which is the modified version of the FMPP-V Q64, the
inverter is controlled by a PMOS FET (See Section 5.6.3). Since the input node of the inverter has

76 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Figure 5.26: The chip microphotograph of the FMPP-V Q64.

high probability of high voltage, the output node of the inverter has high probability of discharged

state causing no short-circuit current in the subsequent circuits when deactivating the inverter.

Table 5.6: Comparisons of power dissipation by activating the inverter at the numerical operation
and by always activating the inverter. The condition is5V/25MHz.

Activation at the numerical operations | aways

Power dissipation 193mW | 128mw

5.5.3 Integration Density of the FM PP-VQ64

Here, we evaluate the integration density of the FMPP-V Q64 compared with a conventional SRAM
designed with the same technology. Table 5.7 shows the area of a single PE of the FMPP-V Q64
with the area of the 8kbit SRAM designed with the same 0.7um process| DAT96]. The 64PEs of the
FMPP-V Q64 contains 8kbit codebook words, which areais 9.5 times larger than the conventional
SRAM. Looking at Figure 5.5, the global data bus, control lines and address bus occupies about a half
of PEs. Without these bus and control lines, the area of the 64PEs is reduced to 10.1mm?, which is

only 4 times larger than the conventional SRAM. The reason why the area becomes twice including

5.5. Implementations of FMPP-VQ LSIs 77

LeloZelodomy

o
(7)]

D

ol

I
LeZoZoToZoZoToLoToLo2od
COVOOVOOOOOO0O000(Q) OOV

N
I
[eZoToToToToToToToToToToToTo ooy

w

o

I
LeZoToLodoToToLoZoToloo Lol o Lot Lol
LoZoToloToZoToLodoTodoTolo Lo Lot o Lot Lomy
LeZoTeToToToToToToRoToToToToToToTotoToTod
LeZoZeZoToLodoToLoLo Lot oTodolotoTododoTotog
LoleZodoTo2oDo Lot o Lot o ToT oo LoloToToToTo 2ol o]

supply voltage

w
I
LeZoZoZoZoZoToLodo Lo LoD oot o Lot olodo oot ototog

LeZoZoloToToToToToToToToToTototoToToLoToLoToLodod
LeZoZeloToToTo Lol o Lot ToToTodotoTolodoToloToLoto ey
OOOOOOOOOOOOOOOOJ@VOOOOOO—

fail

LeZoZoToToloTo Lot o oToToToToLoToToLoToloLolo Lo Lot o Lol
LeZoZoToToloTo Lot o oToToToTo Lot o LotoToloTo LoD o Lot o Logy
LeZoZoToToloTo Lot o oToToToToLoToToLoToloLolo Lo Lot o Lol

N
o
|

F Q000000 O0VOOOOVOOOOOVOOOOOOOO0

| | | | | | |
34 36 38 40 42 44 46
cycle time

D
(o]
a1
o

[ns]

Figure 5.27: A measured Shmoo plot of supply voltage versus cycle time in the FMPP-V Q64.

these bus and control lines is mainly that the fabricated process has only two meta layers. If the
brand-new sub-micron multiple-metal-layer processisavailablefor use, the integration density of the

FMPP will increase considerably.

Table5.7: Areafor 1 PE of the FMPP-V Q64 and 8kbit SRAM fabricated by the same 0.7,m process.

area(mn?)

64PEs 235
1PE total | .367
16codebook words+ALU | .137

priority address encoder | .02

8kbit SRAM 2.45

554 Testability of the FMPP-VQ64

To enhance the testability of logic L SIs scan methods have commonly been used. The FMPP-V Q64
adopts the parallel random-access scan methodology[WE93] owing to its memory-based structure.
Codebook words can be accessed in the same manner as conventional RAMs. Furthermore, all words
and flagsin the ALU can be accessed with read/write operations.

Figure 5.29 illustrates the address control scheme of the FMPP-VQ64. It has 10-bit address

78 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

0.15

Dynamic Current —

0.1

0.05

-0.05

code2operand temp2operand temp2operand temp2result

subtraction complement addinner

Figure 5.28: Dynamic Current flow on the absol ute distance computation.

control lines for 1k (16x64) codebook words. Higher 6-bit signals to the higher address decoder
(HAD) represent a PE address. Lower 4-bit signals to the lower address decoder (LAD) are used for
a codebook-word address in each PE. On SIMD operations, such as subtraction, the input signal
rcall isset to high. Then all higher decoded addresses become active. All PEswork simultaneously
according to the SIMD control method. On read/write operations, the higher decoded address
determines a single PE. In the local control logic (LCL) shown in the bottom left of Figure 5.29,
a higher decoded address from the HAD enables the local decoded address (LD A) from the LAD.
To append parallel random-access capability to the ALU, the higher decoded address also enables
control signalsfrom the global control logic.All wordsand flagsin the ALU can be accessed through
read/write operations, which improves the testability of the FMPP-V Q64 considerably. The number
of signals controlled by a higher decoded addressis only 10 in the ALU. The hardware overhead is
very small. Note that the flags are connected to the local data bus as shown in Figure 5.4 in order to

be read or written directly through the bus.

5.6 Modified Version of the FMPP-VQ: FM PP-VQ64M

The FMPP-V Q64 achieves both of high performance and low power. But it has some drawbacks to
compute the NNS as follows. Eight operations are required to compute the absolute distance of a
single dimension, as aready shown in Figure 5.22. Half of these 8 operations transfer a value from

one word to another such as temp2operand. These transfer operations decrease the throughput

5.6. Modified Version of the FMPP-VQ: FMPP-VQ64M 79

address

64

| Higher Address .
' Decoder(HAD) 8 nhigher decoded address(HDA)

6
codebool
rcall ords
e

ot L om || e OO

HDA 1

LDA[15] i:l) L . . .
— oW[15] | e
> i
PE#56 PE#63
GCL _;D>_|> ALU PE array
16

. Global Control lower address |«
Local Control LOQIC(LCL) Logic(GCL) LDA[0:15] decoder(LAD)

Figure 5.29: Paralel random-access capability to the ALU.

and increase the power consumption. The number of operations can be reduced if operation results
are directly written to the OW . The optimal transistor-sizing may reduce the short-circuit power
dissipation. In this section, a modified-version of the FMPP-VQ64 is described, which is called
“FMPP-VQ64M.”

The structure of the FMPP-VQ64M is similar to the FMPP-VQ64. But it can perform 91,000
NNSs per second which is almost two times faster than the FMPP-VQ64. It integrates a highly-

functional control logic to manage the nearest neighbor search.

5.6.1 Structureof aPE

Figure 5.30 compares two PE structures of FMPP-V Q64 and FMPP-VQ64M. Codebook words are
16 words of eight-bit conventional SRAM cells, which store a 16-dimensional code vector. The ALU
computes the absolute distance. The operand word receives datafrom thelocal data busand performs
logical operations. In the FMPP-VQ64, operation results from the carry chain or the operand word
are temporarily written to the temporary word. To reuse the value stored in the temporary word,
it must be transferred to the operand word, which always consumes an operation. To remove such
drawbacks, the ALU of the FMPP-V Q64M does not have the temporary word. Operation results can
directly be written to the operand word. It can compute the absolute distance for an element z; of 7
in four steps, while the FMPP-V Q64 takes eight steps.

80 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

—————1) I ——
b0 - cwo] i N TR - Lk
e o ° °
Codebook q |Codebook 5
Wordse 16 q [Wordse 415 | 3
[9 ° 3
1 cwas) | —{ owas) |
12bit 12bit
T) e Y
- Result Word RW || | || ResultWord RW | ||
t
—11 O dWord [T
L1 Operand Word L1 1 peranEB OrO " sF l-c,
@ ow /4 |
search
Is»earch/ lines
Carry Chain Cco Carry Chain OF

[L—
ALU KQ ALU

. J

-+

L _L| Temporary Word |-

\ W)

(@) (b)

Figure 5.30: PE structures of the FMPP-VQ64(a) and the FMPP-V Q64M (b).

5.6.2 Absolute Distance Computation

In the FMPP-VQ64M, the absolute distance is computed element by element according to Equation
(5.11).

j—1
J Z |xl - yill + Yij — T (yz-j > 17]')
Do lw—yal = lzo-_li (5.12)
1=0 !

{(Z |171 - yill) + Yij — xj} (yij < xj)

=0
It requires a conditional operation according to the results of y; — x;, which is enabled by the
overflow flag OF. Three operations as shown below compute the absol ute distance.

Operation 1 Computey;; — x;

j—1
Condition 1 [(y;; — z; > 0)] Accumulatey;; — z; t0 > _ |z, — yal.
Operation 2 Jlfg
Condition 2 [(y;; — z; < 0)] Accumulatey;; — z; t0 > |z, — yal.
=0

5.6. Modified Version of the FMPP-VQ: FMPP-VQ64M 81

Condition 1 [(y;; — z; > 0)] Transfer the original value to the RW .
Condition 2 [(y;; — z; < 0)] Transfer theinversed valueto the RW .

Operation 3

These operations are performed in 4 steps as bel ow.

Stepl: [code2operand(j)] The jth element of y;, y,; is sent to the OW.

Step2: [subtraction(z;)] The jth element of &, z; is broadcast to all PEs. Then, the subtraction,
vi; — x; isdone. Theresult is stored in the OW. The overflow valueis stored in the OF.

7j—1
(yij —2;) >0 > |z, — yu| + OW — OW
Step3: [addinner] jl:fl’i
(yij — ;) <0 > | — yul + OW — OW
1=0

(yij — !Ej) >0 OW — RW.

Stepd: [tempZresult] -
(yz-j — IEj) <0 OW — RW.

At Stepl, an element of code vectors is tranfer to the operand word. There exists no useless
transfer operation between the other operations. At Step2, z; is given through the local data bus and
subtraction y;; — z; isdone. The overflow valueis stored to the OF . If y;; — x; > 0O, the OF becomes
1. At Step 3 and 4, the summation Z{;& |z; — vu| 1S accumulated to |z; — y;;|. The value of the OF
controls the operations at these two steps. The final value stored in the RW becomes S7_ |z — 4|
at the both conditions.

Figure 5.31 depictsthe dataflow to compute Equation (5.11) (in page 80). It showstwo conditions
according to the results of the subtraction in Step2. The upper condition iswhere y;; — z; > 0 and
the lower one is the opposite state. In Stepl, code2operand transfers y;; from CW(j) to OW . In
Step2 all PEsreceive an element z; of an input vector Z. In Step 2', the subtraction between z; and
the OW is performed and the results are written to the OW and the OF . In Step 3 addition between
the RW and the OW is done and the result is written to the OW . The value from the RW to the local
data busis changed according to the OF . In Step 4, the valuein the OW is moved to the RW , which

becomes Y°7_, |z — ;-

5.6.3 Detailed Structure of the ALU

Figure 5.32 shows a detailed schematic diagram of two-bit slice of the ALU. Figure 5.33 shows a
detailed schematic diagram of the operand word. When an operation between the OW and an operand

from the local bit lines is done, the result is written to the OW itself. To write back the operation

Chapter 5. FMPP for Vector Quantization: FMPP-VQ

0110
& O— © @ —
H initial state code2operand(j) subtraction(5)
) — v al
WOy
RW Zl-rl—llx,l‘ é 1000 (8) 1000 (8)
ow OF| | o110 6)| | ;{™o110 ()] |
L *
= (add -5 and OW)
| Vit
CWO) _ yit1, 0011 (3)
RW jgn\.r,-y,ﬂ,,\ 0101 (5) 0101 (5)
ow OF| | oo11 3) | 11 Moour @) |
[¢
0110
(5) @ —» e® — Qe — @ —
addinner addinner operand2result
1000 (8) 1000[12000 (8)[*1 100b[7 1000 (8)[9 1001 (9)[9
0001 (1) 1| 0 0001 (1) 1| 1001 (9) 1| 1001 (9) 1|
L4 [* L4
(add -5 and OW) (add -5 and OW) (add -5 and OW) (add -5 and OW)
0101 (5) 051)10 0101 (5)["] 011b{ 0101 (B[0111 (N[N
1110 (-2) o| 0 1110 (-2) o| (5)| ${1000 (7) o| 1000 (7) o|
L4 [* L4

Figure 5.31: A single dimension dlice of the absolute distance computation in FMPP-VQ64M.

result to the OW safely, two CMOS switches SwO and Sw1l are cut off. The gate capacitance of
nodes T and T holds the value stored in the OW .

