
Title Statistical properties of actions of periodic orbits

Author(s) Sano, Mitsusada M.

Citation CHAOS (2000), 10(1): 195-210

Issue Date 2000-03

URL http://hdl.handle.net/2433/59080

Right

Copyright 2000 American Institute of Physics. This article may
be downloaded for personal use only. Any other use requires
prior permission of the author and the American Institute of
Physics.

Type Journal Article

Textversion publisher

Kyoto University



Statistical properties of actions of periodic orbits
Mitsusada M. Sanoa)

Department of Fundamental Sciences, Faculty of Integrated Human Studies, Kyoto University, Sakyo-ku,
Kyoto, 606-8501, Japan

~Received 17 August 1999; accepted for publication 23 November 1999!

We investigate statistical properties of unstable periodic orbits, especially actions for two simple
linear maps (p-adic Baker map and sawtooth map!. The action of periodic orbits for both maps is
written in terms of symbolic dynamics. As a result, the expression of action for both maps becomes
a Hamiltonian of one-dimensional spin systems with the exponential-type pair interaction.
Numerical work is done for enumerating periodic orbits. It is shown that after symmetry reduction,
the dyadic Baker map is close to generic systems, and thep-adic Baker map and sawtooth map with
nonintegerK are also close to generic systems. For the dyadic Baker map, the trace of the quantum
time-evolution operator is semiclassically evaluated by employing the method of Phys. Rev. E49,
R963~1994!. Finally, using the result of this and with a mathematical tool, it is shown that, indeed,
the actions of the periodic orbits for the dyadic Baker map with symmetry reduction obey the
uniform distribution modulo 1 asymptotically as the period goes to infinity. ©2000 American
Institute of Physics.@S1054-1500~00!02101-7#

Recent development of semiclassical quantization of cha-
otic systems has given us many fruitful results and has
been applied to mesoscopic systems, atom-molecular sys-
tems, nuclear systems, etc. One of the most important
goals of theoretical research is to elucidate the relation
between the prediction of random matrix theory and the
statistical behavior of quantized chaotic systems. To de-
velop semiclassical reasoning for this, it is quite impor-
tant to know the statistical behavior of periodic orbits of
the classical counter part. In this paper, we investigate
the action of periodic orbits for simple two-dimensional
maps „Baker map and sawtooth map… theoretically and
numerically and report their statistical properties „e.g.,
Gaussian distribution and uniform distribution …. In par-
ticular, as a main result, for dyadic Baker map with sym-
metry reduction, mathematical discussion supports the
uniform distribution modulo 1 of actions of periodic or-
bits.

I. INTRODUCTION

Complex motion in chaotic dynamics is, in some sense,
due to infinite number of variations of how a given system
behaves. Infinite variations prevent us from forecasting the
future of the system in detail. The set of unstable periodic
orbits ~UPOs!, which is an countably infinite invariant set in
chaotic dynamics, is regarded as a generator of an infinite
number of variations. In fact, the dynamical property of the
hyperbolic system is described by the dynamical zeta func-
tion ~or the Fredholm determinant of the Perron–Frobenius
operator!, which is expressed in terms of information on
UPOs.1,2 The dynamical zeta function provides us with the
dynamical characteristic quantities, such as decay rate,
Lyapunov exponent, topological entropy, etc.1

The UPOs are also important objects for the purpose of
quantizing chaotic systems. The eigen energies are formed as
a result of complicated interference of waves along the
UPOs, while for the regular system simple quantization con-
dition, i.e., the Einstein–Brillouin–Keller quantization con-
dition, is applied to the torus in classical dynamics. For
quantized chaotic systems, this complicated feature of inter-
ference is encoded in the Gutzwiller trace formula or the
associated Gutzwiller–Voros zeta function in a semiclassical
way. The most striking property of a quantized chaotic sys-
tem is good agreement with the prediction of the random
matrix theory~RMT!, which assumes an ensemble of Hamil-
tonian matrices according to the symmetry which a given
system possesses. Even though the RMT gives us nice de-
scription for quantized chaotic systems, randomness deter-
ministically generated in such systems is highly nontrivial.
The link between classical chaos and the RMT should be
clarified. A recent detailed investigation by semiclassical
theory has shown that the statistical property of the UPOs
determines the statistical property of the corresponding quan-
tum system.

Here we briefly comment on known statistics of periodic
orbits. The number of the periodic orbits exponentially pro-
liferates with increasing their period,3

#$Tp<T%;
ehT

hT
, ~1!

where h is the topological entropy. For dispersing billiard
systems, a numerical calculation shows that the length and
stability factor for the set of periodic orbits with the same
number of bounces obey the Gaussian distribution.4 More-
over, the nearest neighbor spacing distribution for the length
of periodic orbits approximately obeys the Poisson process.4

In fact, this statistic explains linearity of the spectral form
factor for a quantum dispersing billiard in a short time
regime.5a!Electronic mail: sano@phys.h.kyoto-u.ac.jp
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For the correspondence between the behavior of a quan-
tized chaotic system and the prediction of the RMT, the two-
point level correlation functionR2(s) is the most suitable
characteristic function. For this quantity, MIT group,6 and
Bogomolny and Keating7 ~see Appendix A for a brief re-
view! have obtained an apparently complete answer. How-
ever, their result has excellent agreement with the RMT pre-
diction for the class of time-broken symmetry for both limit
s→` and 0~it seems to be a complete answer!, but does not
reproduce the RMT result ins→0 for the class of time-
reversal symmetry. This failure is as follows: ass→0, the
diagonal partR2

(diag)(s) diverges. This divergence is due to
the Hannay–Ozorio de Almeida~H–OdA! sum rule,8,9

which represents a tendency toward a unique equilibrium
state in the corresponding classical dynamics. For time-
broken symmetry, the off-diagonal partR2

(off) (s) also di-
verges and cancels the divergence inR2

(diag)(s). For time-
reversal symmetry, this cancellation does not occur for their
result, because the order of divergence inR2

(diag)(s) mis-
matches that inR2

(off) (s) ~see Appendix A!. R2
(off) (s) contains

the information on the pair correlation of UPOs.10 This cor-
relation is highly nontrivial and shows the deviation from
pure randomness. As shown for the Riemann zeta function
which is a mathematical test model of a quantized chaotic
system by Keating,11,12 the cancellation between the diver-
gence inR2

(diag)(s) and that inR2
(off) (s) is essential to its

deviation. In order to improve their result, time-reversal
symmetry breaking ofR2(s) has been considered in Ref. 13
by careful treatment of multiplicity of UPOs. The result of
Ref. 7 has been partially improved but this problem still
remains.

In the analysis of Ref. 7, the crucial statistical assump-
tion has been made: the distribution of actions obeys Gauss-
ian distribution and the distribution of actions modulo 1~in
the scale unit of\) obeys uniform distribution. In the present
paper, we will investigate the statistical property of actions
of the UPOs for two simple examples of hyperbolic dynami-
cal systems, a Baker map, and a sawtooth map. Our aim here
is to check whether actions for both maps obey the assump-
tions, which has been used in Ref. 7, or not. We use the
recent numerical result by Tanner14 in which he applied the
result of Ref. 15 to the action correlation, and an extension of
Weyl’s uniform distribution theorem. As a result, it will be
shown that a dyadic Baker map with a symmetry reduction
obeys the uniform distribution of actions modulo 1. Ap-adic
Baker map and a sawtooth map are also investigated numeri-
cally. From the numerical result for these cases, it seems that
for the p-adic Baker map and special cases of the sawtooth
map, actions of UPOs obey the uniform distribution modulo
1.

