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The Pollicott-Ruelle resonances for the sawtooth map are investigated. We turn our attention to the para-
metric dependence of them with respect to the bifurcation paranketétr is numerically shown that the
resonances move in an erratic way if the bifurcation parant€tisrsupposed to be time. At certain rational
values ofK, it is observed that some resonances shrink=td®. In particular, at positive integer values kf
which correspond to the Arnold cat map, all resonances excefit (i.e., the equilibrium stajeshrink toz
=0. This peculiar behavior is rigorously proved in the Appendix. In addition, the diffusion coefficient of this
map is numerically calculated in a very accurate way by evaluating the leading resonance.
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[. INTRODUCTION nance gives a nice approximation of the diffusion coefficient
for the kicked rotor.

Recent investigation in nonlinear science has revealed an The Pollicott-Ruelle resonances are essential not only in
essential role of chaotic motion in nonequilibrium statisticalclassical dynamics but also in quantum dynamics. In semi-
mechanicg1,2]. A major development is the discovery of a classical study of quantum chaotic systems, the Pollicott-
link between dynamical quantitief.yapunov exponents, Ruelle resonances play an important role for the semiclassi-
Kolmogorov-Sinai entropy, etc.and transport coefficients cal derivation of a two-point energy level correlafd®,13.
(diffusion coefficient, thermal conductivity, elc.and the Furthermore, it has been numerically shown that the eigen-
characterization of the steady stéflectuation theorem The ~ Values of the quantum von Neumann-—Liouville operator for
development has been made for both Hamiltonian dynamicdhe quantum baker map approach to the Pollicott-Ruelle
systems and non-Hamiltonian dynamical systéhes, Nose ~ resonances for the classical baker map in the semiclassical
Hoover thermostat and Gaussian thermostat systexotve  limit #—0 [14]. For this observation, general consideration
research is still going on for both types of systems. is given in[15].

For Hamiltonian dynamical systems, the time evolution of In this paper we give another example whose Pollicott-
the probability distribution in the phase space is governed bjrRuelle resonances are relatively easily calculated in a nu-
the Liouville equation. However, in order to investigate themerical sense. We treat the sawtooth map which is hyper-
statistical behavior of a given Hamiltonian dynamical sys-bolic in certain parameter regime and which includes some
tem, the Frobenius-Perron equation or the Frobenius-Perrdamily of the Arnold cat mapgl6]. The semiclassical behav-
operator is much more suitable than the Liouville equationior and the property of periodic orbits for the sawtooth map
The statistical nature of a given system is determined by th@re investigated by the authft7,18. In Sec. Il we shall
spectral property of the Frobenius-Perron operator. The maifPcus our attention on the parametric dependence of the
development has been given by mathematical results in thBollicott-Ruelle resonances for the sawtooth map with re-
1980's. It has been shown that for hyperbolic dynamical sysspect to the bifurcation parametirwhich will be defined
tems, the decay rate to the equilibrium state is well definedelow. We shall see the erratic behavior of the Pollicott-
and existd3,4]. Now the decay rateks,} to the equilibrium  Ruelle resonances with respectfo WhenK is a positive
state are called the Pollicott-Ruelle resonances, which corrénteger, we shall numerically observe that the Pollicott-
spond to the eigenvaludg,= e} of the Frobenius-Perron Ruelle resonances infinitely degenerate except the leading
operator. Furthermore, for the systems having the extende@ne. This observation is rigorously proved by using the pe-
space, the leading Pollicott-Ruelle resonances is related td#odic orbit theory in the Appendix. In Sec. Ill we shall nu-
the hydrodynamic mode. Its wave number dependence detgierically calculate the diffusion coefficient for the sawtooth
mines the transport coefficient for a given system, i.e., thénap. In Sec. IV, we summarize the results.
diffusion coefficient[5]. However, although theoretical de-
velopment has been made, an exact calculation of the Il. SAWTOOTH MAP
Pollicott-Ruelle resonances even for area-preserving maps is
unfortunately very limited, for instance, the baker njép

Recently, this mathematical well-established result ha
been numerically tested for various systems including a more
general situation, i.e., nonhyperbolic systems such as the
kicked rotor[7-9], the kicked togd 10], and the perturbed cat Yne1=Yn+ KX, mod 1,
map [11]. It has been numerically shown that even in the
nonhyperbolic regime, if the perturbation parameter is largavherex, ,y,e D,D=[ —3,3] [16]. K is the bifurcation pa-
enough, the concept of the Pollicott-Ruelle resonances perameter which is real valued. If we introduce winding num-
sists in nonhyperbolic systems and even the leading reswersw(" ,w{" € Z, the map of Eq(1) is rewritten as