Intheresult word RW (See Figure 5.35), WO and W1 are controlled by the value of the OF, which
enables read and write operations of the inversed value required at Step3, 4. The controlled inverter
in Figure 5.34 decreases power consumption considerbly. The control signal control is activated on
the numerical operation. Asalready written in Section 5.5.2, theinput node of the inverter hasahigh
probability of high voltage. Onceits output nodeisdischarged, it can not be re-charged unless control

isactivated. THus, the XNOR gate and the carry chain dissipate power at numerical operations.

Table 5.8 comparesthe specifications of the PEsof FMPP-V Q64 and FM PP-VQ64M. The number
of transistorsin the FMPP-VQ64M is decreased to 86% compared to that in the FMPP-V Q64, while

theareaof PEisalmost same. It it mainly becausethe number of vertical signalsinthe ALU increases.

5.6. Modified Version of the FMPP-VQ: FMPP-VQ64M 83

L local data bus —_—

Ib0 bl b0
- ——— ! |]
A g T
g g 2
g ‘%ﬁ L = RJQ g
wE I
w1 I
wi iy
b
we2 I
wo I T - T 1 s o
[11 [1 °
= D#Eﬁ]@ Tton SO Dqﬁ@ | :‘%E
I I
e [T Can
wE2 I
WE
‘|[I ‘|[I search Ilnes
cc?:trrT:)(I). (dlé\ (qé —» sum2
G e L
P 1 H - “Gi i
NV _1 XNOR _TLH:Ig g
o] j E (] j » 5
I] R s

Figure 5.32: Two-bit slice of the ALU.

Thetotal number of transistorsin the PE isincreased, since the local control logic to manage WO and
W1 in the RW becomes complecated. The number of clock cyclesto compute the absolute distance,
however, is decreased to 53% of the FMPP-V Q64.

5.6.4 A Highly-Functional Control Logic

The FMPP-VQ64 has a primitive control logic which trandates a specified 5-bit control code to
primary input signals of the PE array. In the FMPP-VQ64M, a highly-functional control logic is
implemented. It receives a start signal and automatically performs the nearest neighbor search. It
is called the auto-execution mode. To enhance its testability, all primary input signals are directly
controlled in the primary control mode. In order to observe some temporary values which are on the
way of operations, a HALT signal is given to the control logic. There exist two modes in the auto
exectution mode. One is the normal operation mode and the other is the fast operation mode. In

the normal operation mode, all operations are done in asingle cycle. On the other hand, in the fast

84 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

b0 Il

we2 I

wo B i i Y Control >
. [J 5 P*’ﬁ .

Pt0 Pt1 p——t ,:\ p——t Pt2 Pt3 . d

T Swo swi

Bl LJ T IN @ ouT
Sl =

cac iy W—Er » .

we2 I

Figure 5.34: Inverter con-
trolled by aPMOS FET.

»
- @
o

Figure 5.33: Structure of the operand word.

| bO lbl Auto Execution

Mode

Ii

HALT
wo I
WO . Normal Operation Halt mode
Mode
WE . 1 Return
Tro C+ b_‘ T

—1 SELECT
»—D
o

o

Return

S - S— Py Gl
. T lqu ™™
awv
Figure 5.36. The flow of mode
Figure 5.35: Structure of the result word. changes in the FMPP-VQ64M.

opearation mode, numerical operations are done in two cycles. In Figure 5.31, numerical operations
such as subtraction and addinner can be divided two phases. The second phase is denoted by a
single quotation mark. At the first phase, an operand is given to the operand word. At the second
phase, the result is written to the operand word. The numerical operations take twice as long as the
other non-numerical operations. If the numerical operations are done in two cycles, the clock cycle
can be shortened. Thus, the whole operation can be done faster. The detailed simulation results and

performance estimation are given afterwards.

5.6.5 Specification and I mplementation

Equation (5.12) and (5.13) show the number of clock cycles to compute the NNS in the normal
operation mode and the fast operation mode respectively.

Noormai = 14 x 16450 = 274 (5.12)

5.6. Modified Version of the FMPP-VQ: FMPP-VQ64M 85

Table 5.8: Comparison of areas and performance for the FMPP-V Q64 and the FMPP-V Q64M.

FMPP-VQ64 | FMPP-VQ64M
#of Tr. per bitinthe ALU 45 39
Areaof aPE 241mm? .238mn?
Trsof aPE 1524 1534
of clock cycles to compute the absolute 26 14
distance of asingle dimension

Niygot = 18 x 16+ 50 = 338 (5.13)

We estimate that the FMPP-V Q64M works at 25MHz (40ns.) at the normal operation mode. The
numerical operations on the FMPP are 1.5 times slower than the other operations. The operation
speed can be 1.5 timesfaster in thefast operation mode, resulting 37.5MHz clock frequency. Thus, the
FMPP-VQ64M performs 91,000 NNSs per second at the normal operation mode, while it performs
111,000 NNSs per second at the fast operation mode.

Table 5.9 lists power consumption values of a PE from circuit simulations, which showsthe effect
of two optimizations compared with the FMPP-V Q64. First, thetransistor sizeisoptimized to reduce
the short-circuit current, which decreases the power by 6%. The controlled inverter decreases the
power by 23%. Table 5.10 shows the dissipated power in each part of the PE. It provesthat the carry
chain dissipates half of the total power. The FMPP-V Q64 activates the carry chain threetimesin a
single dimensional absolute distance computation, while the FMPP-VQ64M activatesit twice.

Table 5.9: Power consumption of the FMPP-VQ64M from circuit simulations of a PE at 25MHz
5.0V.

Optimization Method Power
FMPP-V Q64 3.03mw

before optimizing Tr. size | 2.01mW
FMPP-VQ64M after optimization | 1.86mwW

activate INV at operations | 1.45mwW

The power consumption expected from that of the FMPP-VQ64 is shown in Table 5.11. The
power consumption of the FMPP-V Q64M decreases by half, while the number of operations for the
nearest neighbor search becomes twice of the FMPP-VQ64’s. Thus, its total energy consumption
becomes 1/4 compared with the FMPP-V Q64.

86 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Table 5.10: Power dissipation map for all
the componentsin a PE.

. Table 5.11: The power consumption of the FMPP-
whole PE 1.45mW | 100% VQ64M expected from the measured results of the

Cary Chain | 0.82mW | 56% | FMPP-VQ64.
Operand Word | 0.32mW | 22% Clock Freq. | 28.5MHz | 25MHz | 20MHz

XNOR 0.07mwW 5% Supply Volt. 5.0V 3.0V 2.5V
Result Word | 0.06mW | 4% Power(mw) 65 9.9 4.5
Others 0.11mW | 11%

The FMPP-VQ64M is designed using the same double-metal single-poly 0.7m CMOS process
asthat of the FMPP-VQ64. The layout pattern of the PE is shown in Figure 5.37. At thefirst stage
when we start to design the FM PP-V Q64M, we expected that the areafor a PE would be smaller than
that of the FMPP-V Q64, since the PE of the FMPP-VQ64M has no temporary word. But the area of
the PE becomes almost the same. Table 5.12 summarizes the number of transistors and areafor each
part in the PES. The areas for the operand word and the result word in the FMPP-VQ64M becomes
larger than those in the FMPP-V Q64.

Table 5.12: Areasfor PEs of the FMPP-V Q64 and FMPP-V Q64M.

FM PP-V Q64M FMPP-V Q64

#of Tr/bit. | Arealbit | #of Tr/bit. | Area/bit
Codebook Word 6 433.4,m? 6 433.4um?
Result Word 10 840.0pm? 8 710.1m?
Operand Word 17 1714um? 15 977.4um>
Carry Chain 11 695.5,m? 11 695.5.m?
XNOR 6 571.2um? 6 571.2um?
Temporary Word N/A N/A 10 930.7pum?
Others 2 168.0pm? 2 168.0pm?
One bit slice of a PE (for 8LSBS) 142 11205,m? 148 11203pm?
Total (12bit) of a PE 1534 0.214mm? 1522 0.208mm?

Figure 5.38 shows the chip micrograph. The die size of the FMPP-VQ64M is 52.7mm?. Table
5.13 compares the areas of FMPP-VQ64 and FMPP-VQ64M. FMPP-VQ64M actualy integrates
more complex control logics than that of the FMPP-VQ64. Table 5.14 summarizes the number of

implemented standard cellsin each control logic. These areas are almost same with both implemen-

5.6. Modified Version of the FMPP-VQ: FMPP-VQ64M 87

tations. It is because the strategies of place and route are changed. The FMPP-V Q64 is placed and
routed from the bottom to the top level. Each component such as the PE array or control logics are
placed and routed respectively. Then the top level layout is created using these macro blocks. In
the FMPP-VQ64M, however, full-custom components such as the PE array or sense amplifiers are
placed as macro blocks, but the other random-logic cellsin the control logics are placed and routed

in the top level with these macro blocks. This strategy decreases the area of the control logic.

The FMPP-VQ64M is now under test. Test results will be shown in |ater.

e ot A BB

||Il | |II|||I|||I I!III!II!!II
% EE Global Data Bug e

o

T
|

i,
N
.
b

(S} o o o

H
39 ‘S

Codebook
:Words 13
R

. éﬁﬁﬁw

Figure 5.38: Chip micrograph of the FMPP-
VQ64M.

Figure 5.37: Layout of a PE.

Table 5.13: The areas for FMPP-V Q64 and FMPP-V Q64M.

FMPP-V Q64M FMPP-V Q64

Diesize (Including I/0O PADYS)

6.63 x 7.94mm?

52.64mm?

6.60 x 7.86mm?

51.84mm?

Core size (Without I/O PADYS)

5.78 x 7.09mm?

40.98mm?

5.75 x 7.01mm?

40.30mm?

64 PEs

3.70 x 6.35mm?

23.50mm?

3.52 x 6.24mm?

21.97mm?

88 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Table 5.14: Number of standard cells for control logics.

Logics FMPP-VQ64M | FMPP-VQ64

D-FF 313 45
Other sequential logic cells 1956 548

Total 2269 593

5.7 Comparison with Other | mplementations

Inthissection, several comparisons between the FM PP-V Q with the other implementations are given.

5.7.1 Comparison with the Other Vector Quantizer.

Here, the FMPP-V Q is compared with the other vector quantizers. Parametersfor vector quantization
aregiven again:

k dimension of vectors
N number of code vectors

m bit width of vectors

The compared points are as follows.

Codebook optimization Itisto hard to obtain a generalized codebook which can be applied to any
type of images. It should be optimized for every frame of image. Thus, a codebook hasto be
updated in real-time.