The organization of this paper is as follows: In Sec. II,
we introduce dyadic Baker map and write the expression of
action for UPOs into the form of a Hamiltonian of one-
dimensional lattice gas system by using the binary symbolic
dynamics. In Sec. III, the quantized dyadic Baker map is
introduced. We carry out the semiclassical theory to the trace
of its Floquet operator. The evaluation of the semiclassical
trace is reduced to the evaluation of eigenvalues of some
operator. The behavior of this eigenvalues determines the

statistical property of actions. The numerical results of action
distribution are displayed. It will be shown that the dyadic
Baker map with a symmetry reduction seems to satisfy the
assumption in Ref. 7. In Sec. IV, we consider the action
distribution of a dyadic Baker map rather mathematically,
but not strictly rigorously. Using the similarity between the
semiclassical trace~the sum over periodic orbits! and the
sum which appears in Weyl’s uniform distribution theorem,
we will confirm that the actions of UPOs of a dyadic Baker
map with symmetry reduction obey the uniform distribution
modulo 1. In Sec. V, we will consider the case of the saw-
tooth map. It is shown that the expression of actions for
UPOs becomes the Hamiltonian of a one-dimensional Potts
model. In Sec. VI, we summarize the conclusions. In Appen-
dix A, the result on the semiclassical expression ofR2(s) is
given. The validity of the semiclassical sum rule is checked
for both time-reversal and time-broken cases. In Appendix
B, we represent the resummation method to the dyadic Baker
map which is originally employed by Gutzwiller to the an-
isotropic Kepler problem. In Appendix C, the extension to
the p-adic Baker map is done.

II. DYADIC BAKER MAP

The dyadic Baker map is the area-preserving map on a
unit square,

x852x2@2x#,
~2!

y85
y1@2x#

2
.

The orbit can be expressed in terms of the binary series,

x5(
i 50

`

ai S 1

2D i 11

, y5(
i 50

`

bi S 1

2D i 11

, ~3!

whereai ,biP$0,1%. The bi-infinite symbolic sequence,

~•••bnbn21•••b2b1•a0a1a2•••an••• !, ~4!

specifies an actual orbit. This correspondence is one-to-one.
The generating function of the Baker map can be con-

structed by the following way through the mixed
representation.16 Let us consider the generating function for
the T-step mapping. TheT-step mapping is given as

x852Tx2n,
~5!

y8522T~y1 n̄ !.

Therefore, the associated generating function is now

Fn~x,y8!52Ty8x2ny82 n̄x, ~6!

where

n5 (
i 50

T21

ai2
T2 i 21, n̄5 (

i 50

T21

ai2
i . ~7!

The mapping is expressed in terms of this generating func-
tion,

x85
]Fn

]y8
52Tx2n, y5

]Fn

]x
52Ty82 n̄. ~8!
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For periodic orbits, we identify the initial point and final
point, namelyx5x8, y5y8. Then, we get the position of the
periodic point,

x* 5
n

2T21
,

~9!

y* 5
n̄

2T21
.

We also denote the one-step shift bys and define here the
shifted periodic sequencesnn,

snn5 (
i 50

T21

a( i 1n)modT2T2 i 21. ~10!

There is an interesting property of periodic points: The sums
of xn andyn are the sum of the symbolsan’s,

(
n50

T21

xn5 (
n50

T21

yn5 (
n50

T21

an . ~11!

A similar relation will appear for the sawtooth map later. The
action of the periodic orbit is obtained by the Legendre trans-
formation of the generating functionFn ,

Sn5y8x82Fn~x,y8!ux* ,y* 5
nn̄

2T21
. ~12!

We denote the set of the actions of the periodic orbits with
period T by POT which includes all repetitions, namelyT
5rTp , wherer is the repetition andTp is the period of the
prime periodic orbits labeled byp. We also denote the set of
the actionsSn for the prime periodic orbits with periodT by
PT .

Subtracting some integer fromSn , the expression ofSn

is much more simplified. We defineSn[Sn2In , whereIn

5( j 50
T21aj2

T212 j ,

Sn[ (
i 50

T21

xiai5 (
i 50

T21

xi@2xi #, ~13!

where

xn5
snn

2T21
, ~14!

and

M n5 (
i 50

T21

ai ,
M n

2
<Sn,M n . ~15!

Obviously,Sn mod 15Sn mod 1. We use this expressionS̄n

rather than the originalSn , since in semiclassical analysis we
only need the fractional part ofSn , as we will see later. Here
we denote the set of the actionsS̄n with period T by PŌT

~for the prime periodic orbits,P̄T .). Sn can be written as

Sn5 (
i 50

T21

xiai

5
2T21

2T21
(
i 50

T21

(
j 50

T21

22 jaia( i 1 j )modT

5
elT/2

4 sinh~lT/2! H (
i 50

T21

ai
212e2lT/2(

i , j
aiaj

3coshFlS T

2
2u i 2 j u D G J , ~16!

wherel5 ln 2. Finally the actionSn can be rewritten into the
one-dimensional lattice gas Hamiltonian with system sizeT,

Sn5
elT/2

4 sinh~lT/2! H M n1e2lT/2(
iÞ j

aiaj

3coshFlS T

2
2u i 2 j u D G J , ~17!

whereM n denotes the number of particles~i.e., the number
of ‘‘1’’ !. This is very similar to the approximate action of
periodic orbits for the anisotropic Kepler problem which is
an Ising spin system with exponentially decreasing pair
interaction.17

Symmetry: The Baker map has the following two types
of symmetry. Under the following symmetry operation, the
action Sn is invariant. ~1! Time-reversal operation: This
symmetry operation is the exchange of the coordinatesx and
y, namelyx↔y. Let us represent this operation bysT . In
the symbolic representation, it is given as
a0a1•••aT21↔aT21aT22•••a0. ~2! Geometrical symme-
try „the reflection wrt the diagonal…: In the coordinate rep-
resentation (x,y), this operation is given asx→12x, y
→12y. Let us denote this operation bysR . In the symbolic
representation, this operation is the posi-nega transformation.
a0a1•••aT21→(12a0)(12a1)•••(12aT21). By these
two symmetries, the multiplicityg of a given periodic orbit
can be, at most,g54, except accidental degeneracy~we will
observe accidental degeneracy in Fig. 5 and Fig. 6!. The
correspondence between the multiplicity and the symmetry
operation is depicted in Table I.

An example of g54 for period 7. Here we show an
example of degeneracy of prime periodic orbits withg54
~period 7). We list the symbols for an example case.~a!
0001011,~b! 0001101,~c! 0010111,~d! 0011101.~a! and
~b! @or ~c! and ~d!# are mutually transformed bysT . At the
same time,~a! and ~d! @or ~b! and ~c!# are mutually trans-
formed bysR .

TABLE I. Symmetry operations and minimum degeneracy.

sT sR g

3 3 1
3 s 2
s 3 2
s s 4
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III. QUANTIZED BAKER MAP

The quantized version of the Baker map is constructed
in the following way.18,19 Let us denote c
5(c0 ,c1 ,...,cN21)T the wave function in the position rep-
resentation. The time-evolution of the wave function is de-
scribed by the followingN3N-matrix BN (N: positive even
integer!,

BN5GN
21S GN/2 0

0 GN/2
D , ~18!

where

~GN!kn5^kun&5
1

AN
expF2

2p i

N S k1
1

2D S n1
1

2D G ,
k,n50,1,...,N21. ~19!

The phase space is now compact. This makes the Planck
constant be quantized to give\5 1/2pN, where N is the
integer which corresponds to the size of matrixBN . The
eigenvalue problem is now

BNc5eivc. ~20!

The quantized Baker map shows the level repulsion. The
nearest-neighbor level spacing distribution well agrees with
the Wigner distribution forNÞ2L.18 For the case ofN
52L, the accidental degeneracy of quasi-energies is ob-
served. This curious property is not yet well understood. We
will see later for the numerical result of a spectral form fac-
tor. Since the eigenvalue is periodic with period 2p, then the
density of states is represented in terms of the sum of infinite
number of delta functions,

d~v!5 (
n51

N

(
l 52`

1`

d~v2vn22p l !

5
N

2p
1

1

p
R(

n51

`

Tr~BN
n !e2 inv. ~21!

The first term in the second line corresponds the mean den-
sity of statesd̄5 N/2p. To characterize the statistical prop-
erty of spectrum, we define the two-point correlation func-
tion R2(s),

R2~s![
1

d̄2 K d̃S v1
s

2d̄
D d̃S v2

s

2d̄
D L

v

5
1

2pd̄2E0

2p

dvd̃S v1
s

2d̄
D d̃S v2

s

2d̄
D , ~22!

where d̃(v)5d(v)2d̄ and ^•••& denotes the energy aver-
age. The spectral form factorK(T;N) is defined as the Fou-
rier transform of the two-point level correlation function,

K~T;N!5E
0

2pd̄
dseiTs/d̄R2~s!