The sawtooth map is a generalization of the Arnold cat
nap, which is defined by

Xn+1=XntYn+1 mod 1,

@
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Xn+1= (14 KX+ Y =W —w{V=u(x,,yy), tr(£") can be evaluated as the sum over the contributions of
(2)  the periodic pointg23]. This method is fully used in the
Voi1=Ynt+Kx,—wWP=0(x,,y,). Appendix for the system whek is positive integer.
Y The matrix representation for the Frobenius-Perron opera-
This representation is useful in the later use. tor L is achieved by using the Fourier basis set

. . K . 27i 0
First, we briefly summarize the behavior of the sawtooth{€” ™"} n=

map with respect to the bifurcation paramekerWhen K

<—4 andK>0, the map is hyperbolic. In this parameter 12 12 12 12 _

regime, it is mathematically proved that the decay of corre- £xi.mn= 71,2dx 71,2dY 71/2dx 71/2dy£(x,Y,x,y)

lation is exponential[19]. Other mathematical results are

found in[20]. If K is a positive integer, the map becomes the x @2 (kKXFIY =mx=ny) ©)

Arnold cat map. Many properties of the Arnold cat map are

shared wherK is positive integer. The most attractive prop- wherek,|,m,ne 7. The integral is explicitly performed and

erty of the sawtooth map is that if the map is defined in ayje|ds

cylinder or an extended phase space, chaotic diffusion is ob-

served[16,21,22. We shall investigate it in Sec. Ill. When

—4<K=0, the map is stable. The phase space is filled by

many elliptic islands. )
The time evolution of the probability distribution in the With

phase space is governed by the Frobenius-Perron equation. If

we denote the probability distribution in the phase space at 1 for K(k+I)+k—m=0,

—o00

Lyt mn=a(k,I,m,n)B(k,l,n), (10

the nth time step byp(x,y;n), then it defined by a(k,l,mn)y=1{ sin w{K(k+1)+k—m}] S (11)
1/2 1/2 W{K(k+|)+k—m}
p(X,Y;n+ 1)=f dxf dy L(X,Y;x,y)p(X,y;n),
-1/2 -1/2 and
)
where the integral kernef is called the Frobenius-Perron 1 for k+1-n=0,
operator Bkln)= 0 otherwise. 12

LXYxy) = dX=u(x,y))a(Y —v(X,y)), @ In Fig. 1 we depict the numerical result of direct diago-

nalization of the matrixly, n,. The matrix size is 121
X 121. The matrix is banded and very sparse and its ele-
ments take zero or finite value. Thus, the convergence of
eigenvalues is quite good. Figurdal is the result forK
12 =1.00 which corresponds to the Arnold cat map. Except the
dxf dy L(X,Y;x,y)p(x,y)=€%p(X,Y) (5) leading resonance=1, all resonances degeneratezat0.
-2 This would be related to the number theoretical anomaly of
i the Arnold cat map as reported[i24]. This behavior shall be
or symbolically investigated in detail in the Appendix. Figurdbl is the
. result for K=1.30. In this case, anomalous degeneracy
Lp=€p. 6) seems to be released. The Pollicott-Ruelle resonances are
) s » " ) distributed in the unit circle and are paired with the complex
We sometimes set=e°. The quantitiegs,},_o, which are  coniygate one. In order to examine the parametric depen-
related to the eigenvalug¢g,=e*}, are called the Pollicott- gence of the Pollicott-Ruelle resonances, we plot the abso-
Ruel_le resonances. Although in this se_ction_we directly diagite value of the Pollicott-Ruelle resonance verkuis Fig.
onalize the operatoC, another analysis exists. It uses the > |t js clearly noticed that some resonances are rapidly mov-

whereu(x,y) andv(x,y) are the right-hand sidghs) of Eq.
2.

Our aim is to solve an eigenvalue problem:

1/2

—1/2

following Fredholm determinant: ing if K is supposed to be time. The most drastic case is the
e case wherK is a positive integefthe Arnold cat map All
Z(s)=de(1l—e>L). (7)  resonances excegt=1 shrink toz=0. Besides this case,

] ) when K is certain rational, it is observed that some reso-
By the relation det(+ A) =exdtrIn(1-A)], the determinant nances are falling ta=0. Furthermore, the rapid moving

is rewritten to resonances are bounded by the circle with a well-defined
. radius. Unfortunately, we do not know the reason why some
Z(s)=exdtrin(1—z"-L)] resonances move so rapidly. For the case wWKés a posi-
© __n tive integer, we can explain the behavior of the resonances.
_ _ 2 z n In the Appendix we shall prove that the resonances for the
ex tr(L")|. (8) e .
n=1 N Arnold cat map infinitely degenerate, except the leading one.
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. . . . . FIG. 2. Parametric dependence of Pollicott-Ruelle resonances:
1t (b) When K=1,2,3, all resonances except1 shrink toz=0. For
N some rational values, some resonances shrink=t®. Rapidly
.. 05} A moving resonances seem to be bounded in a circle with a well-
g [ e defined radius.
§° 0 00 o.g. ° g0 '
E e LIX,Y:%,y:ky) =Y 3(X=u(x,y) (Y = v (X,)).
05 VA
\ / (13
-1 i h . . e e . .
. . . . . Ay is the difference between the initial and final positions of
-1 05 0 05 1 they component in one step iteration for the extended phase
Real space. From Eq2) we read

FIG. 1. Pollicott-Ruelle resonancé¢s,= e®}: The unit circle is
drawn with the dotted lingla) K=1.00. The map is the Arnold cat Ay=KXx. (14)
map.(b) K=1.30.