Accuracy of the nearest vector If the vector from the NNS is a suboptimal one, the distance be-

comes larger, which decreases the quality of areconstructed image.

IO bandwidth A large 10 bandwidth enlarges the area and causes problems to mount the LS| on a
circuit board.

Power Consumption Power consumption should be minimized for mobile telecommunication.

There are two algorithms to search the nearest neighbor vector. The tree-searched VQ (TSVQ)
has |ess codebook search complexity in proportion to the logarithmic order of the size of a codebook
than the full-searched VQ (FSVQ) adopted in the FMPP-VQ. But the size of memory to store a
codebook becomes large. As for codebook optimization, the TSVQ has a major drawback that the

5.7. Comparison with Other Implementations 89

codebook cannot be optimized inreal time, sinceit requires huge computation complexity to generate
the tree-structured codebook.

Fang et a. proposed asystolic binary tree-searched vector quantizer[FCSt94]. Itsblock diagram
isdrawnin Figure 5.39. In conventional TSV Q implementations, the total size of acodebook reaches
O 11, N, -v). Thevalue v meansthe number of levelsand NV, isthe number of code vectorsin each
sub-codebook. They reduce the size of a sub-codebook at each level into two, which results 2(n — 1)
code vectors in al the sub-codebook. The index of the nearest code vector in a sub-codebook is

computed using the MSE as follows.

Dyi— Dy = |& = 41l = |7 — yiol®
= Yvi1 — Yo — (yvl - yvO):L'
if Dy1— Dy >0
then index[v] =0
else index[v] =1

The terms of A = y;1? — yoo” and § = y;1 — 4o are formerly prepared to guarantee real-time

encoding with the small hardware.

subcodebook 1 subcodebook 2 subcodebook v

:indexé‘ _lndex
A I A W I AW
3 P T | R N—
— 7 MSE | MSE [T MSE
¢ J—— —
Comparator : Comparator _'__.__, Comparator

Figure 5.39: A systolic binary-searched vector quantizer.

Wang et al. propose a systolic array processor as shown in Figure 5.40[WC95]. It has N PEs
that compute MAEsand N/k PEsthat compare the MAEs. Thelatency isO(k + N). The minimum
distance can be obtained every k£ clocks. But It has some drawbacks. First, it has alarge bandwidth
of O(km), which amounts to 128 when £ = 16 and m=8. Secondly, it contains a large number of

latches inproportion to O(/V) to store temporary values among PES. In addition to that, they assume

90 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

100MHz clock frequency for both theinner and outer LSI. It isdifficult to give dataat such high clock
frequency from outside of the LSI. As discussed in Section 5.7.3, the SRAM module implemented
inside the LS| using the 0.7m process for the FMPP-VQ LSIs cannot provide data at 100M Hz.

................ m
I /_\
codebook e T 5
C k-1,k-1 w
........... m
\C 2g0} "
C K.). -._...._.,..A
C il n
Y
input vector t t
>) —@—>| P B
Xt Xy Xo | Xy XX, MAE 3.6 e $ * :
* ; t ?
Y —&—
9 9 : w
CX - xxxk% X, XO) MAE 'e' MAE | o » MAE comp N/k
-~ o> o B
o MAE @8 e 68~ MAE comp
A\ d

index
k

Figure 5.40: A systolic full-searched array processor[WC95].

Reference [CWL96] proposes a serial processor computing the distance using the MSE, which
usually requires multiplication. To decrease computation complexity, they split it into additions and
table-look-up(TLU) operations. Figure 5.41 shows its block diagram. C_RAM stores a codebook
and sends all elements in a code vector ¢/ to X_UNIT. X_UNIT computes the inner product 7 - ¥/
using the TLU operation. P_Adder sums up these two terms: - i/ and |y|2. Whole operation can be
finished within one clock cycle. It hasinternal memory and its |O bandwidth is very small. But, the
bus width between C_RAM and X_UNIT is quite large (O(km)), which consumes much power.

Reference [SNK™97] describes a 256-element fully-parallel processor as shown in Figure 5.42.
The PE cosists of 16 words of SRAM for a code vector and an ALU that computes a MAE and
accumulates MAEs. Each PE islaid out into a rectangle region The winner-take-all(WTA) is used
to extract the minimum distance. Accumulation and absolute distance computation of a single

dimension (Zj;%, |z; — y;| + |z — y;]) can be obtained in one cycle. The minimum distance is

5.7. Comparison with Other Implementations 91

C_RAM

¥ | km bit

T — X_UNIT |g’|‘ * PE
r-y SRAM SRAM
P_adder MAE MAE
index Accumulator| |Accumulator
! 1 ! 1
Comparator ‘ WTA >
Figure 542: A fully-paradlel 256-elements parallel

index processor[SNK+97].

Figure 541. A seria full-searched
M SE processor[CWL96].

extracted in every 17 cycles. The first 16 cyclesis used for 16 iterations of the MAE, and the last
cycleis used to extract the minimum distance. It is fastest of all previous implementations. But, it
consumes 900mW of power which istoo much.

An implementation of Computational RAM as already shown in Figure 2.10 (in page 12) is
applied to vector quantization as described in Section 2.2.3. At first, they applied it to till image
compression and then to video compression[LP95]. They propose an algorithm to encode 30 CIF
(360 x 288) video frames per second via alow-rate line from 64kbpsto 192kbps. Thetotal encoding
time is 330ms. on the system including two CxRAM modules for the nearest neighbor search and an
index-based motion estimation (Figure 5.43). A C+RAM module consists of 4 CxRAM LSIs. Thus,
40 C«xRAM LSIs are required to compress in real time (33ms.). On the other hand, our proposed
algorithm explained in Section 5.8.2 can compress 10 QCIF (176 x 144) frames per second via a
29.2kbps mobile channel. It requires only one FMPP-V Q64 LSI. Unfortunately, [ESS92] showsonly
the chip micrograph. Its area or power consumption cannot be seen.

Table 5.15 lists specifications of these 5 implementations, FMPP-VQ64 (VQ64) and FMP-
VQ64M (VQ64M). The other implementations are faster than the FMPP-V Qs, but the power dissi-
pations of the FMPP-V Qs are lowest among all. Asfor the number of code vectors, aimost the other
implmentations deal with 256 code vectors, while the FMPP-VQ contains only 64 PEs for 64 code
vectors. But the performance and the number of PEs are enough for the current target application,
low-rate video compression. The number of PEs can be increased to use the current sub-micron
technology. The performance can be improved if the ALU has rich functionalites. The ALU in
[SNKT97] is fastest when the input vector is given element by element. But it consumes much

power. We have to consider the trade-off between performance and power.

92

Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Flags
Input Vectors >
C*RAM modulel | Labels C*RAM module2 Labels -
Adaptive VQ Index-based ME M otion vectors
-
Initial /

Updated codewords Hadamard Coefficients

Transfomation >
Weigh factors / Flags

Figure 5.43: CxRAM implementation of vector quantization for video compression[LP95].

Table 5.15: Comparison with the other vector quantizers.

Name | [FCS"94] | [WC95] | [CWL96] | [SNK197] | [LP95] | VQ64 | VQ64M
measure MSE MAE MSE MAE | MAE | MAE MAE

VQ TSVQ | FSVQ FSVQ FSVQ | FSVQ | FSVQ | FSVQ

CV Optimization N/A OK OK OK OK OK OK
|O Bandwidth O(m) | O(km) O(m) O(m) | O(m) | O(m) O(m)
Power 500mwW N/A N/A 900mwW N/A | 20mW | 10mW

#of CVs 256 256 256 256 64 64 64
Throughput 1.56M | 6.25M 195k 2M N/A 53k 111k
Area(mm?) 67 42.5 100 72 N/A 52 52
process 1.2pum | 0.8um 1.2um 0.6um N/A | 0.7um | 0.7um

LSl N/A N/A N/A OK OK OK OK

5.7.2 Comparison with the Von Neumann Sequential Processors.

Here we compare the FMPP-V Q with the Von Neumann commercial sequential processor in terms
of speed and power consumption. Table 5.16 lists speed and power of the nearest neighbor search
among 64 code vectors for the FMPP-VQ64, the FMPP-VQ64M, Pentium and Ultra SPARCI[Pro].
The latter two are commercial sequential CPUs that perform the C program listed in Figure 5.44.
The FMPP-V Q64 and the FMPP-VQ64M achieve both of high speed and low power. On the other
hand, these commerial CPUs are slower and dissipate more power than the FMPP-V Qs.

Figure 5.45 liststhe assembler program of asingle dimenstion slice of the nearest neighbor search
on Ultra SPARC. It consists of two loads, three numerical operations and one conditional branch.
From Table5.16, we can easily guessthat it takes about 35nsec.(36.0:5./16/64) to obtain the absolute
distance for asingle dimension. The four operations besides the first two loads can complete in four

5.7. Comparison with Other Implementations

93

Table 5.16: Speed and power dissipation table of the nearest neighbor search among 64 code vectors.

Clock Cycle | BusCycle | NNSfor 64 CVs. Power | Vdd
FMPP-V Q64 25MHz 18.8us. 20mw | 3.0V
FMPP-VQ64M 25MHz 11.0ps. | (10mwW)* | 3.0V
Pentium 100MHz 50MHz 85.0us. 29V

5~20 W
166MHz 66MHz 49.0us. 2.9V
UltraSPARC 300MHz | 100MHz 36.0us. ~20W | 2.6V

x estimated by simulation.

/* Nearest Neighbour Search* /
#include <stdio.h>

main()

static int codevector[64][16]={

}

b

int j;

[* abbrebiated * /

Static int inputvector[16][16]={
/* abbrebiated * /

int mind=0x1fff,mini=—1;
for (j=0;j<64;j++)
{

}

int d=0;
for (k=0;k<16;k++)

d+=abs(codevector[j][K]-inputvector[i][K]);

?f(d<mind)

mind=d;
mini=j;

Figure 5.44: C program for the nearest neighbor search.

clock cycles on the CPU and therefore it takes 20nsec. to load two elements from 100MHz external

1O pins. Thus, it is estimated that the assembler program completes in 32nsec., which is amost the

same value than the actual processing time 35nsec. Ultra SPARC cannot outperform the FMPP-VQ
if the external 1O speed remains 100MHz. It takes 20.5usec. to load 16x 64 elements of 64 code

Vectors.

5.7.3 Comparison with an Application Specific Processor for Vector Quantiza-

tion

Above these two sections, we compare the FMPP-VQ with the actual implementations. vector

quantizers and commercial sequential processors. Here, an application specific sequential processor

94 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Id [%01+%i0],%g3 # load an element of an input vector
Id [%00+%i1],%g2 # load an element of a code vector
subcc %g3,%g2,%g3# subtract

bneg,a.LL18 #if >0goto.LL18
sub %g0,%93,%g3 # inverse the result
LL18:

add %i3,%093,%i3 # accumulation.

Figure 5.45: The assembler program to compute the absol ute distance of a single dimension.

for VQ is considered to show the limitation of the sequentia processing.