5
1

2pd̄2E0

2pd̄
dseiTs/d̄E

0

2p

d̃S v1
s

2d̄
D d̃S v2

s

2d̄
D

5
1

N
uTr~BN

T !u22NdT0 . ~23!

The random matrix theory predicts the form ofK(T;N) for
time-reversal (g52) and for time-broken systems (g51),
respectively,

Kg52~T;N!5H 2t2t ln~112t !, 0,t<1,

12t lnS 2t11

2t21D , 1,t,
~24!

and

Kg51~T;N!5H t, 0,t<1,

1, 1,t,
~25!

where we take the scalet5T/N. In Fig. 1 and Fig. 2, the
numerical results of the spectral form factor for even parity
are depicted forN51000 andN510245210, respectively.
Figure 1 shows good agreement with the COE prediction,
while Fig. 2 seems to be rather Poisson, i.e., arithmetical

FIG. 1. Spectral form factor of a quantized dyadic Baker map:N
5 1/2p\ 51000. We used half of the whole eigenvalues, which corre-
sponds to the even parity. The horizontal axis is in scaleT/N. tH5T/N
51 is the Heisenberg time.~a! The spectral form factor.~b! The smoothed
spectral form factor which is obtained by smoothing~a! in a certain small
interval. The solid line is the quantized dyadic Baker map. The dashed and
dotted lines are the COE and CUE statistics, respectively.
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chaos.20 This observation is consistent with the numerical
result of the level spacing distribution in Ref. 14. Thus we
must carefully treat the\-~or N-!dependence. If there is no
systematic degeneracy in eigenenergies, the following semi-
classical sum rule, Eq.~27!, should be satisfied which is a
simple application of identity on the smoothed delta
functions:8

lim
e→0

2peS 2
1

p
T

1

x1 i e D 2

5d~x!. ~26!

The semiclassical sum rule is

lim
e→0

2peR2
(e)~s50!5d̄, ~27!

where

R2
(e)~s!5

1

2pd̄2E0

2p

dvd̃(e)S v1
s

2d̄
D d̃(e)S v2

s

2d̄
D

~28!

and d̃(e)(v) is the oscillatory part of ane-Lorentzian
smoothed density of states. The relation, Eq.~27!, implies
the discreetness of eigenenergies. Inserting Eq.~21! into Eq.
~27!, we have

lim
e→0

2e (
T51

`

K~T;N!e22eT51. ~29!

This implies that the spectral form factorK(T;N) saturates
to 1 asT→`.

The semiclassical trace can be evaluated as16,21

Tr(sc)~BN
T !5 (

SnPFix(T)
8

e2p iNSn

2 sinh~lT/2!
, ~30!

where the sum is taken over the fixed points of theT-times
map except0T and1T which lay on the discontinuous bound-
ary. Fix(T) is the set of the actions of the fixed points with
period T. We note that the Maslov index is absent for a
quantized Baker map. The contribution from the periodic
orbits 0T and1T is of the order of log(\).21 In the semiclas-
sical limit \→0, this anomaly has a problem. One can avoid
this problem by using the different Baker map.22 For the
Baker map of Ref. 22, the action is just1

4 of Sn and we can
enumerate all periodic orbits by the same binary symbolic
dynamics. But in this paper, since we are interested in the
statistics of the actions, we sum up all contributions from the
symbols 0̄and 1̄. For the usual Baker map, we sum up all
contribution apart from the symbols. Semiclassically the
spectral form factor can be written as

K (sc)~T;N![
1

N
uTr(sc)~BN

T !u2

5
1

N$2 sinh~lT/2!%2

3@gT2T1~other contribution!#, ~31!

where the first term 2T in the bracket is the number of peri-
odic orbits with periodT and g is the degeneracy of the
periodic orbits. (g52 for a symmetry reduced Baker map,
g54 for the not symmetry reduced one!. The H–OdA sum
rule is satisfied.9 Considering the multiplicity of periodic or-
bits due to the time-reversal symmetry, the diagonal part
explains the slope ofK(T;N) in a short time limit, namely
the linearity inT.8 On the other hand, in the long time limit,
however, the saturation ofK(T;N) needs the off-diagonal
part which expresses the correlation of actions. Unfortu-
nately, the semiclassical spectral form factor exponentially
diverges.23,14So the semiclassical sum rule also breaks down
for the semiclassical two-point level correlation function
R2(s). Although the semiclassical spectral form factor di-
verges, it is worthwhile examining the explicit enumeration
of the off-diagonal part. In addition, as pointed out in Ref.
23, the divergence of the semiclassical spectral form factor is
controlled by the imaginary part of the semiclassical
eigenenergies. The semiclassical trace Tr(sc)(BN

T) diverges as
;elT/2, wherehtop2 l/2(5l/2 in the present case! is the
topological barrier andl is the maximum Lyapunov expo-
nent (5 ln 2 for the dyadic Baker map!. Conversely, in order
to obtain the semiclassical sum rule for the semiclassical
two-point correlation or the saturation of the semiclassical
form factor inT→`, we need the energy smoothing with the
size ofl/2 at least. So if we have an explicit expression of

FIG. 2. Spectral form factor of a quantized Baker map~arithmetical case!:
N5 1/2p\ 521051024. We used half of the whole eigenvalues, which
corresponds to the even parity. The horizontal axis is in scaleT/N. tH

5T/N51 is the Heisenberg time.~a! The spectral form factor forN
51024. ~b! The smoothed spectral form factor which is obtained by
smoothing~a! in a certain small interval. The solid line is the Baker map.
The dashed and dotted lines are the COE and CUE statistics, respectively.
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K (sc)(T;N), equivalently the trace Tr(sc)(BN
T), there is a pos-

sibility to control the imaginary part of eigenenergies, i.e.,
exponential rate of divergence, by hand. The action correla-
tion can be expressed by the following quantityP(y;n),10,14

P~y;T!5 (
N52`

`

uTr(sc)~BN
T !u2e2p iyN, ~32!

whereN5 1/2p\. From this expression, it is clear that the
\-~or N-!dependence ofK (sc)(T;N) is important. The RMT
prediction for the action correlation10,14 is as follows: for the
GUE,

PGUE~s!5
1

T2
PS s

TD5
P̄~T!

T2
2S sin~ps!

ps D 2

1Td~s!,

~33!

and for the GOE,

PGOE~s!5
1

T2
PS s

TD
5

P̄~T!

T2
22S sin~ps!

ps D 2

1
2

ps
$cos~2ps!„si~2ps!cos~2ps!

2Ci~2ps!sin~2ps!…1Ci~4ps!sin~4ps!

2si~4ps!s~4ps!%12d~s!, ~34!

where we used the scalingy5s/T andP̄(y) corresponds the
mean part of the weighted periodic orbit action pair
density.14

Recently in Ref. 14, using the weighted Perron–
Frobenius operator~WPF operator! UN for the Baker map
introduced in Ref. 15, the action correlation has been inves-
tigated. The definition ofUN is

UN~q,q8;N!5A2d~q2~2q82@2q8# !!e2p iNS(q8), ~35!

where

S~q8!5q8@2q8#2 1
2 ~@2q8#1q8!. ~36!

The most striking thing is that the semiclassical trace of the
Baker map can be replaced by the trace of the WPF operator
UN and the evaluation of the semiclassical trace is now the
evaluation of eigenvalues ofUN .24 Thanks to this nice prop-
erty, he could enumerate the semiclassical trace up to period
500. The semiclassical trace is given by

Tr(sc)~BT!5 (
SnPFix(T)

e2pNSn i

2 sinh~lT/2!
5Tr~UN

T !5(
i 50

`

L i
T~N!,

~37!

where$L i(N)% i 50
1` is the set of eigenvalues ofUN . He has

also shown that~1! the symmetry reduction~i.e., geometrical
symmetry! is important;~2! to see the action correlation, the
sum should be truncated; and~3! the unitarity enforced by
using the bootstrap method7 is important for the action cor-
relation. The symmetry reduced semiclassical trace is given
as

Tr~B6,N
T !5

1

2 F 1

2 sinh~lT/2! (
SnPFix(T)

e2p iNSn

7
1

2 cosh~lT/2! (
SnPFix8(T)

e2p iNSn8G , ~38!

whereSn8 corresponds to half action of an orbit with length
2T whose symbol sequence is given as (a0 ,•••,aT21,1
2a0 ,•••,12aT21) and Fix8(T) is the set of the actionsSn8
of the fixed points with period 2T. 1 ~and2) corresponds
to even~and odd! parity, respectively. In the next subsection,
we will show the action distribution before symmetry reduc-
tion and after symmetry reduction.