The matrix elements of the operator Ed3) is given by
I1l. DIFFUSION COEFFICIENT

We only consider the diffusion along theaxis. The hy-
drodynamic mode can be examined by the leading Pollicott- Lig,mn(ky) = a(k,l,m,n;ky) B(k,1,n), (15
Ruelle resonance of the following weighted Frobenius-
Perron operator. with

( kyK
1 for K(k+1)+ =—+k—m=0,
2

kK

a(k,l,mn)=< sin m K(k+1)+ 2"—W+k—m] (16)

kK otherwise.

m K(k+1)+ z—+k—m
\ 2
|

The diffusion coefficient for thgg component is 1 52

y"73% %So(ky) (18
y k,=0
1 y
Dy=lim %<(yn_YO)2>- (17)  In Fig. 3 we depict the&-dependence of the diffusion coef-

n—ee ficient Dy,. The dotted line represents the cuni,

=K?/24. Using the periodic orbit theory, it is shown that

whenK is positive integer, the diffusion coefficieB, takes
Here the bracket represents the ensemble average of orbithis valueK?/24[21,27. In [21], the diffusion coefficient for
D, is related to the leading resonarggk,) [1,5], other value ofK has been numerically evaluated by taking
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04 " " : ; : APPENDIX
035 1 In this appendix we show that the Pollicott-Ruelle reso-
0.3 ¢ nances for the Arnold cat map have the leading njree®
025 ¢ =1, and otherg,,=e%=0 for n=1. For simplicity, we con-
s 02 sider the following Arnold cat map withK as a positive
0.15 | integer:
0.1
0.05 | N X
0 ( ,) =A( )mod 1, (A1)
0 y y
where
FIG. 3. Parametric dependence of the diffusion coefficizpt
The parabolic curve K?/24) (the dotted ling which is obtained
from the periodic orbit theoryexact for the case wheK is a A= K+1 1) (A2)
positive integer and the approximation for the case wKeis a K 1

nonintegey is also shown. Wheik =1,2,3 (the Arnold cat map

the value ofD, is on the dotted line. For the Arnold cat map, the number of fixed points of order

) o m is precisely given by de§™—1) [24]. The Fredholm de-
ensemble average of orbits. Then a similar curve has beggyminant of the Arnold cat map is

obtained, but it had large statistical error. Here we have used
the explicit evaluation of the diffusions coefficient. We ex-
pect that the reliable digits are, at least, five. It is clearly seen Zcat(z)=de{1—2z"*L)
that the dotted curve obtained from the periodic orbit theory _
is a nice approximation for the case whiéris a small non- Sz
positive integer. However, whef becomes large away from =exg — nzl L ™)
the positive integer, the deviation from this theoretical curve -
(the dotted lingseems to become large. In addition, note that Coe
the calculated curve seems to be a smooth, not fractal, object. —exg — S z - 1 ]
L m=1 M peFixAm,m=npr |de(~];)_|)|
IV. SUMMARY

We have calculated the Pollicott-Ruelle resonances for the _ D z m}
sawtooth map. It is shown that the off-leading resonances are A1 m
rapidly moving in an erratic way if the bifurcation parameter )
K is supposed to be time. In particular, whi€ris a positive -1
integer, the sudden shrink of resonanéesceptz=1) to z = (A3)
=0 occurs. This phenomena is rigorously proved in the Ap-
pendix. Even wheiK is certain positive rational, some reso- ) , .
nances also shrink to=0. The reason for this behavior is WheréJp is the Jacobian of the Amold cat map for the primi-
unknown. tive periodic pointp. FixA™ is the set of fixed points of order
Note added in proofRecently Dr. A. Tanaka followed my ™M We note thad,=A"" =A™, since the map is linean, is
numerical calculation and found that the convergence of théhe period for the primitive periodic poipt From the second
second leading resonance with increasing the matrix size #€ to the third line, we used the fact thap < rixamm=n 1
rather bad wheiK is a noninteger. This problem probably is =det(A™—1). Therefore, the Pollicott-Ruelle resonances for
due to the choice of the basis set. In addition, Professor She Arnold cat map are=1, corresponding to the invariant
Tasaki showed, in his unpublished work, that the choice oflensity, and the rest is infinitely degenerated=a0. This is
the basis set for the Arnold cat map has a delicate problemwhat we have observed in Fig(@. The proof is completed.
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