Figure 5.46 shows an application specific sequential processor for VQ which consists of an
8 x 16 x 64(= 8k) bit SRAM and a processor core. Table 5.17 lists the specification of the SRAM
obtained from the 0.7um process data book[DAT96]. The processor core should access the SRAM
16*64 timesfor the NNS of 64 code vectors, which takes 13.0usec. The processor cannnot complete
the NNS below 13usec. As for the power dissipation, the 8kbit SRAM consumses 219mW at
1/12.7ns.(=78.7MHz). Thus, 76,000 NNSs per second isthe limitation of this processor. The SRAM
consumes the power over 200mW and its areais 2.5mm?. The FM PP-V Q64 occupies 18mm? for the
64 PEs, which is 7.5 times larger than the SRAM. We cannnot estimate the area of the processor core
without itscircuitry. But, the 8bit micro processor core*Kue-chip2” implemented by a0.5,m CMOS
process occupies 2.37mm?. The area of the processor including the SRAM and the processor core
may be smaller than the FMPP-V Q64, but the power dissipation becomes more than 10 times larger
including the SRAM module. It isfaster than FMPP-V Q64, but slower than the FMPP-VQ64M. The
above processor core accesses code vectors in the SRAM element by element, which eliminates the
processing speed. If the multiple SRAM modules are used, the processing speed may improve, but
the area and power must be increased.

Table 5.17: SRAM specifications.

area(mm?) | accesstime (ns) | power (MW/MHZz)
8bitx 1kword SRAM 2.5 12.7 2.79

5.8. A Low-rate and Low Power Image Compression System Using the FMPP-VQ 95

input vector

8bit x 1kword SRAM k l

Eal

Access Time: 12.7ns

Processor Core

|

index

2.5mmé

Code Vector

Figure 5.46: An application specific processor for VQ.

5.8 A Low-rateand L ow Power Image Compression System Using
the FMPP-VQ

In the near future personal digital assistants (PDA) will be a complete voi ce/video-phone transceiver.
Standard video codecs, such as MPEG1, MPEG2, H.261 and H.263, are based on discrete cosine
transform (DCT). They consume a large amount of computation on both encoding and decoding,
which are not suitable for communication with PDA. On the other hand, Vector Quantization (VQ)
has proven to be a powerful technique for low-rate image coding[LBG80]. Compared with DCT-
based techniques, a video sequence compressed by VQ can be easily decompressed and has high
compression efficiency. On encoding, however, it consumes large computation for the nearest
neighbor search (NNS).

Several VQ-based algorithms have been proposed for less computation and high compression
ratio. For example, Reference [HH88] has proposed interpolative VQ (1VQ) method, which sends a
low resolution interpolated scal ar-quantized image while vector-quantizing the residual value. It can
reduce blocking effect. Gersho and Shoham suggested hierarchical VQ (HV Q) technique[GS34].
They first introduced a hierarchical structure into VQ-based algorithms. This method partitions
large dimensional vectorsinto small dimensional sub-vectors. HVQ can exploit correlation in large
dimensional vectors while avoiding the complexity obstacle of large dimensions. Ho and Gersho
proposed multistage hierarchical VQ (MSHVQ)[HGS88]. In multistage VQ (MVQ), after an origina
vector is vector-quantized, the residual vector which has the same dimension as the original one is
guantized. MSHVQ technique uses various dimensions at each stage instead of fixed-dimensional
vectors. All the above VQ coding schemes were originally proposed for a still image. We present
alow-rate video coding agorithm based on MSHV Q. Our algorithm transmits 10 QCIF frames per
second via a 29.2kbps mobile wireless channel. It is robust to noise, since indexes from VQ can be

coded in afixed length and aframe of imageis always compressed to afixed size at any video activity.

96 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

It enables simple bit rate control by adaptive bit allocation at each stage with small computational
complexity.

Here, weintroduce areal-time low-rate video compression system using the FMPP-V Q. First, the
outline of our video compression system is explained in Section Section 5.8.1. Then, Section 5.8.2
describes the proposed multi-stage hierarchical VQ in detail. The compression system can transmit
10 QCIF frames per second viaa 29.2kbps mobilewirelesschannel. 1t consists of aPC and adaughter
board wherethe FMPP-V Q ismounted. Thedetail descriptions of the system and the encoding results
from the proposed agorithm are given in Section 5.8.3 and Section 5.8.4 respectively. Simulation

results to show robustness to noise are also described in Section 5.8.4.

5.8.1 Overview of the Real-Time Low-Rate Video Compression System

The schematic diagram of our real-time low-rate video compression system is displayed in Figure
5.47. It consists of a host computer and a daughter board where the FMPP-VQ64 is mounted. The
compressed data is transmitted via a 29.2kbps channel provided by the PHS terminal. The host

computer throws input vectors and receives indexes to/from the daughter board.

< 29.2kbps

. —>
input vector

FPGA FMPP-VQ
PC

Figure 5.47: Schematic diagram of the low-rate video compression system.

The specifications of our system are as follows.

e Send 176x 144 QCIF 8hit gray-scale images at the rate of 10 frames/s via a 29.2kbps wireless
channel. Encoding should be donein rea time.

e Robust to noise for mobile wireless communication.

5.8. A Low-rate and Low Power Image Compression System Using the FMPP-VQ 97

e Compression ratio of every frame should be fixed.

e Encoding is performed on a CPU and the FMPP-V Q64, while decoding must be performed on
the CPU only.

The most significant specification is the first one. Now we have no real-time mobile videophone
terminal. The PHS provides the 29.2kbps digital wireless channel. Robustness to noise is the most
important factor for mobile wireless communication. In the DCT-based compression agorithm a
pixel block is compressed by a variable length code (VLC). On the other hand, VQ compresses a
pixel block to anindex, which can be coded by afixed length. Thefixed bit length codeisvery robust
to noise, since the code length can be predicted on the decoder side.

The compression ratio of the current DCT-based video compression agorithm is an average
value, which means that compression ratio changes according to video activity. In such condition,
the system must have some amount of buffersto store transferring or received data. In our algorithm,
aframe of image is compressed to afixed size. It requires no buffer. It is also robust to noise, since

the decoder can easily divide received datato each frame.

5.8.2 CodingAlgorithm

Conventional MSHV Q methods{HG88] deal with still image rather than video sequence. We propose
the fixed-rate MSHVQ algorithm for real-time low-rate video encoding. In still image encoding,
gpatial correlation should be used for compression. Compression of video sequence can be done
by both temporal and spatial correlations. In our method, VQ compresses spatial correlation, while
motion compensation (MC) compresses temporal correlation. MC isfirst applied to aframe. Then
it is hierarchically compressed in multiple stages. The proposed algorithm can adaptively compress
video sequence according to video activity. It can transmit 10 QCIF video frames per second via a
29.2kbps transmission line. A QCIF frameis aways compressed to 2920bit at any video activity.

Fixed-Rate M ulti-Stage Hierarchical VQ

The performance of VQ can beincreased according to vector dimensionsin order to reduce correlation
between input vectors. An inactive area can be partitioned into a large dimensional vector, while an
active area must be partitioned into a small dimensional vector. However, a large vector dimension
expands computational complexity and memory capacity. We haveto prepare a specified quantization
method for each different vector dimension. Thus, the vector dimension should be fixed. We adopt a
multi-stage method where aframeis hierarchically partitioned according to activity of each area. To
fix the vector dimension at 4x 4, decimation and interpolation are applied both to enhance the quality

and to reduce computational cost.

98 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

16pels

mm)
10

N
£

i
o
23
o
g

Stage3 PZ2P0

mgm) L)
0 O [m]

Stagel

0 O [m]

low active

high alctive

low acti

Stage4

| linearly
Interpolared

Figure 5.48: Four hierarchical stagesfor decimation and interpolation.

Images are hierarchically partitioned into blocks in the subsequent four stages (block at every
stage is denoted by thick-bordered rectangles in Figure 5.48). Stage 1 scalar-quantizes a value that
represents 16x 16 pels. At Stage 2, 16 values each of which represents 4x 4 pels are vector-quantized.
At Stage 3, 16 values each of which represents 2x 2 pels are vector-quantized. At Stage 4, ablock of
4x 4 pelsisvector-quantized. We decimate 256 pelsinto 16 at Stage 1, since an inactive area does not
require high resolution. At the rest stages vector dimensions are reduced to 16. Vector dimensions

arefixed at 16 all through the stagesin order to share the same quantization methodol ogy.

The flow chart of our coding agorithm is depicted in Figure 5.49. From Stage 1 to 3, decimation
IS done to obtain 16 representative values of a block. There are severa possibilities to obtain a
representative value. Spatial subsampling causes aliasing errorsfHG88]. The mean value of each
block bringsablocking effect of asquareblock. Thus, we usethe mean values of the upper-left corner
of each block (See Figure 5.48). At Stage 1 the mean value of the upper-left 8x 8 pels becomes a
representative value. On decoding, empty areas among these representatives are linearly interpol ated.
This method reduces blocking effect considerably. The decimation schemes at the subsequent stages
are equivalent to the above one. At Stage 2, the mean values of the upper left 2x2 pels out of 4x4

pels constitute 16 representative values to be vector-quantized.

At Stage 2 differential values between a decimated original image and a decimated interpolative
surface are partitioned into blocks of 16x 16 pels. A 4x4 vector is extracted from the 16x 16 pels.
The blocks with higher activity are chosen to be decoded from Stage 2 to 4. Several blocks compose
amacro block to determine activity in order to decrease flagsto designate activity. At Stage2, thesize
of macro block (sp) is 16x16. At Stage3 and 4, those (s3 and s4) are 16x 16 and 8x 8 respectively.
These macro blocks contain 4 blocks. The algorithm to determine the activity is as follows. The

differential value I M (n) in Equation (5.16) is computed for every macro block at Stage n.

5.8. A Low-rate and Low Power Image Compression System Using the FMPP-VQ

99

Framel

DEC

Others

_>|K/|

g

Stagel values
16 x 1651 J
» flags and motion vectors

INT

» Stagel reconstruted image

1-16x 16
v

—p Stage2 flags

4x4—-1 !

Stage2 indexes

IM(2)<Th2 @

1 — 4 x 4 ™ Stage2 reconstruced image

—p Stage3 flags

Stage3 indexes

Stage4 indexes ‘
Stage4 reconstruced image

Figure 5.49: Block diagram of our coding algorithm.

Von

AD(TL — 1) = Z |po(i,j) _pnfl(iaj)l

1,j=0

VEn
AD(TL) = Z|po(iaj)_pn(i’j)|

1,7=0

IM(n) = AD(n—1)— AD(n)

S2,83 = 16X16,84=8X8

(5.14)

(5.15)

(5.16)

Thevalue p, (i, 7) denotesthe (i, j) encoded pixel value of a macro block at Stage n, while p, isthe

pixel of the origina image (See Figure 5.48). The value I M (n) stands for the improvement of the

image quality. All 1M (n) values are rearranged in the descending order. The macro block with the

100 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

largest 1M (n) is given top priority to be vector-quantized. The rest macro blocks are successively
vector-quantized until the decoded data reaches to the limit (2920bit). If M (n) is smaller than a
specified threshold value T'H,,, the macro block is not transmitted to prevent corruption of image
quality by small 7 M (n) and to leave bitsto higher stages. In Figure 5.49, I M (n) iscomputed before
the NN'S. It isbetter to compute I M (n) by the blocks after the NNS. But all differential blocks should
be vector-quantized. Thus, AD(n) is computed prior to vector quantization.

At the first frame, Stage 1 sends scalar-quantized values for the lowest resolution. At the
subsequent frames, motion compensation (MC) is used instead of Stage 1. In MC, the full search
block matching algorithm is most popular, but it requires large computational complexity. We usethe
orthogonal search method[PHS87], which has good convergence and low computational complexity.
A motion vector (MV) is determined for each 16x16-pixel block. The MC search window is
8x 8 pels around the center of each block. The following rule determines the motion vector to be

transmitted.

1. Compute the following values.

15

AD(z,y) = D Ipp(x+4,y+7) = poli, 5)] (5.17)
i,j=0
_ il
MV = 78rgr£’rJS8AD(:E,y) (5.18)
pp . pixel value of the previousframe.