What is the most important for us is that the numerical
observation of the leading eigenvalue~i.e., maximum modu-
lus! of UN for each irreducible symmetry.14 Assigning two
irreducible representations by1 and 2, the leading eigen-
values ofUN ~i.e., the eigenvalue with the maximum abso-
lute value! is greater than 1 and behave like

loguL0
(6)~N!u.

C

AN
, ~39!

whereC'0.29.15 The asymptotic behavior of the semiclas-
sical trace and the spectral form factor. This fact will be used
for a mathematical discussion in the next section.

We can also consider another quasiclassical operator like
UN , i.e., the Gutzwiller’s operator17 in Appendix B. How-
ever, this method fails in the semiclassical limit. See Appen-
dix B in details.

A. Numerical observation of action distribution

In this subsection, we show the numerical results for the
action distribution of the periodic orbits for Baker maps.
First, we depict the actual action distribution for the expres-
sion S̄n without symmetry reduction in Fig. 3@bare distribu-
tion (Sn)] and Fig. 4 (S̄n mod 1! for the prime periodic
orbits. At first sight, the distribution has an oscillation of
period;1. It looks like the binomial distribution. Remember
the assumption on the action distribution of the periodic or-
bits for their semiclassical analysis in Ref. 7. They assumed

FIG. 3. Action distribution (S̄n5(xi@2xi #) for the prime periodic orbits
with period 20 without symmetry reduction: The distribution is approxi-
mately Gaussian. The distribution has a periodic oscillation. Each peak is
assigned by the numberM n .
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that ~1! the bare action of periodic orbits obeys Gaussian and
~2! the actions modulo\ of periodic orbits are uniformly
distributed. From Figs. 3 and 4, the assumption seems to be
invalid for Baker maps without symmetry reduction. In ad-
dition, at present, we do not know whether these peaks have
the remarkable hierarchical structure as the case of the time-
domain approach in Ref. 25.

Next we examine the degeneracy of the action of peri-
odic orbits without symmetry reduction, which is extremely
important for the behavior of the spectrum of the correspond-
ing quantum system. We remember the symmetry relation of
the actionSn. ~a! Time reversal operation:SsTn5Sn; ~b!

posi-nega reverse operation:SsRn5Sn1T22M ; ~c! shift by

one-step:Ssn5Sn, In Figs. 5 and 6, we represent the distri-
bution of the multiplicity of actions. Each spike corresponds
to the value of actions. Its height represents the multiplicity.
Figure 5 is bare distribution for period 20. Higher degenera-
cies thang54 are observed. In Fig. 6, we depict the distri-
bution of the multiplicity of actions modulo 1. After the
modulo operation, multiplicity becomes much higher. It is
numerically confirmed that the higher period has higher de-
generacy. We summarize that the Baker map without sym-
metry reduction has the tendency of high degeneracy of ac-
tions.

The distribution of the pair-difference of the actions

@S̄n2S̄n8(nÞn8)# is depicted in Fig. 7~a! ~bare distribution!
and Fig. 7~b! ~in modulo 1). For generic systems, the distri-
bution of the pair-difference of the actions can be expected to
be approximately Gaussian, since the action distribution is
approximately Gaussian as assumed in Ref. 7. In Fig. 7~a!,
we depict the bare distribution of the pair-difference of the
actions for period 17. Only the positive axis is shown. There
exist some peaks in the distribution. The envelope function
of the distribution seems to be Gaussian. Figure 7~b! shows

FIG. 4. Action distribution (S̄n modulo 1! without symmetry reduction: for
the prime periodic orbits with period 20. A remarkable feature is that the
distribution has an oscillation in the unit interval.

FIG. 5. Multiplicity distribution of the actions for prime periodic orbits with
period 20 without symmetry reduction: The vertical axis represents the mul-
tiplicity. Higher degeneracies thang54 are observed.

FIG. 6. Multiplicity distribution of actions modulo 1 for the prime periodic
orbits with period 20 without symmetry reduction: The vertical axis repre-
sents the multiplicity of actions. For a higher period, we observe high mul-
tiplicity.

FIG. 7. Distribution ofSn2Sn8(nÞn8) for prime periodic orbits~period
17) without symmetry reduction:~a! Bare distribution. We only showSn

2Sn8.0. The distribution has the periodic peaks as well as in the action
distribution. ~b! Distribution modulo 1. The distribution has the periodic
oscillation as well as in the action distribution with modulo operation.
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the distribution after the modulo 1 operation is depicted. Re-
flecting the tendency of the degeneracy of actions, the distri-
bution is not uniform distribution. In summary, the dyadic
Baker map has the tendency of high degeneracy of actions
without symmetry reduction.

Finally, we depict the action distribution modulo 1 after
symmetry reduction~odd parity! in Fig. 8 ~period 22). Com-
pared with Fig. 4, it seems that the distribution tends to the
uniform distribution as increasing periodT, although it still
has modulation. In the next section, this point will be math-
ematically confirmed.

IV. DISTRIBUTION OF ACTIONS: MATHEMATICAL
DISCUSSION

The expression of semiclassical trace for the dyadic
Baker map is very similar to the sum which appears in
Weyl’s uniform distribution theorem. This manifests that for
a dyadic Baker map, whether the distribution of actions is
uniform or not is closely related to the value of its semiclas-
sical trace. First, we introduce the definition of uniform dis-
tribution.

Definition: If the following condition is satisfied for a
given infinite sequence of real number$an%, we say that it
has uniform distribution modulo1: for a given interval E
5@a,b#,I 5@0,1#,

lim
M→`

A~E,M !

M
5b2a, ~40!

where

A~E,M !5#$an :$an%PE for n51,2,... ,M %, ~41!

and $an% is the fractional part of an .
The uniform distribution is characterized by the follow-

ing theorem.
Theorem: The necessary and sufficient condition for the

uniform distribution modulo 1 is the following: for an arbi-
trary Riemann integrable real function f(x),

lim
M→`

1

M (
n51

M

f ~$an%!5E
0

1

f ~x!dx. ~42!

Fortunately, one can set the functionf (x) to exp(2pimx)
(m: integer!.

Weyl’s uniform distribution theorem:26 Consider a se-
quence of real number$an%n51

` . The necessary and sufficient
condition that the fractional part$an% of an is distributed
uniformly in the interval@0,1# is

lim
M→`

1

M (
n51

M

exp@2pmian#50, ~43!

for an arbitrary natural number m.
The sum in Eq.~43! is very similar to the semiclassical

expression of the trace for quantized chaotic linear maps. We
have to extend the above Weyl’s uniform distribution theo-
rem to an appropriate form, i.e., the case of a sequence of
sets of real numbers. We define the uniform distribution
modulo 1 for this case.

Definition: For a given sequence of sets of real numbers,
say,$S%n51

` such thatuSnu,uSn11u and uSnu→`, if the fol-
lowing condition is satisfied, we say that the elements of the
setSn has uniform distribution modulo 1 asymptotically: for
an arbitrary interval E5@a,b#,I 5@0,1#,

lim
n→`

A~E,uSnu,Sn!

uSnu
5b2a, ~44!

and

A~E,uSnu,Sn!5#$x:xPE, xPSn%. ~45!

Weyl’s uniform distribution theorem is extended to the
case of a sequence of sets of real numbers in the following
way.

Proposition 1: Consider a sequence of the set of real
numbers $Sn%n51

` such that uSnu,uSn11u and uSnu→`,
whereuSnu is the number of elements ofSn . The necessary
and sufficient condition that the real numbers xPSn is uni-
formly distributed asymptotically in the interval@0,1# as n
→`:

lim
n→`

1

uSnu (
xPSn

exp@2pmix#50, ~46!

for an arbitrary natural number m.
Proof: The proof is the same line for that of Weyl’s

uniform distribution theorem.
The condition in Weyl’s uniform distribution theorem

can be interpreted as

lim
n→`

1

uTnu (
xPTn

exp@2p imx#50,

for any natural numberm. ~47!