2. Themotion vector MV istransmitted if Equation (5.19) is satisfied. It reduces the number of

motion vectors to be transmitted.

min AD(z,y) < AD(0,0) + TH,,. (5.19)

The above hierarchical process are going on until the encoded data reaches the all owable amount
(2920hit). If the video activity is high, motion vectors have to compensate temporal activity and
lower stages have to produce a large number of indexes to compensate spatial activity. The process
istend to be halted at alower stage. On the other hand, if the video activity islow, higher stages can
produce many indexes to enhance the quality of reconstructed image.

Video coding based on DPCM enlarges the size of transmitted data in high video activity. Two
strategies can be chosen when transmitting through a fixed bit-rate. One is to reduce temporal
resolution, while the other is to decrease spatial resolution. The latter is better because human eyes
are insengitive for spatial activity of the high active video sequence. Lower stages of low spatial
resolution are first transmitted in our method. It works conveniently in high activity. When video
activity islow, however, lower stages may decrease the quality. Itiseliminated by the threshold value
TH,,. Our method can offer the way to adapt spatial resolution to video activity.

5.8. A Low-rate and Low Power Image Compression System Using the FMPP-VQ 101

Codebook Design Strategy

Codebook design strategy is one of the most important factorsin VQ. We choose 64 greater values
asinitial vectorsamong al the I M (2) values. Thisis because the reconstructed image at Stage 2 of
the first frame serioudly affects the quality of subsequent frames. An initia primitive codebook is
transmitted at the beginning. It is updated frame by frame.

The FMPP-V Q64 has a capability to vector-quantize an input vector among 64 code vectors. It
is not desirable that the size of code vectorsis limited to 64. Although a small codebook enlarges
distortions, alarge codebook increases both the bit width of the index and the size of codebook data.
Thus, we generate 1024 code vectors from 64 code vectors to rearrange elements. A primitive code
vector turns into 15 derivative code vectors as in Figure 5.50. The bit width of the index increases
from 6bit to 10bit, while the size of codebook data is unchanged.

A single code vector is update every frame. We use a modified Linde-Buzo-Gray(LBG)
algorithm[LBGB80] to update code vectors. The origina LBG repeats the sequence until updated
code vectors are convergent. On the other hand, our approach applies the LBG once par frame to
guarantee real-time encoding. All the updated code vectors are computed on the encoding side. But
only asingle code vector is transmitted to the decoder side to decrease the data size. It is the vector
migrating farthest. Therefore, 16 vectors among 1024 are updated every frame, which reflects the
statistical property of the current input frame.

derivative vectors

3|2]/1|0] |0[2]1]3

a primitive vector 716/5|4| [4|6|5|7
11110/ 9|8 |8[10/9]11

2 é é ;v 15(14)11312 |12]14/13)15
819110111 I 15(1411312] 12141315
12[13]114115 11]10/9|8| |8[10/9]11
716/5/4| |4]|6]|5]7

3/2]1/0] |0]2]1]3

Figure 5.50: Derivative code vectors from a primitive vector.

Coding Strategy to Compensate Errors

Compressed dataconsist of three parts: flags, motion vectorsand vector indexes. Table5.18 describes
contents of compressed data. The vector indexes are very robust to noise, since they are coded in

a fixed length. If an error occurs at any index data, the indexes without errors can be correctly

102 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

detected. But, if the flags are wrongly transmitted, the decoder mistakes the place of the index, since
the number and place of indexes are obtained from the flags. Motion vectors are also important
at the decoder side. If the motion vectors are wrongly transmitted, the quality of image decreases
considerably. Thus, BCH codes® are added to the flags and motion vectors. The BCH codes correct
one-bit error and detect three-hit errors. Although the flags are protected by the BCH codes, thereisa
possibility to lose some flags at the decoder side. If the flag of motion vectorsor Stage2 islogt, all the
remaining information must be discarded. To protect the remaining information, the number of each
flag is also transmitted. The number of flags F'M and F'2-4 are transmitted twice at the beginning
and the end of the frame data to securely protect them from noise. If an error occurs, there happens a
conflict between the number of flags derived from F M and F'2-4 and the that from N M and N2-4.
If the difference between them is only 1 at Stagen, the indexes are decoded according to Nn. If
the difference is larger than 1, the indexes of Stagen are discarded and the remaining information is
decoded at the subsequent stages.

In H.263, compressed rate varies according to the encoding data. If an error occurs, it is difficult
to re-synchronize data without some extra flags for synchronization. In the proposed agorithm, the

encoder can easily synchronize dataat every frame, sinceaframeisdecoded in afixed size of 2920bit.

5.8.3 Experimental Real-Time Low-Rate Video Compression System

We develop an experimental real-time low-rate video compression system composed of a PC, an
FPGA and an FMPP-VQ64 LS. The latter two L SIs are mounted on a daughter board. Figure 5.51
shows the experimental system. The CPU (Pentium 200MHz) on the PC performs the proposed
MSHV Q algorithm except for the NNS on the FMPP-V Q64 controlled by the FPGA.

A VQ index is 10bit long for 1024 code vectors derived from 64 primitive vectors. First, the
FMPP-V Q64 generates an index of the nearest code vector among the 64 primitive vectors. Then
it accepts 15 rearranged derivative input vectors to generate indexes for them. An input vector is
rearranged instead of code vectors. A 10bit index is extracted for each block. A frame should be
encoded below 2920 bit within 100ms. At most, 2920/10(=292) V Q indexes should be computed for
asingle frame. Thus, the FMPP-VQ must perform 2920/10 x 16 (=4,672) NNSs per frame, which
iswithin its capability of 53,000 NNSs per second. The number of NNSs obtained from the actual
compression stream is 2540 per frame which takes 48ms. The compression of a frame except the
NNS takes 30ms on Pentium 200MHz. Thus, the system can perform the compression in 78ms even
when the NNS and the other operations are done in serial. If the performance of the CPU is poorer,
the NNS and the other operations can bedonein paralel. Notethat the NNSfor 64 code vectorstakes
80ns on Pentium 200MHz, while that takes 18.8ns on the FMPP-VQ64. The proposed algorithm

2Bose Chaudhuri-Hocquenghem code.

5.8. A Low-rate and Low Power Image Compression System Using the FMPP-VQ 103

Table 5.18: Contents of compressed 2920bit data.

Contents # of bits | BCH code
flags for motion vectors (F'M)1L 99 7
Stage2 flags (F'2) 99 7
Stage3 flags (F3) 99 7
Staged flags (F'4) 0 or 396 9
of motion vectors (N M)T 7

of Stage2 flags (IN2) 7

of Stage3 flags (IV3) 7 10
of Stage4 flags (N 4) 9

indexes of Stagel (/1)* 8 x 99 0
motion vectors (M V)1L 8x NI 30
indexes of Stage2 (12) 10 x N2 0
indexes of Stage3 (13) 10x4x N3 0
indexes of Stage4 (14) 10x 4 x N4 0
updated code vector 128

code vector index 6 16
padding data 2920—+#total -

x At the 1st frame. 1 From the 2nd frame.

cannot be done in real-time without the FM PP-V Q64.

The decompression procedure of a single frame needs only 3.8ms on Pentium 200MHz without
using the FMPP-V Q64, while the decompression of H.263 takes 9.8ms. The compressed data from
the proposed algorithm can be decoded almost 2.5 times faster than that of H.263. Note that both
decoding programs are optimized to the same level and no MM X code is used. Figure 5.52 shows
computation amount of each function of the proposed fixed-rate MSHVQ and H.263. The function
“ Stage?2-Staged” of the proposed replaces the indexes to code vectors according to the flags, which
function is done by a simple table look-up method. On the other hand, H.263 should perform the
complex IDCT and VLC. Thus the proposed algorithm can decode the compressed data much faster
than H.263.

104 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Figure 5.51: Experimental real-time low-rate video compression system.

Proposed fixed-rate motion N Stage2-Stage4
MSHVQ compensation 3.8ms
1.9ms 1.9ms

IDCT. motion vLC Others

H.263 compensation 2 4ms

9.8ms
3.9ms 1.6ms 1.9ms

Figure5.52: Computation amount of each function on decoding of the fixed-rate M SHV Q and H.263.

5.8.4 Performance Evaluation

Here, we show several simulation results of the proposed fixed-rate MSHV Q algorithm.

Quality of Decoded Images

We apply the proposed fixed-rate MSHV Q algorithm to the standard video sequences. Figure 5.53
shows the temporal PSNR transitions of the proposed algorithm and H.2632 for “Suzie” Both are
going to send 10 QCIF frames over a 29.2kbps line. During the first three frames of our algorithm,
initial 64 code vectors are transmitted prior to the compressed data. Thus, encoding starts from the
fourth frame (0.4s).

Figure 5.54 shows temporal bit allocation at each stage. In our adaptive method, every frameis
compressed in a fixed size of 2920bit. Suzie shakes her head near 1.8 second, when the motion is
most active. The proposed algorithm allocates motion vectors and the indexes of Stage 2 to most of
bits at that time. The results indicate that transmitted bits are properly assigned for each stage. In

3|TU-T SG15 Experts Group on Very Low Bitrate Visual Telephony: “Video Codecs Test Model, TMN5,” (1995).
No option is used.

5.8. A Low-rate and Low Power Image Compression System Using the FMPP-VQ 105

Figure 5.54, the temporal bit allocation of H.263 dynamically fluctuates according to the temporal
and spatial activity. At the 1.8 second, H.263 skips a frame so as not to exceed the limit (29.2kbit/s),
since the compressed frame amounts to over 5000 bit. Table 5.19 shows the average PSNRs for
8 standard video sequences. The column “1024 CVs’ shows PSNRs of the proposed fixed-rate
MSHVQ agorithm. The quality of reconstructed image derived from the algorithm is only 2.5dB
worse on the average compared with H.263.

38 T T T T T T T T

5000

K 4000

w
i
T

3000

w
N
T
1

PSNR(dB)
0.,

30 R

28

Proposed

number of bit

2000

1000

X

/

x*xx +Stage2
3
%

XX 3¢

I % X
? -xw%mn JORN N

+Motion vectors
code vector

:;-%%\{;w*mg..'

T

T

T

26 . 0 1 2 3 4 5

Time(s)
Time(sec.)

Figure 5.54: Temporal bit alocation of Suzie for

Figure 5.53: PSNRs of the proposed MSHV
g prop Q the proposed MSHV Q agorithm and H.263.

algorithm and H.263 for “ Suzie.”

We evaluate the effect of the derivative code vectors from 64 code vectors. The column*“64 CVs’
in Table 5.19 shows the PSNRs obtained from 64 code vectors. The proposed method using 1024
code vectors always enhances the PSNRs by an average of 1.1dB, even though the bit width of the
index increases from 6bit to 10bit.

Robustnessto Noise

To evaluate the robustness to the noise, two error conditions from MPEG4 error-resilience test
conditiongfMPE95] in Table 5.20 are applied to Mother& Daughter (Mot& Dau), Miss America and
Suzie. Note that we modify Multiple Burst Errors condition to “2 burst errorsin [1.5,5]” for Suzie
and Miss America, since they are 5 second long.

Table 5.21 shows the average PSNRs from High Random BER (HRB) and Multiple Burst Error
(MBE) conditions. Figure 5.55 and Figure 5.56 depict the temporal PSNR transitions from HRB and
MBE using Mother& Daughter respectively. The topmost line shows the original no-error condition.

Reference [MN96] has proposed a self-synchronized coding scheme for H.263, which shows
the PSNR transitions in the condition of 24kbps and 48kbps. The PSNR curves drop drasticaly
from 30dB to 15 or 20dB on the 103 random BER condition. Although simulation conditions are
different, it is evident that H.263 is extremely weak to noise because of the VLC and the activity-

106 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Table 5.19: Average PSNRs for 8 standard video sequences.

PSNR (dB)
Proposed MSHVQ | H.263

Sequence Name 64 CVs | 1024 CVs
Miss America 354 364 | 397
Grandmother 32.2 33.7| 356
Suzie 30.2 309 | 334
Mother& Daughter 29.3 30.7| 334
Salesman 27.7 299 | 323
Trevor 27.0 279 | 305
Carphone 26.4 272 | 298
Foreman 25.3 26.0| 283
average 29.2 303 | 328

64 CVs. Useonly primitive vectors.
1024 CVs. Use derivative vectors.
H.263: No option is used.

oriented compression ratio as already shown in Figure 5.54. Our simulation results show that the
proposed fixed-rate MSHV Q algorithm is very robust to both random and burst errors. But, we have
to perform more ssimulations to fairly compare the error robustness for both algorithm. The PSNR
drops of our fixed-rate MSHV Q algorithm are alwaysvery small valuesof 1 or 2 dB. The PSNR drop
of the MBE condition from Suzieislargest of al (2.3dB), since the compressed data contains lots of
motion vectors. If the motion vectors are lost by noise, the quality of reconstructed image seriously

decreases.

5.8. A Low-rate and Low Power Image Compression System Using the FMPP-VQ 107

Table 5.20: Error conditions] M PE95].

Residual error conditions

Description

Error interval [begin,end(s)]

102 Random Bit Error Rate

High Random BER (HRB)

[1.5,end]

3 burst of errors

50% BER within burst

Random Burst Length: 16 to 24 ms

Random bursts separation: > 2s

Multiple Burst Errors (MBE)

[1.5,8]

33

PSNR(dB)

27 -

26 1 1 1 1

No Error

PSNR(dB)
N w
© o

N
9]

1
N
<N

5
Time(s)

26 1 1

No Error

Time(s)

Figure 5.55. PSNR transitions from High Ran- gjq e 556: PSNR transitions from Multiple

dom BER (10—2) using Mother& Daughter.

Burst Errors using Mother& Daughter.

108

Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Table 5.21: Average PSNRs from High Random BER (HRB) and Multiple Burst Errors (MBE)

conditions.

Average PSNR(dB)

Sequence | Mot&Dau | Miss America Suzie

No Error 30.5 36.4 31.0
Random Seeds | HRB | MBE | HRB | MBE | HRB | MBE
10| 299 | 301 | 359 36.0 | 30.7| 30.6
11| 287 | 299 | 351 359 | 292 275
12| 294 | 298| 359 36.1| 30.2| 30.1
13| 298| 296 | 36.1 36.2| 305 30.1
14| 2905 | 299 | 358 349 | 305 258
15| 298| 298| 355 353 | 305 284
16| 295| 289 | 36.1 345 | 300, 276
17| 294 | 298| 36.1 355 | 30.7 | 30.7
18| 29.7| 281 | 345 350 300, 264
19| 298| 291 | 357 359 | 306 | 30.1
Average | 295 | 295 | 357 355 | 303 | 287
PSNRdrop | -1.0| -1.0| -0.7 -09| 07| -23

5.9. Summary of the Chapter 109

5.9 Summary of the Chapter

In this chapter, an implementation of the FM PP for vector quantization (FMPP-V Q) is described in
detail. Vector quantization (VQ) is very much applicable to the memory-based architecture. InVQ
a single input vector is compared with lots of code vectors. The output value is only an index of
the nearest vector. We can obtain indexes for multiple input vectors without changing the content of
code vectors. An input vector can be broadcast through the shared bus.

We have designed and fabricated 3 LSIs. The first one integrates 4 PEs in order to verify its
functionalities, which isalmost fully functional at 25MHz. The other two L SIs contains 64 PEsto be
applied for actual image compression. The FMPP-V Q64 integrates 64 PEs and asimple control logic,
which is fully functional besides the control logic. It can perform 53,000 nearest neighbor searches
(NNSs) per second, while its power consumption is only 20mwW. The FMPP-VQ64M integrates 64
reorganized PEs and a highly-functional control logic. The strategy to compute the absol ute distance
is optimized. Therefore, the performance is doubled, while its power dissipation is reduced to half.
The highly-functional control logic automatically proceeds the procedure for the NNS. Memory-
based paralel processing allows both of high performance and low power. The commercial micro
processor working at 300MHz cannot exceed the performance of the FMPP-VQ, while dissipating
more power.

We have also developed a real-time low-rate video compression system based on VQ. It can
transmit 10 QCIF (176x144) video frames per second through a 29.2kbps wireless line. Our
devel oped compression al gorithm usesan adaptive multi-stage hierarchical vector quantization. When
video activity is high, large pixel blocks for low resolution are mainly transmitted. When it is low,
small pixel blocks for high resolution increase the quality. It isrobust to noise, since the fixed length
code is used instead of the variable length code as in the DCT-based algorithms and every frame
is compressed to a fixed size. It achieves PSNRs over 30dB for the well-known standard video
sequences. It isrobust to both random and burst errors. The PSNR drops are only 1 or 2dB. The
proposed algorithm can encode the QCIF video sequence in rea -time on a CPU and an FMPP-V Q64
LS. The decoding process can be done on the CPU only. We are going to devel op the experimental
encoding system which consists of a personal computer and a daughter board with an FMPP-V Q64
LSI. The most intensive future work of this research is to devel op a portable videophone system for
mobile communication. It will berealized by the FMPP-VQ64M LS| and an application specific LS|

for encoding and decoding.

110 Chapter 5. FMPP for Vector Quantization: FMPP-VQ

Chapter 6

Conclusion

In this paper, a memory-based SIMD shared-bus parallel processor, “Functiona Memory Type
Parallel Processor (FMPP)” is discussed. Current computers consist of a fast CPU (processor) and
slow DRAM modules. Between them, there is a shared bus where all the data and codes (programs)
should be passed through. The shared bus causes so-called Von Neumann bottleneck, where the
system performance is limited by the performance of the bus. The FMPP architecture integrates
a memory and a processor on a single LSI. These two components, a memory and a processor,
are closaly linked in the FMPP. A processing element (PE) contains some amount of memory and
an ALU. All PEs are connected thorough a shared bus and laid out in a two-dimensional regular
array structure. The FMPP has a capability to break the bottleneck. The FMPP-based computing
system, where the part of main memory isreplaced with the FM PP, shows better performance than the
conventional Neumann computer. For example, an FMPP-based system with 1000 PEs can perform
SIMD operations 40 times faster than a conventional Von Neumann compute.

The bit-parallel block-parallel structure is proposed and discussed here. A PE of the BPBP
structure consists of severa words and a bit-parallel ALU. It is suitable for arithmetic computations
such as addition or multiplication. We have developed and fabricated a 1kbit BPBP-FMPP LS,
which is the first prototype FMPP LS| and works as a RAM, a CAM and a parallel processor. The
capability of additionin abit-parallel manner enables arithmetic computationsinside memory storage
cellswithout transferring data between a memory and a CPU. We propose a new strategy for addition
using aCAM-based memory and aManchester carry chain without using any conventional adder. The
L SI has variousfunctionalities of numerical and logical operations. The BPBP-FM PP can be applied
for the knapsack problem, one of NP-hard combinatorial optimization problems. The BPBP-FMPP
is 100,000 times faster than the sequential implementation when the number of luggage is 20.

We have proposed an application specific bit-parallel block-parallel FMPPfor Vector Quantization
(FMPP-V Q) to accel erate the nearest neighbor search (NNS) of vector quantization. Each processing
element computes the distance between an input vector and a code vector and finally the code vector

nearest to the input vector can be obtained rapidly using the CAM-based parallel search. Memory-

112 Chapter 6. Conclusion

based architecture and the ALU using pass-transistor logic minimize circuit area considerably. An
LS including four PEs has been implemented in a 0.7um CMOS process. It operates at 25MHz.
Then, we have developed the FMPP-V Q64 containing 64 PEs, which is fabricated using the same
0.7um CMOS process. It performs 53,000 NNSs for 16-dimensional code vectors. The power
consumption is 20mW at the condition of 25MHz clock frequency and 3.0V power supply voltage.
The modified version of the FMPP-VQ64 called FMPP-VQ64M has been fabricated. It performs
111,000 NNSs per second, while its power consumption is estimated to 10mW. It also integrates
highly-functiona control logic. The memory-based architecture enables both of high performance
and low power. A serial implementation including 8kbit SRAM for code vectors has a capability to
achieve almost the same performance than the FMPP-VQ LSIs, but it must dissipate 10 times larger
power than the FMPP-VQ.

We have proposed a hierarchical multi-stage vector quantization algorithm for real-time low-rate
video compression using the FMPP-V Q. It can transfer 10 QCIF frames per second over a 29.2kbps
mobile wireless channel. It is robust to noise, since a pixel block is compressed to an index coded
with a fixed length. A frame of image is first motion-compensated. Then the residua surface is
hierarchically compressed by multiple stages. The vector dimension is fixed to 16 (4x4) all through
the stages to share the same quantization methodology. Large blocks over 4x 4 pixels are decimated
to 16. The algorithm compresses video frames adaptively to the activity. For high-active frames,
motion vectors and large blocks for low resolution are mainly transmitted to compensate temporal
activity. For low-active frames, small blocks enhance the image quality. It achieves the PSNR over
30dB for the well-known standard video sequences. The quality of reconstructed imageisonly 2.3dB
worse than that from H.263.

The proposed algorithm is done in real-time on the experimental video compression system
composed of a PC and the FMPP-V Q64 for the nearest neighbor search. Compressed data from the
proposed algorithm can be easily decoded. It takes 4.4ms. on Pentium 200MHz, while H.263 takes
10.9ms. Our future task isto build a portable real-time low-rate videophone system for mobile field.
The proposed algorithm will be done on alow-power application specific LSI and the FMPP-V Q64
LS.

The FMPP allows massively parallel processing inside memory. But the actual LS| implemen-
tations do not have enough parallelism. The fist implementation 1kbit BPBP-FM PP has only 8 PES,
which is mainly because its high functionality and 32bit operation capability. The fabricated process
is also the 1.2um CMOS process, which is old-fashioned. In the FMPP-VQ architecture, we have
implemented 64 PEs using the 0.7um CMOS process. The functionality and bit-width of the PE is
eliminated for vector quantization, which enhance the integration density. These 64 PEs are enough

for vector quantization. But, the FMPP cannot show massively paralel computation on such an

113

application specific implementation. The area of the FMPP-V Q64 including 8kbit codebook words
is 10 times bigger than the conventional 8kbit SRAMs. Although the FMPP architecture alows high
integration density to eliminate communication between PEs and to control al the PEswith the same
instructions, the bus and control lines still occupy large area. The brand-new fine grain sub-micron
process, however, will allow huge number of processors on asingle die.

In this paper, two bit-parallel block-parallel FMPPs are proposed. The BPBP-FMPPisfor general
purpose and the FMPP-VQ is application-specific. At first, the FMPP architecture is proposed to be
used as apart of main memory for general purpose processing. The current research, however, tends
to aim a specific application such as vector quantization. Asdiscussed in Chapter 3, the FM PP-based
computing system outperforms the conventional Von Neumann computers. Our future task is to

develop an FMPP-based computing system including the following components:
e AnFMPP LS for apart of main memory,
e A processor that can handle the memory-based processing inside the FMPP.
e A compiler that can assign SIMD operations to the FM PP,

The block-parallel structure is suitable for such a system, since huge number of numerical

operations among multiple words can simultaneously be done in bit-parallel.