Here we definedTn5ø i 51
n Si and uTnu is the number of ele-

ments ofTn . The order of the summation over action can be
arranged by the symbolic dynamics. For instance, the in-
creasing order of the value of the corresponding digit of
given binary sequences is taken. IfuTnu.uSnu and uSnu/uTnu
→const asn→`, we can easily show that Eq.~47! implies

lim
n→`

1

uSnu (
xPSn

exp@2p imx#50,

for any natural numberm. ~48!

FIG. 8. Action distribution (Sn modulo 1) for the Baker map with symme-
try reduction~odd parity! with period 22: The distribution is close to uni-
form distribution.
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Proof: We set An5(xPTn
exp@2pmix# and Bn

5(xPSn
exp@2pmix#. By the triangular inequality, we have

uBnu2uAn21u
uTnu

<
uAnu
uTnu

. ~49!

Thus

uSnu
uTnu

uBnu
uSnu

<
uAnu1uAn21u

uTnu
,

uAnu
uTnu

1
uAn21u
uTn21u

. ~50!

The right hand side of Eq.~47! goes to zero. Furthermore,

uSnu/uTnu tends to a constant value. Therefore,uBnu/uSnu tends
to zero.

Let us consider the case of actions of UPOs for the dy-
adic Baker maps. First, we defineQT[ø i 51

T Fix( i ). We
identify the setTT ~or ST) with QT @or Fix(T)]. We have
uFix(T)u/uQTu→const, since the proliferation of periodic or-
bits is asymptotically determined by the topological entropy.
Obviously, uQnu.uFix(n)u. Therefore, we have the follow-
ing.

Proposition 2: If the actions oføT51
` Fix(T) have uni-

form distribution modulo 1, then actions of Fix(T) has uni-
form distribution modulo 1 asymptotically.

We have for odd parity,

1

2uFix~T!u U (
SnPFix(T)

exp@2pmiSn#1 (
SnPFix8(T)

exp@2pmiSn8#U
5

1

2uFix~T!u U2 sinh~lT/2!
1

2 sinh~lT/2! (
SnPFix(T)

exp@2pmiSn#12 cosh~lT/2!
1

2 cosh~lT/2! (
SnPFix8(T)

exp@2pmiSn8#U
.

1

2

1

2T
2 sinh~lT/2!uTr~U2,m

T !u5
1

2

1

2T
2 sinh~lT/2!U(

i 50

`

L i
T~N!U. 1

2

1

2T/2U(i 50

`

L i
T~N!U. 1

2UexpF S 2
l

2
1

C

Am
D TGU

→0 asT→`, ~51!

wherel5 ln 250.693 14 . . . andC'0.29. We used the fact
that uFix(T)u52T. By the numerical observation of Ref. 14,
this sum converges to 0 asT→`. Thus for a dyadic Baker
map with symmetry reduction, the actions of the periodic
orbits are asymptotically uniform modulo 1 asT→`. This
fact is consistent with the assumption of Ref. 7. For even
parity, we have to change the sign which can be included in
the actionsSn8 . After same calculation, we might conclude
asymptotically uniformity modulo 1 asT→`. However, we
think that mathematical rigor is still needed, since the evalu-
ation is crude. To get the uniform distribution modulo 1, the
whole of actions should be dense in the unit interval. Now
the actions takes rational values. For the dyadic Baker map
without symmetry reduction, the behavior of the leading ei-
genvalues ofUN

(6) for even and odd space is important. As
mentioned in Ref. 14, the leading eigenvalues ofUN

(6) for
even and odd space have values of different order. Therefore,
we should still carefully discuss about uniform distribution
modulo 1 for the case without symmetry reduction.

The extension for ap-adic Baker map is done in Appen-
dix C. The actions of UPOs for ap-adic Baker map is also
rational. If accidental degeneracy often occurs~this probably
depends on the value ofp!, by the result of Appendix C, at
the present, we cannot say whether the actions of UPOs for
the p-adic Baker map obey uniform distribution or not, al-
though the numerical observation suggests the uniform dis-
tribution modulo 1.

In the next section, we consider the sawtooth map,
whose actions can take irrational values for some values of
the perturbation parameterK.

V. SAWTOOTH MAP

In this section, we consider the sawtooth map. First, we
quickly review the classical dynamics of the sawtooth map
and show that the expression of the action for periodic orbits
has a similar form to that for the Baker maps, namely the
one-dimensional Potts spin systems.

Let us start considering the classical dynamics of the
sawtooth maps.27–29 The sawtooth map is defined on a
2-torus. The Hamiltonian is given by

H5
y2

2
2K

x2

2 (
n52`

`

d~ t2n!, ~52!

whereD5@2 1
2,

1
2) and x,yPD. The dynamics is described

by the following equation of motion:

xn115xn1yn11 , mod 1 in D,
~53!

yn115yn1Kxn , mod 1 in D.

Without modulo operation, we have to introduce the winding
numberwx ~or wy) PZ along thex- ~or y-! direction, respec-
tively. The mapping now becomes

xn115xn1yn112wx
(n) ,

~54!
yn115yn1Kxn2wy

(n) .

Due to the linearity of the sawtooth map, the tangent map for
one-step is simply given as

M5FK11 1

K 1G . ~55!
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We define the following quantities for later use:

D5K~K14!, g5
K121AD

2
, ~56!

whereg is the largest eigenvalue ofM. The dynamics of the
sawtooth map is characterized by the following way:~1!
24,K,0: The mapping is elliptic.~2! K,24, 0,K:
The mapping is hyperbolic. The dynamics is totally chaotic.
~2-a! K: Integer(K,24,K.0); the sawtooth map becomes
Arnold’s cat map~Anosov diffeomorphism!. It is ergodic.
~2-b! K: Noninteger; the mapping is discontinuous. This
breaks some nice properties which are observed in Arnold’s
cat maps. However, the system is still ergodic. Even the
decay of correlation is exponential. By periodicity,xn andyn

should be confined in the interval@2 1
2,

1
2#. This enforces the

winding number to be bounded byK @see Eq.~54!#. The
winding number gives us a natural symbolic description of
the trajectory.27 We define the symbol setA as A
5$2amax(K),2amax(K)11,...,21,0,1,...,amax(K)%, where

amax~K !5F21
K

2 G , ~57!

and@•••# represents the integer part of the argument. For the
periodic symbolic sequences5s1s2•••sT21sT, the location
of periodic points is given by

xn5
g

~g221!~gT21!
(
r 51

T

gT2r~gsn1r 211sn2r !, ~58!

wheresiPA. Here we note that in this symbolic description,
the mapping from the symbolic sequence$sn% to the position
$xn% is one to, at most, one. This property affects the analysis
of the quantized maps. The winding numbers of a given pe-
riodic orbit along bothx- andy-directions can be represented
as the sum of the values of positions for the conjugate coor-
dinate, namely

wx5 (
n50

T21

wx
(n)5 (

n50

T21

yn , ~59!

wy5 (
n50

T21

wy
(n)5K (

n50

T21

xn . ~60!

The action for the periodic orbit with periodT is given as30

S5 (
i 50

T21 H 2S yi
2

2
2

Kxi
2

2 D 1yi 11~xi 112xi !

2wy
( i )xi1wx

( i 21)yi J . ~61!

Using Eq.~54! and considering the periodicity carefully, we
can show

S5
1

2 (
i 50

T21

~wx
( i 21)yi2wy

( i )xi !5
1

2 (
i 50

T21

xiÃwi , ~62!

where the symbolÃ is the exterior product and we define the
vectors

xi[S xi

yi
D and wi[S wx

( i 21)

wy
( i ) D . ~63!

So the action is the sum of area of triangle with sign. The
expression of periodic points can be rewritten into a different
form. Here we seta5 ln g. Then the periodic pointxn is
given by

xn5J~a,T! (
r 50

T21

coshS aS T

2
2r D D sn1r , ~64!

where

J~a,T!5
1

2 sinh~a!sinh~aT/2!
. ~65!

The conjugate coordinate for the periodic point becomes

yn5J~a,T! (
r 50

T21

coshS aS T

2
2r D D ~sn1r2sn1r 21!1wx

(n21) .