114 Chapter 6. Conclusion

Bibliography

[CSB92]

[CWL96]

[DATO6]
[ERA]

[ESS92]

[FCS*94]

[FOT93]

[Fro9g]

[FY092]

[GC83]

[GG92]

A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low-power CMOS digital design.
IEEE J. Solid-Sate Circuits (USA), 27(4):473-84, 1992.

H.Q. Cao, C.C. Wang, and W. Li. Variablerate lattice VQ algorithm for vector subband
coding. Proc. SPIE - Int. Soc. Opt. Eng. (USA), 2727(pt.1):319-30, 1996.

ES2 ECPDO7 Library Databook. ATMEL ES2, 1996.
http: //mwww.mitsubi shi-chi ps.com/eram/whatis.htm.

D.G. Elliott, W.M. Snelgrove, and M. Stumm. Computational RAM: a memory-SIMD
hybrid and its application to DSP. Proceedings of the IEEE 1992 Custom Integrated
Circuits, pages 30.6/1-4, 1992.

Wai-Chi Fang, Chi-Yung Chang, B.J. Sheu, O.T.-C. Chen, and J.C. Curlander. VLS
systolic binary tree-searched vector quantizer for image compression. |IEEE Trans. Very
Large Scale Integr. (VL) Syst. (USA), 2(1):33-44, 1994.

Y. Fujino, T. Ogura, and T. Tsuchiya. Facial image tracking system architecture utilizing
real-time labeling (TV telephones and conferencing). Proc. SPIE - Int. Soc. Opt. Eng.
(USA), 2094(pt.1):2-11, 1993.

R. Fromm. IRAM(Intelligent RAM) Solution for Merged DRAM/Logic LS| Architec-
ture. ASP-DAC’ 98 Tutorial 1: Merging DRAM and Logic Possibilities and Challenges,
pages 63-90, 1998.

Y. Fujita, N. Yamashita, and S. Okazaki. IMAP: integrated memory array processor. J.
Circuits Syst. Comput. (Sngapore), 2(3):227-45, 1992.

A. Gersho and V. Cuperman. Vector Quantization. |EEE Commun. Mag., 21(9):15-21,
1983.

A. Gersho and R.M. Gray. Vector Quantization and Sgnal Compression. Kluwer
Academic Publishers, Boston, 1992.

116

Bibliography

[GS84]

[GS97]

[HAK97]

[HGSS]

[HH88]

[Hil87]

[HK 96]

[HS92]

[HS95]

[INK+95]

[KKT+96]

A. Gersho and Y. Shoham. Hierarchical vector quantization of speech with dynamic
codebook allocation. ICASSP 84. Proceedings of the | EEE International Conference on,
pages 10.9/1-4 vol.1, 1984.

J.C. Gedlow and C.G. Sodini. A Pixel-Parallel Image Processor Using Logic Pitch-
Matched to Dynamic Memory. Symposium on VLS circuits, pages 57-58, 1997.

T.Hanyu, M. Arakaki, and M. Kameyama. Design and eval uation of a4-valued universal-
literal CAM for cellular logic image processing. |EICE Trans. Electron. (Japan), ES8O-
C(7):948-55, 1997.

Y.-S. Hoand A. Gersho. Variable-rate multi-stage vector quantization for image coding.
ICASSP 88: 1988 International Conference on Acoustics, Speech,, pages 1156-9 vol .2,
1988.

H. Hang and B. Haskell. Interpolative Vector Quantization of Color Images. IEEE Trans.
on Comm., COM-36:465-470, 1988.

W.D. Hillis. The Connection machine. MIT Press, 1987.

M. Hariyama and M. Kameyama. Collision detection VLSI processor for intelligent
vehicles based on a ROM-type content-addressable memory. Trans. Inst. Electron. Inf.
Commun. Eng. C-l1 (Japan), J79C-11(11):698-705, 1996.

F.P. Herrmann and C.G. Sodini. A dynamic associative processor for machine vision
applications. |EEE Micro (USA), 12(3):31-41, 1992.

F.P. Herrmann and C.G. Sodini. A 256-element associative parallel processor. |IEEE J.
Solid-Sate Circuits (USA), 30(4):365—70, 1995.

K. Inoue, H. Nakamura, H. Kawai, T. Tani, Y. Sakemi, H. Matsuoka, M. Ishikawa,
J. Matsumoto, K. Yamamoto, K. Takahashi, M. Yamawaki, E. Yokomoto, C.A. Hart,
J.Lin, K. Ishihara, and K. Shimotori. A 10 Mb 3D frame buffer memory with Z-compare
and alpha-blend units. 1995 |EEE International Solid-Sate Circuits Conference. Digest,
pages 302-3, 384, 1995.

K. Kobayashi, M. Kinoshita, M. Takeuchi, H. Onodera, and K. Tamaru. A memory-
based parallel processor for vector quantization. 22nd European Solid-Sate Circuits
Conference, pages 184-187, 1996.

Bibliography 117

[KKT+97]

[KNA*95]

[KNK+92]

[KNT+98]

[Koh87]

[KOT95]

[KTYOQ3]

[LBGSO]

[LP95]

[MNO96]

[MPE95]

INEC]

K. Kobayashi, M. Kinoshita, M. Takeuchi, H. Onodera, and K. Tamaru. A memory-
based parallel processor for vector quantization: FMPP-VQ. |EICE Trans. on Electron,
E80-C(7):970-975, 1997.

T. Kimura, K. Nakamura, Y. Aimoto, T. Manabe, N. Yamashita, Y. Fujita, S. Okazaki,
and M. Yamashina. Design of 1.28-GB/s high bandwidth 2-Mb SRAM for integrated
memory array processor applications. |IEEE J. Solid-Sate Circuits (USA), 30(6):637-43,
1995.

Y. Kuwahara, K. Nakamura, K. Kubota, M. Sato, and T. Ohtsuki. CAM-based Hardware
Engine for Geometrical Problems. CPSY92-17, pages 63—70, 1992.

K. Kobayashi, N. Nakamura, K. Terada, H. Onodera, and K. Tamaru. An LS| for Low
Bit-Rate Image Compression Using Vector Quantization. |1EICE Trans. on Electron,
E81-C(5):718-724, 1998.

T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, Berlin Hei-
delberg, 1987.

K. Kobayashi, H. Onodera, and K. Tamaru. A bit-parallel block-parallel functional
memory type parallel processor LS| for fast addition and Multiplication. Symposium on
VLS circuits, pages 61-62, 1995.

K. Kobayashi, K. Tamaru, H. Yasuura, and H. Onodera. A bit-parallel block-parallel
functional memory type parallel processor architecture. 1EICE Trans. on Electron,
vo.E76-C(7):1151-1158, 1993.

Y. Linde, A. Buzo, and R.M. Gray. An Algorithm for Vector Quantizer Design. IEEE
Trans. Commun. (USA), COM-28(1):84-95, 1980.

T.M. Le and S. Panchanathan. Computational RAM implementation of an adaptive
vector quantization algorithm for video compression. |EEE Trans. Consum. Electron.
(USA), 41(3):738-47, 1995.

Y. Matsumuraand T. Nakai. Self-Synchronized Syntax for Error-Resilient Video Coding.
|EICE Trans. Commun. (Japan), E79-B(10):1467-73, 1996.

MPEG-4 Testing and Evaluation Procedures Document. pages 32—34, 1995.

http: //www.incx.nec.co.jp/imap-vision/.

118

Bibliography

[NO9Q]

[NYT89]

[ON97]

[ONB*96]

[OYNB85]

[OYY86]

[PHSS7]

[Pro]

[SKOQ0]

[SNK*97]

[SSN+90]

[Toh]

[Wes]

J. Naganumaand T. Ogura. CAM-based Prolog machine and its performance eval uation.
Trans. Inst. Electron. Inf. Commun. Eng. D-1 (Japan), J73D-1(11):856—63, 1990.

A. Nakano, H. Yasuura, and K. Tamaru. Functional memory type parallel architecture
for image processing. Proc. of 1989 IEEE Int. Conf. on VLS, pages 329-328, 1989.

T. Ogura and M. Nakanishi. CAM-based highly-parallel image processing hardware.
IEICE Trans. Electron. (Japan), ES80-C(7):868—-74, 1997.

T. Ogura, M. Nakanishi, T. Baba, Y. Nakabayashi, and R. Kasai. A 336-kbit content
addressable memory for highly parallel image processing. Proceedings of the |EEE 1996
Custom Integrated Circuits, 2094(pt.1):273-6, 1996.

T.Ogura, S. Yamada, and T. Nikaido. A 4kb associativememory LSI. |EEE J. Solid-State
Circuits, SC-20(6):1277-1282, 1985.

T. Ogura, S. Yamada, and J. Yamada. A 20 Kb CMOS associative memory LS| for
artificial intelligence machines. Proceedings of the |EEE International Conference on
Computer, pages 574—7, 1986.

A. Puri, H.M. Hang, and D.L. Schilling. An Efficient Block Matching Algorithm for
Motion-Compensated Coding. | CASSP, pages 1063-1066, 1987.

http://infopad.eecs.ber kel ey.edu/CI C/summary/local/.

M. Sato, K. Kubota, and T. Ohtsuki. A hardware implementation of gridless routing
based on content addressable memory. 27th ACM/IEEE Design Automation Conference.
Proceedings 1990, pages 646-9, 1990.

T. Shibata, A. Nakada, M. Konda, T. Morimoto, T. Ohmi, H. Akutsu, A. Kawamura, and
K. Marumoto. A Fully Parallel Vector Quantization Processor for Real-Time Motion
Picture Compression. 1997 |EEE International Solid-State Circuits Conference. Digest,
pages 270-271, 1997.

A. Sekiyama, T. Seki, S. Nagai, A. lwase, N. Suzuki, and M. Hayasaka. A 1V operating
256-Kbit full CMOS SRAM. 1990 Symposium on VLS Circuits. Digest of Technical
Papers, pages 534, 1990.

http: //www.kameyama.ecel .tohoku.ac.jp/index.html.

http: //www.ohtsuki.comm.waseda.ac.j p/index-e.html.

Bibliography 119

[Wato8]

[WCO5]

[WESS]

[WE93]

[WEY +97]

[WS89]

[Yas91]

[YF77]

[YTT8S]

[YWST91]

T. Watanabe. Impact of DRAM-Logic Integration on System Performance Chip Archi-
tecture, and Design Methodolog y. ASP-DAC’ 98 Tutorial 1: Merging DRAM and Logic
Possibilities and Challenges, pages 3062, 1998.

C.-L. Wang and K.-M. Chen. A new VLSI architecture for the full-search vector quan-
tization. Proc. SPIE - Int. Soc. Opt. Eng. (USA), 2501(pt.1):489-98, 1995.

N. Weste and K. Eshraghian. Principles of CMOSVLS Design. Addison-Wesley, N.Y.,
1985.

N. Westeand K. Eshraghian. Principlesof CMOSVLS Design, Second Edition. Addison-
Wesley, N.Y., 1993.

T. Watanabe, R. Fujita, K. Yanagisawa, H. Tanaka, K. Ayukawa, M. Soga, Y. Tanaka,
Y. Sugie, and Y. Nakagome. A modular architecture for a 6.4-Gbyte/s, 8-Mb DRAM-
integrated media chip. |EEE J. Solid-State Circuits (USA), 32(5):63541, 1997.

JP. Wade and C.G. Sodini. A ternary content addressable search engine. |EEE J.
Solid-Sate Circuits (USA), 24(4):1003-13, 1989.

H. Yasuura. Massively parallel processing by functional memories. Jour. of IPSJ,
32(00.12):1260-1267, 1991.

S.S. Yau and H.S. Fung. Assosiative Processor Architecture—A Survey. Computing
Surveys, 9(1), 1977.

H. Yasuura, T. Tsujimoto, and K. Tamaru. Parallel exhaustive search for several NP-
complete problems using content addressable memory. Proc. of 1988 IEEE Int. Symp.
on Circuits and Systems, pages 333-336, 1988.

H. Yasuura, A. Watanabe, R. Sadachi, and K. Tamaru. Functional memory type parallel
processor FMPP on a CAM and its applications. Joint Symp. on Parallel Processing 91,
pages 213—220, 1991.

120 Bibliography

Publication List

Major Publication

1. K. Kobayashi, K. Tamaru, H. Yasuura, and H. Onodera. “A Bit-parallel Block-parallel Func-
tiona Memory Type Parallel Processor Architecture” |EICE Trans. on Electron, vo.E76-
C(7):1151-1158, 1993.

2. K. Kobayashi, M. Kinoshita, M. Takeuchi, H. Onodera, and K. Tamaru. “A Memory-based
Parallel Processor for Vector Quantization: FMPP-VQ.” IEICE Trans. on Electron, E80-
C(7):970-975, 1997.

3. K.Kobayashi, N. Nakamura, K. Terada, H. Onodera, and K. Tamaru. “AnLSl for Low Bit-Rate
Image Compression Using Vector Quantization.” |EICE Trans. on Electron, E81-C(5): pages
718-724, 1998.

4. K. Kobayashi, K. Terada, H. Onodera, and K. Tamaru. “A Real-Time Low-Rate Video Com-
pression Algorithm Using Multi-Stage Hierachical Vector Quantization.” IEICE Trans. on
Electron, E82-A(2): (Under submission), 1999.

Co-authored Publication

1. K. Tamaru, K. Kobayashi and H. Onodera. “Memory based architecture and itsimplementation
scheme named bit-parallel block-parallel functional memory type paralel processor BPBP
FMPP” Computers & Electrical Engineering, 24: pages 17-31, 1998.

Conference Presentation

1. K. Kobayashi, H. Onodera, and K. Tamaru. “A bit-parallel block-parallel functional memory
type parallel processor LSl for fast addition and Multiplication.” Symposiumon VLS circuits,
pages 61-62, 1995.

2. K. Kobayashi, M. Kinoshita, M. Takeuchi, H. Onodera, and K. Tamaru. “A memory-based
paralel processor for vector quantization.” 22nd European Solid-State Circuits Conference,

122 Publication List

pages 184-187, 1996.

3. K. Kobayashi, M. Kinoshita, M. Takeuchi, H. Onoderaand K. Tamaru. “A Functional Memory
Type Parallel Processor for Vector Quantization.” Proc. of the ASP-DAC’ 97; Asia and South
Pacific Design Automation Conference 1997, pages.665-666, 1997.

4. K. Terada, M. Takeuchi, K. Kobayashi, H. Onoderaand K. Tamaru. “Real Time Low Bit-Rate
Video Coding Algorithm Using Multi-Stage Hierarchical Vector Quantization.” Proc. of the
ICASSP; International Conference on Accoustics, Speech and Sgnal Processing, 2673-2676,
1998.

BAEICKkSO08EHE. Oral Presentationsin Japanese.

1. /BRI, HFLEEE, RN - “H LOBEEA T U ORE L ZOISHIZOWT”, Pk 34
BEXERES - HH - VAT L2HMEE RIS, #3C No.C-2-4, pp.209-212 (1991).

2. INHFDIR, BRIHEA, AHEE : “Ey MNEFIT 1y 2 WBFIHIC & DHRE R B Y B
Oy YT —FT 7 F ¥ —ORE", FHRUHFELE 430 (Frk 34E%E) 2EKESHEHR
U, #C N0.3Q-6, pp.6-57 ~ 6-58 (1991).

3. /NI, NEFR R, HALEE, BN ¢ “Ey MY T e v 7 EHHRIC L DHEEE X £
YANGH| a2y FMP PO&RE— VA 7 v MEER X OEEEERE ", 1993 4F£&E 1
B HH(E PR RSB, i No.C-594, p.5-224 (1993).

4. /NHRFIIR, /NP, HIES - “FMPP IZBIT AR T v PR Z 2RV IFIEEF
7, 1993 -8B T-1E BUR(E R RSB SUE, 750 No.C-431,p.5-141 (1993).

5. /NRFIIR, PrAtFEIR, W. Jungsuwadee, /NEFSFEFH R, HAEE @ “Ey M7 v v 7175
FRIT K HHREA £ VBN T vk v ¥ OFRGE, 115 BB E 2B 7e 8, SDMI3-
145, 1ICD93-139 Nov., pp.37-44 (1993).

6. A, /AR, /NEFEHE, MIETE - e AT) ANS| 7 0¥ v L TOBERRT
EHBROER” | 1904 FEE T HHBEFLETRDHBERACE, 53¢ No.C-639, p.5-207 (1994).

7. NHFIH, NEFEF R, BAEE By MBS e 2 W FMPP T — %7 2 Fx & &
70 NEAT LS Fv S OBME", 1994 FE FEHRBEFZSKFRSBEIHCE, #X
N0.C-488, p.166 (1994).

8. W. Jungsuwadee, /NEFIIR, /NEFSEFH R, HAUE S - “Ey MESIT vy 7 WHIH FMPPIZE
TLOBEEEAEY OFT X FHEE", 1995 FE FIFHBE F SR E RS HEHERUE, # 3 No.C-
571, p.164 (1995).

123

10.

11. 1

12.

13.

14. &

15.

16.

17.

18.

19.

TERE, /IR, /NEFH %, HALEE - “BPBPE FMPP Z W7 mte v R — KD
A, 1995 B T HEBIE 220 A& K RHIHA U, 73X No.C-595, p.188 (1995).

ARTHEE, AT, AR, BAEE - “X27 MLV ETRICE L72gRE X £ U B 51~
ot OFRE, 1995 FE FERREFE M - ER Y VA =7 RESHEBRSUE, # X
No.C-475, p.197 (1995).

RN, /DARFII, HIEE @ ‘B A £V RS oty 2 AT MLVE LRI
ZEBIEHROEMN", 1995 FEHFHEEFER - BHR Y VA =7 1 RSHEHRSUE,
#3C N0.C-476, p.198 (1995).

L FEHEE, ARFIIR, H AR - By MIFFIT v v 7 WWHIFRIC K AEEE A £ U AN S 7 1
T o DOFE", 1996 4B T IEEHRIE E AR A KD HIERCE, #C No.C-543, p.159 (1996).

mE AE, ANRFIR, BALEE o INEMRERT X EiR A E U ORE, 1996 FFE 7-1E HiEE %
SAR S R TERRCE, 50 No.C-599, p.215 (1996).

I

i4p

12@“\7 ~MVETFAR”, 199635%%%*&@15 DB RETHET
p.22 (1996).

>

b
-
B
S
<
i
N
s
Z
o
o
I\)
X

INIRFIIR, A TTHER, TEKRKRN, RN BSL, /NEFEH7, BILESE © “X7 MVETLAEE
EVRWH| T vy FMPP-VQ Of%GEr”, 5 9EEIE & S AT ABEHRY —7 v a v Tia
(4, PP.353-358 (1996).

ANRFOIR, HAT R, RNESL, BAEE: " X7 MR EAAE Y —_X—XFak v
& Z DENEB M~ ", 1997 FE FIEHIBE PR A KR SUE, #3C No.C-12-
31, p.167 (1997).

ANPRIERR, /INRFIIR, LR - CNERERERT X A £ U OFKE”, 1997 FE EHIEE
L7 bu=g RV A T 4 REHHRICE, 3¢ No.SC-10-6, p.196 (1997).

SFH—Z, RN ESL, AT, ANRFR, BREE 0 X7 MVE T EREE A £ U B
Tty i X 2HEBROKEE Y b L— MNEMT AT L7, 1997 £E FEHRBEFZEH -
VRF B Y YA T 4 KRG, %3 No.D-11-48, p.140 (1997).

HKWNEL, SFH—2Z, AT SR, /NRFI, /NEFSER 2, BIES © “X7 MV E L AEE
EVANH vty FMPP-VQIC X 28EEGEOIEE Y hL— MNEMET LT Y X LDRE
" 10 EIEES &R T AR T — 7 v a v T, Apr.21-22, pp.291-296 (1997).

124

Publication List

20.

21.

22.

23.

24,

25.

26.

ANPRFIR, AT ELR, LR, NEPSER AR, HIEE - X PV E LA T YA
WHI7 v v P FMPP-VQ64 DRk, LI E2 DA LU R VDY 197 34, pp.13-18
(1997).

ARFIR, RNEGL, SFETE, NEFHR, BALUEE : “X7 Mk HnEey
kL— FENEGIER S AT L7, B 1EY AT A LS BEM U —2 v 3 v 7EEME, pp.365-
370, Nov. (1997).

(L R HEE /NARTE S /NARFNIR LS E, “DRAM & W72 INEREEE 2 £ U D%, 15250,
Vol. 97, No. 344, VLD 97-95, pp. 125-132 (1997)

HRABSL, SFH—, MR, |HLEE X7 PAVEFHEIC X B3EE Y b L— MEIERE
M L7 ARE S AT Y RXR—RA 7 2k v P DG ", 1998 F£E T EHHEEFRE K HEHH
M SCEE, #SC No. C-12-14, p. 142 (1998).

LI REVFETED, /INBRSE BB /ARFNAR, LS R @ “DRAM Z2 AW INERERE A £ V" 1998 4E 1
THHOE(E AR A R L, #3C No. C-12-85, p. 213 (1998)

ANAREE SR, (LR HERL, AL, /NI, HAE S © “DRAM Z AW INEMEEAE U (5
249, Vol. 97, No. 344, |CD 97-95, pp. 19-26 (1998)

SFH —2, BN B4, /R Fai, B B 0 “BEEE A £ U RN T a P X B g
7 MVEHEERWEIKE Yy b U— FEIEBIERE Y AT A7 8 11 BIEIE & AT ABRHIR
U—7 ¥ a v T4, Apr.20-21, pp.445-450 (1998).

Acknowledgment

| would like to express my sincere gratitude to Professor Keikichi Tamaru of Kyoto University for
his continuous guidance and helpful discussions through this work.

| would like to give great thanks to Professor Hidetoshi Onodera of Kyoto University for his
intelligent advice and management for this research.

| would like to express my appreciation to Professor Hiroto Yasuura of Kyushu University.
Prof. Tamaru and Prof. Yasuura started this work.

| would like to thank all the members of Tamaru Laboratory who have contributed this work.
The list of the membersisasfollows: A. Nakano, T. Tujimoto, A. Watanabe, R. Sadachi, K.M. Lu,
H. Takemura, J. Wasarin, K. Kamei, M. Kinoshita, T. Ankei, T. Shimizu, H. Shimizu, N. Nakamura,
S. Takamine, M. Takeuchi, M. Yamaoka, Y. Kobayashi, K. Terada, C. Tan.

| am also deeply indebted to my wife Etsuko for her every-day’s house work. | would like to
express my appreciation to my father Selichi and mother Michiko. Finally, may God bless my dear
daughter, Momoka.