~66!

sn is expressed in terms ofwx
(n) andwy

(n) ,

sn5wy
(n)1~wx

(n)2wx
(n21)!. ~67!

We have an obvious relation,

(
i 50

T21

si5 (
i

T21

wy
( i ) . ~68!

Inserting Eq.~64! and Eq.~66! into Eq. ~62! and using Eq.
~68!, we finally obtain

S5
1

2
J~a,T!T(

i 50

T21

~wx
( i )!2

2
1

2
J~a,T! (

i 50

T21

(
j 50

T21

sisj coshS aS T

2
2u i 2 j u D D .

~69!

Equations~62! and ~69! are the main result of this section.
Compared with the expression, Eq.~12!, of the action for the
Baker maps, Eq.~69! of the sawtooth maps is the one-
dimensional multi-state spin model. Equation~62! expresses
the sum of the area of triangles determined by the vectors
xi ’s andwi ’s. We also note that the symbolic dynamics for
the sawtooth map is not complete, namely there is pruning.
These are main differences between the Baker and sawtooth
maps. Severe pruning prevents us from carrying out the same
procedure of the WPF or Appendix B, since the construction
of the integral kernel is impossible. Therefore, we only nu-
merically check the distribution of actions of UPOs.

Action Distribution for Sawtooth Map:We show the re-
sults of the numerical studies on action distribution for the
sawtooth maps. In order to avoid the number theoretical
anomaly, we set the parameterK to be a noninteger. We have
done the numerical check of the action distribution for sev-
eral values. Although we did not find the number theoretical
peculiarity for the case thatK is a rational value, here we
comment that the corresponding quantized map has some
anomalous behavior for some rational values ofK, such as
accidental degeneracy.
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First, we examine the bare action distribution. In Fig. 9,
the bare action distribution is depicted forK53.385 756 with
period from 4 to 9. A remarkable feature is that the distribu-
tion is approximately Gaussian with periodic oscillation
similar to that as observed for the dyadic (p-adic! Baker
maps. We also numerically check the action distribution in
modulo 1. It is shown in Fig. 10 and suggests that the frac-
tional parts of the action are uniformly distributed in the unit
interval. We also depicted the distribution of the pair-
difference of actions. First, we show the bare distribution of
the pair-difference of actions in Fig. 11 for the case of period
8. We only show the positive part of the whole distribution.
Its distribution is approximated by the Gaussian distribution
very well. Second, we show the distribution of the pair-
difference of actions in Fig. 12. It suggests that the distribu-
tion tends to the uniform distribution.

VI. CONCLUSIONS

We have investigated the statistics of actions of periodic
orbits for the (p-adic! Baker map and the sawtooth map. We
summarize the results below.

Dyadic Baker map:First, the expression of the action of
the Baker map is the Hamiltonian of a one-dimensional lat-
tice gas system. This is very similar to the case of the aniso-

tropic Kepler problem.17 Reducing geometrical symmetry,
we numerically showed that the actions modulo 1 are distrib-
uted asymptotically uniformly in the unit interval. Further-
more, replacing the semiclassical trace by some quasiclassi-
cal operator introduced by Ref. 15 with a mathematical tool,
we showed that the actions modulo 1 are asymptotically uni-
formly distributed in the unit interval asT→`. Therefore,
the assumption in Ref. 7 is valid for the dyadic Baker map.
However, mathematical rigor is not complete. Actions take
rational values. We do not know whether the set of actions is
dense in the unit interval or not which is the need for uni-
form distribution. Therefore, we worry about a possibility of
anomaly, like the spectral form factor for the caseN52L.

Sawtooth map:Similarly, we have shown that the action
of periodic orbits for sawtooth maps has the form of the
Hamiltonian of a one-dimensional Potts spin model with ex-
ponentially decreasing pair-interaction. Unfortunately, the
resummation method used for a dyadic Baker map cannot be
applied to the sawtooth map, because of severe pruning.
Therefore, we only checked the distribution of actions by
numerical calculation. We did not show for the case thatK is
an integer value. For this case, the action systematically
degenerates.31,32From the numerical observation, in the case

FIG. 9. Action distribution for the sawtooth map with period 9 (K
53.385756): For higher periods, we can clearly see a periodic oscillation on
Gaussian distribution.

FIG. 10. Action distribution modulo 1 for the sawtooth map with period 9
(K53.385756): Approximately, the actions in mod 1 are uniformly dis-
tributed in the unit interval.

FIG. 11. Distribution ofSp2Sp8 (pÞp8) for prime periodic orbits~saw-
tooth map!: We only plot the pairs of prime UPOs with period 8 (K
53.385756). The approximate distribution is Gaussian.

FIG. 12. Distribution ofSp2Sp8 mod 1 (pÞp8) for prime periodic orbits
~sawtooth map!: We only plot the pairs of prime UPOs with period 8 (K
53.385756). The approximate distribution is uniform distribution. But we
can clearly see the structure of the fluctuation on the uniform distribution.
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thatK is not integer, the distribution of actions seems to obey
the uniform distribution modulo 1. But the rigorous discus-
sion is still unknown.

Concerning the Riemann zeta function case, the viola-
tion of uniform distribution of actions may be a not so sur-
prising fact. The corresponding period now has the form of
ln p, where p is prime. The question here is whether the
periods satisfy the uniform distribution modulo 1. The inter-
esting result was already obtained:33 The sequence of
$ ln pi%i51

` where pi is the i-th prime, does not satisfy the
uniform distribution modulo 1. If we change the order of the
summation of lnpi , we do not know a possibility that a given
sequence satisfies the uniform distribution modulo 1.@It is
known that if a given sequence$ai% i 50

` is dense in the unit
interval, one can obtain a sequence which satisfies the uni-
form distribution modulo 1 by changing the order of the
summation~Ref. 34!.# Irrationality of the actions will be im-
portant for the uniform distribution modulo 1. The difference
of the statistics of actions between our model considered
here and other models such as dispersing billiards or constant
negative curvature space, should be investigated.

The expression of actions of the UPOs for a (p-adic!
Baker map and sawtooth map has a similar form of one-
dimensional spin systems. Also the anisotropic Kepler prob-
lem ~AKP! which was investigated by Gutzwiller17 has an
approximate expression of actions in terms of the symbolic
dynamics derived from a certain hypothesis on symmetry
and numerical observation. His hypothetical requirement to
the expression of actions is that the action is invariant under
the shift and the time-reversal operation. The expression of
action of the UPOs for the AKP is very similar to the case of
the dyadic Baker map. Here, we speculate that the expression
of actions of the UPOs of a given hyperbolic system, which
has a well-defined symbolic dynamics, has the form of the
Hamiltonian of the one-dimensional spin system. Since the
Baker map and sawtooth map are linear, therefore, the ex-
pression of actions is just quadratic in symbols. We expect
that in general, for nonuniformly hyperbolic systems, the ex-
pression of actions has higher-order terms wrt symbols.
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APPENDIX A: SEMICLASSICAL EXPRESSION OF
R2„S… „Refs. 6 and 7 …

MIT group6 derived the semiclassical expression of the
two-point level correlation functionR2(s). Later Bogomolny
and Keating7 refined the result of Ref. 6 and derived the
off-diagonal part by using the bootstrap density of states.
The result of Ref. 7 includes the contribution from the rep-
etition of periodic orbits. Here we show that their result for
time-broken symmetry classes satisfies the semiclassical sum
rule. First, we introduce the result of,7

R2~x!5R2
(diag)~x!1R2

(off)~x!, ~A1!

R2
(diag)~x!52

g

4p2

]2

]x2
ln D~x!, ~A2!

R2
(off)~x!5

cos~2px!

2p2g
D g~x!, ~A3!

where\51, d̄51. g51 and 2 correspond to time-broken
symmetry and the time-reversal symmetry classes, respec-
tively. D(x) is defined by the Perron–Frobenius operatorL
for the corresponding classical dynamics. The time-evolution
of the density in phase space is determined by

~L tr!~r !5E d~r2F t~r 8!!r~r 8!dr 8, ~A4!

wherer5(x,p) andF is the flow of the classical dynamics.
Its Fredholm determinantZ(z)[det(12ezL) has the zeros
as eigenvalues ofL. For two-dimensional systems,Z(z) be-
comes

Z~z!5
1

z~z!
5)

p
)
k50

` S 12
ezTp

uLpuLp
k D k11

5)
m

Cm~z2gm!,

~A5!

where Lp is the maximum eigenvalue of the monodromy
matrix M p and $gm% is the Pollicott–Ruelle resonances
($e2gm% is the eigenvalues ofL) and g050 is the equilib-
rium state. Remark that for mixing systems, formÞ0,
Rgm.0. D(x) is given by

D~x!5uNz~ ix !u25)
m

Am
2

x21gm
2

, ~A6!

whereN is the normalization factor andAm is the regular-
ization factor,

Am5H 1, m50,

gm , mÞ0.
~A7!

In Ref. 7, they derived the correction from the repetition of
periodic orbits for the above MIT result.

Next we check the validity of the semiclassical sum rule
for the above semiclassical expression ofR2(s). For time-
broken symmetry classes, we have

lim
e→0

2pe^~de~E!!2&

5 lim
e→0

2peR2
e~x50!

5 lim
e→0

2pe
1

2p2 H 1

4e2
1 (

mÞ0

gm
2 14e2

~gm
2 24e2!2

2
1

4e2
~124pd0e1••• ! )

mÞ0

1

12 4e2/gm
2 J

5 lim
e→0

e

p H pd0

e
1O~e0!J 5d05^d~E!&. ~A8!
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Therefore, the semiclassical sum rule is satisfied. This is
rather astonishing result, since it is believed that the semi-
classical theory does not explain the limit oft→` (s
→0). ~Remark that there is no need for the contribution
from the repetition of periodic orbits.! For time-reversal
symmetry classes, we get

lim
e→0

2pe^~de~E!!2&

5 lim
e→0

2peR2
e~x50!

5 lim
e→0

2peF2
1

p2 S 1

~2i e!2
1 (

mÞ0

gm
2 2~2i e!2

~~2i e!21gm
2 !2D

1
cosh~4pe!

2p4

1

~2i e!4 )mÞ0
S 1

11 ~2i e!2/gm
2 D 2G5`.

~A9!

It fails the semiclassical sum rule. In Ref. 13, the time-
reversal symmetry breaking ofR2(s) was considered. But in
no AB-flux limit ~time-reversal limit!, it still has a problem.

APPENDIX B: GUTZWILLER’S RESUMMATION
METHOD

In order to evaluate the semiclassical trace Tr(sc)(BT),
we employ the Gutzwiller’s resummation method17 to quan-
tized dyadic Baker’s maps, which was used for the AKP. His
method is essentially the use of Kac’s method35,36 to the
one-dimensional Ising spin problem with the interaction of
exponentially decreasing function. The action for the dyadic
Baker’s map has been already given in Eq.~17!. We rewrite
this into the following form:

S̄n5
1

4
M n1

1

4 sinh~lT/2! (
i , j

aiaj coshS lS T

2
2u i 2 j u D D .

~B1!

Since the phase factors in the trace appear as exp(2pNSni),
we can drop1

4M n for sufficiently largeN with N52L. Then
we have

S̄n5
1

2
xn

T
•A"xn , ~B2!

where

xn5~a0 ,a1 , . . . ,aT21!T, ~B3!

and the matrix elementsA i j is given as

A i j 5
1

2 sinh~lT/2!
coshS lS T

2
2u i 2 j u D D . ~B4!

Here we denoteB5A21 the inverse ofA. One can show that

B5S a b 0 ••• 0 b

b a b 0

0 b a � A

A � � � 0

0 � a b

b 0 ••• 0 b a

D , ~B5!

where

a52 coth~l! and b52
1

sinh~l!
. ~B6!

The determinants det(A) and det(B) are given as

det~A!5
e2lT

2

sinh~lT!

@sinh~lT/2!#2
and det~B!5det~A!21.

~B7!

Here we rewrite the actionS̄n in terms of the variabless i

P$21, 1%, instead of the variablesai ,

xn5 1
2 ~11s! and s5~s0,...,sT21!T and 15~1,...,1!T.

~B8!

Then we have

S̄n5 1
8 1T

•A"11 1
4sT

•A"11 1
8sT

•A"s. ~B9!

We can easily check that

(
j 51

T

Ai j 5
3

2
and (

j 51

T

Ai j 5(
j 51

T

Ai 8 j for iÞ i 8. ~B10!

Thus we can omit the first two terms in Eq.~B9! for suffi-
ciently largeN52L. After all, we arrive at

i

\
S̄n5

1

2
sT

•A•s, ~B11!

where A5 (s/4) A and s5 i /\. Therefore, forN52L(L;
sufficiently large!, we have

Tr(sc)~BT!5
1

2 sinh~lT/2! (
n

expF1

2
sT

•A•sG . ~B12!

Now we apply the following Hubbard–Stratonovich trans-
form to Eq.~B12!,

expF1

2
sT

•A•sG
5~2p!2T/2

„det~C!…1/2E
2`

`

dz1•••E
2`

`

dzT

3expF2
1

2
zT
•C•zGexp@sT

•z#, ~B13!

where A and C are real positive definite symmetricT3T
matrices andA 215C. Here we suppose thats is a real posi-
tive number. After the transformation, we analytically con-
tinue the result in the complex domain as done in Ref. 17.
Employing the Hubbard–Stratonovich transform, we have
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Tr(sc)~BT!5F~T,N!E
2`

`

dz1•••E
2`

`

dzT

3expF2
1

2
zT
•C•z1(

i 51

T

ln„cosh~zi !…G ,

~B14!

where

F~T,N!5
2T

2 sinh~lT/2!
~2p!2T/2

„det~C!…1/2. ~B15!

The argument of the exponential function in the integrand of
Eq. ~B14! is rewritten as

(
i 51

T H 2
2

s F tanhS l

2D ~zi
21zi 11

2 !1cosech~l!~zi2zi 11!2G
1 ln cosh~zi !J . ~B16!

We scalezi5Rj i , whereR5As/8. Then we have

Tr(sc)~BT!5G~T!Tr~K T!, ~B17!

where

G~T!5F „2 sinh~l!…T

2 sinh~lT! G1/2

elT ~B18!

and

K~j,h!5Acosh~Rj!
exp@2 ~1/4! $tanh~l/2!~j21h2!1cosech~l!~j2h!2%#

A2p2 sinh~l!
Acosh~Rh!, ~B19!

and

Tr~K T!5E
2`

`

dj1•••E
2`

`

djT)
i 51

T

K~j i ,j i 11!. ~B20!

Here we impose the periodic boundary conditionjT11

5j1 . The expression obtained has the same form as that for
the anisotropic Kepler problem except some coefficients. Re-
mark that the factorG(T) asymptotically behaves as

G~T!;elT, as T→`. ~B21!

The eigenvalue problem of the kernelK(j,h) is

E
2`

`

K~x,y!c~y! dy5mc~x!. ~B22!

We denote$m i% i 51
` the set of eigenvalues of the kernel

K(j,h) and assume that$m i% i 50
` are ordered as

um0u.um1u>um2u>•••.0. ~B23!

Then we have

Tr(sc)~BT!5G~T!(
i 50

`

m i
T . ~B24!

Therefore, our next task is to evaluate the leading eigenvalue
m0 of the kernelK(j,h). However, unfortunately, the ob-
tained kernel diverges in the semiclassical limit\→0. See
Eq. ~B19!. Thus, we cannot use for the analysis unlike the
quasiclassical operatorUN .15,14

APPENDIX C: EXTENSION TO p-ADIC BAKER MAP

In this section, we consider the case ofp-adic Baker
maps and examine the behavior of the action distribution
compared with the case of dyadic Baker maps. The extension
to thep-adic Baker map is straightforward. The mapping is
now given as

x85px2@px#, y85
y1@px#

p
, ~C1!

wherep>2PN. In a similar way to the dyadic Baker map,
we have the action for the periodic orbit with periodT,

Sn
(p)5

nn̄

pT21
, ~C2!

where

n5 (
i 50

T21

aip
T2 i 21, n̄5 (

i 50

T21

aip
i , ~C3!

andai ,biP$0,1,...,p21%. Since we take the modulo opera-
tion, for simplicity, we can remove some integer fromSn

(p) ,
and thus define

FIG. 13. Action distribution of the expressionSn5(xiai for the p-adic
Baker map (p55!: for the prime periodic orbits with period 9. Clearly, the
approximate distribution is Gaussian. The distribution has a periodic oscil-
lation.

208 Chaos, Vol. 10, No. 1, 2000 Mitsusada M. Sano

Downloaded 01 Jul 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



Sn
(p)5 (

i 50

T21

xiai

5
elp[ ~T/2! 21]

2 sinh~lpT/2! H (
i 50

T21

ai
21e2lpT/2(

iÞ j
aiaj

3coshFlpS T

2
2u i 2 j u D G J , ~C4!

wherelp5 ln p. The expression of the actionSn
(p) is now the

Hamiltonian of the one-dimensional multi-state lattice gas.
In Fig. 13, the action distribution for the expression, Eq.

~C4! is depicted for the casep55 with period from 6 to 9.
Compared with the dyadic case, the distribution of thep-adic
case with a larger value ofp(p>3) tends to the Gaussian
distribution more smoothly, since the gap between peaks is
narrower for largep. Then we speculate that the dyadic case
is very anomalous. Remember that the number 2 is a special
integer in number theory. We also numerically check the
action distribution in modulo 1 for the expression, Eq.~C4!
~Fig. 14!. It seems that the limiting distribution is the uni-
form distribution. The pair-difference of the actions is also
numerically checked. It seems that the bare distribution of
the pair-difference of the actions tends to the Gaussian dis-
tribution @Fig. 15~a!# and that in modulo 1 tends to the uni-
form distribution @Fig. 15~b!#. At present, we do not find
number theoretical peculiarities forp>3.

The quantizedp-adic Baker map and its semiclassical
analysis are also similarly constructed,

Bp5GN
21S GN/p 0 ••• ••• 0

0 GN/p � ••• 0

A � � � A

0 ••• � GN/p 0

0 ••• ••• 0 GN/p

D , ~C5!

whereNPpN. The semiclassical trace ofBp is given as

Tr(sc)~Bp
T!5

1

2 sinh~lpT/2! (
n

exp@2pNiSn
(p)#, ~C6!

wherelp5 ln p. In a similar way to the dyadic Baker map,
after a cumbersome calculation due to the Hubbard–
Stratonovich transform, we have the semiclassical trace~for
16puN),

Tr(sc)~Bp
T!5Gp~T!Tr~K p

T!, ~C7!

where

Gp~T!5F „2 sinh~lp!…T

2 sinh~lpT! G1/2

elpT ~C8!

and

FIG. 14. Action distribution in modulo 1 for thep-adic Baker map (p55!:
for the prime periodic orbits with period 9. Clearly, the limiting distribution
is uniform distribution.

FIG. 15. Distribution of the pair-difference of actions@Sn
(p)2Sn8

(p)(nÞn8)#
of prime periodic orbits for ap-adic Baker map (p55, periodT56): ~a!
The bare distribution of the pair-difference of actions. We only show the
positive part of the whole distribution. The envelope function seems to be
the Gaussian distribution.~b! The distribution in modulo 1. The approximate
distribution is uniform distribution.
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Kp~j,h!5Ah~Rpj;p!
exp@2 ~1/4! $tanh~lp/2!~j21h2!1cosech~lp!~j2h!2%#

A2p2 sinh~lp!
Ah~Rph;p!, ~C9!

and

h~z;p!55 (
r 50

l 21

cosh„~2l 22r 21!z…, p52l : even,

(
r 50

l 21

cosh„2~ l 2r !z…1 ~1/2!, p52l 11: odd,

~C10!

and Rp5As/8. In view of the field theory, the potential
which comes from the sum over all spin configurations is not
ln cosh(Rpj). This and the value oflp are the main differ-
ences between the dyadic Baker map andp-adic Baker map.
This kernelKp(j,h) also diverges in the semiclassical limit
\→0. Thus, we cannot employ the analysis unlike the case
of the quasiclassical operator introduced by Ref. 15.
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2P. Cvitanovićand B. Eckhardt, J. Phys. A24, L237 ~1991!.
3W. Parry and M. Pollicott, Ann. Math.118, 573 ~1983!.
4T. Harayama and A. Shudo, J. Phys. A25, 4595~1992!.
5P. Dahlqvist, J. Phys. A28, 4733~1995!.
6O. Agam, B. Altshuler, and A. V. Andreev, Phys. Rev. Lett.75, 4389
~1995!.

7E. B. Bogomolny and J. P. Keating, Phys. Rev. Lett.77, 1472~1996!.
8M. V. Berry, Proc. R. Soc. London, Ser. A400, 229 ~1985!.
9J. H. Hannay and A. M. Ozorio de Almeida, J. Phys. A17, 3429~1984!.

10N. Argaman, E. Doron, J. Keating, A. Kitaev, M. Sieber, and U. Smilan-
sky, Phys. Rev. Lett.71, 4326~1993!.

11J. P. Keating, ‘‘The semiclassical sum rule and Riemann’s zeta function,’’
in Quantum Chaos,edited by H. A. Carderia, R. Ramaswamy, M. C.
Gutzwiller, and G. Casati~World Scientific, Singapore, 1992!, p. 28.

12J. P. Keating, ‘‘The Riemann zeta function and quantum chaology,’’ in

Quantum Chaos,edited by G. Casati, I. Guarneri, and U. Smilansky
~North-Holland, Amsterdam, 1993!, p. 145.

13M. M. Sano, J. Phys. Soc. Jpn.67, 2678~1998!.
14G. Tanner, J. Phys. A32, 5071~1999!.
15F-M. Dittes, E. Doron, and U. Smilansky, Phys. Rev. E49, R963~1994!.
16A. M. Ozorio de Almeida and M. Saraceno, Ann. Phys.~New York! 210,

1 ~1991!.
17M. C. Gutzwiller, Physica D5, 183 ~1982!.
18N. L. Balazs and A. Voros, Europhys. Lett.4, 1089 ~1987!; Ann. Phys.

~New York! 190, 1 ~1989!
19M. Saraceno, Ann. Phys.~New York! 199, 37 ~1990!.
20E. B. Bogomolny, B. Gerogeot, M.-J. Giannoni, and C. Schmidt, Phys.

Rep.291, 219 ~1997!.
21M. Saraceno and A. Voros, Physica D79, 206 ~1994!.
22A. Lakshminarayan, Ann. Phys.~New York! 239, 272 ~1995!.
23J. P. Keating, J. Phys. A27, 6605~1994!.
24First, we tried to estimate the semiclassical trace by the resummation

method of Gutzwiller. However, in the semiclassical limit, Gutzwiller’s
method fails. Then we changed the plan. See Appendix B in details.

25A. Shudo and K. Ikeda, Prog. Theor. Phys. Suppl.116, 283 ~1994!.
26H. Weyl, Math. Ann.77, 313 ~1916!.
27I. Pecival and F. Vivaldi, Physica D27, 373 ~1987!; N. Bird and F.

Vivaldi, ibid. 30, 164 ~1988!.
28S. Vaienti, J. Stat. Phys.67, 251 ~1992!.
29N. I. Chernov, J. Stat. Phys.69, 111 ~1992!.
30M. M. Sano, J. Phys. A29, 6087~1996!.
31J. H. Hannay and M. V. Berry, Physica D1, 267 ~1980!.
32J. P. Keating, Nonlinearity4, 277 ~1991!; 4, 309 ~1991!.
33A. Wintner, Q. J. Math.6, 65 ~1935!.
34L. Kuipers and H. Niederreiter,Uniform Distribution of Sequences

~Wiley, New York, 1974!.
35M. Kac, Phys. Fluids2, 8 ~1959!.
36M. Kac, in Statistical Physics: Phase Transitions and Superfluidity, Bran-

deis University Summer Institute in Theoretical Physics, 1966~Gordon
and Breach, New York, 1968!, Vol. 1, pp. 241–305.

37For numerical calculation,REISPACKandGRAPHYSwere used.REISPACKand
GRAPHYS were written by Dr. S. Adachi.

210 Chaos, Vol. 10, No. 1, 2000 Mitsusada M. Sano

Downloaded 01 Jul 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp


