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The Pollicott-Ruelle resonances for the sawtooth map are investigated. We turn our attention to the para-
metric dependence of them with respect to the bifurcation parameterK. It is numerically shown that the
resonances move in an erratic way if the bifurcation parameterK is supposed to be time. At certain rational
values ofK, it is observed that some resonances shrink toz50. In particular, at positive integer values ofK
which correspond to the Arnold cat map, all resonances exceptz51 ~i.e., the equilibrium state! shrink to z
50. This peculiar behavior is rigorously proved in the Appendix. In addition, the diffusion coefficient of this
map is numerically calculated in a very accurate way by evaluating the leading resonance.
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I. INTRODUCTION

Recent investigation in nonlinear science has revealed an
essential role of chaotic motion in nonequilibrium statistical
mechanics@1,2#. A major development is the discovery of a
link between dynamical quantities~Lyapunov exponents,
Kolmogorov-Sinai entropy, etc.! and transport coefficients
~diffusion coefficient, thermal conductivity, etc.!, and the
characterization of the steady state~fluctuation theorem!. The
development has been made for both Hamiltonian dynamical
systems and non-Hamiltonian dynamical systems~i.e., Nose´-
Hoover thermostat and Gaussian thermostat systems!. Active
research is still going on for both types of systems.

For Hamiltonian dynamical systems, the time evolution of
the probability distribution in the phase space is governed by
the Liouville equation. However, in order to investigate the
statistical behavior of a given Hamiltonian dynamical sys-
tem, the Frobenius-Perron equation or the Frobenius-Perron
operator is much more suitable than the Liouville equation.
The statistical nature of a given system is determined by the
spectral property of the Frobenius-Perron operator. The main
development has been given by mathematical results in the
1980’s. It has been shown that for hyperbolic dynamical sys-
tems, the decay rate to the equilibrium state is well defined
and exists@3,4#. Now the decay rates$sn% to the equilibrium
state are called the Pollicott-Ruelle resonances, which corre-
spond to the eigenvalues$zn5esn% of the Frobenius-Perron
operator. Furthermore, for the systems having the extended
space, the leading Pollicott-Ruelle resonances is related to
the hydrodynamic mode. Its wave number dependence deter-
mines the transport coefficient for a given system, i.e., the
diffusion coefficient@5#. However, although theoretical de-
velopment has been made, an exact calculation of the
Pollicott-Ruelle resonances even for area-preserving maps is
unfortunately very limited, for instance, the baker map@6#.

Recently, this mathematical well-established result has
been numerically tested for various systems including a more
general situation, i.e., nonhyperbolic systems such as the
kicked rotor@7–9#, the kicked top@10#, and the perturbed cat
map @11#. It has been numerically shown that even in the
nonhyperbolic regime, if the perturbation parameter is large
enough, the concept of the Pollicott-Ruelle resonances per-
sists in nonhyperbolic systems and even the leading reso-

nance gives a nice approximation of the diffusion coefficient
for the kicked rotor.

The Pollicott-Ruelle resonances are essential not only in
classical dynamics but also in quantum dynamics. In semi-
classical study of quantum chaotic systems, the Pollicott-
Ruelle resonances play an important role for the semiclassi-
cal derivation of a two-point energy level correlator@12,13#.
Furthermore, it has been numerically shown that the eigen-
values of the quantum von Neumann–Liouville operator for
the quantum baker map approach to the Pollicott-Ruelle
resonances for the classical baker map in the semiclassical
limit \→0 @14#. For this observation, general consideration
is given in @15#.

In this paper we give another example whose Pollicott-
Ruelle resonances are relatively easily calculated in a nu-
merical sense. We treat the sawtooth map which is hyper-
bolic in certain parameter regime and which includes some
family of the Arnold cat maps@16#. The semiclassical behav-
ior and the property of periodic orbits for the sawtooth map
are investigated by the author@17,18#. In Sec. II we shall
focus our attention on the parametric dependence of the
Pollicott-Ruelle resonances for the sawtooth map with re-
spect to the bifurcation parameterK which will be defined
below. We shall see the erratic behavior of the Pollicott-
Ruelle resonances with respect toK. When K is a positive
integer, we shall numerically observe that the Pollicott-
Ruelle resonances infinitely degenerate except the leading
one. This observation is rigorously proved by using the pe-
riodic orbit theory in the Appendix. In Sec. III we shall nu-
merically calculate the diffusion coefficient for the sawtooth
map. In Sec. IV, we summarize the results.

II. SAWTOOTH MAP

The sawtooth map is a generalization of the Arnold cat
map, which is defined by

xn115xn1yn11 mod 1,
~1!

yn115yn1Kxn mod 1,

wherexn ,ynPD,D5@2 1
2 , 1

2 # @16#. K is the bifurcation pa-
rameter which is real valued. If we introduce winding num-
berswy

(n) ,wx
(n)PZ, the map of Eq.~1! is rewritten as

PHYSICAL REVIEW E 66, 046211 ~2002!

1063-651X/2002/66~4!/046211~5!/$20.00 ©2002 The American Physical Society66 046211-1



xn115~11K !xn1yn2wx
(n)2wy

(n)[u~xn ,yn!,
~2!

yn115yn1Kxn2wy
(n)[v~xn ,yn!.

This representation is useful in the later use.
First, we briefly summarize the behavior of the sawtooth

map with respect to the bifurcation parameterK. When K
,24 andK.0, the map is hyperbolic. In this parameter
regime, it is mathematically proved that the decay of corre-
lation is exponential@19#. Other mathematical results are
found in @20#. If K is a positive integer, the map becomes the
Arnold cat map. Many properties of the Arnold cat map are
shared whenK is positive integer. The most attractive prop-
erty of the sawtooth map is that if the map is defined in a
cylinder or an extended phase space, chaotic diffusion is ob-
served@16,21,22#. We shall investigate it in Sec. III. When
24<K<0, the map is stable. The phase space is filled by
many elliptic islands.

The time evolution of the probability distribution in the
phase space is governed by the Frobenius-Perron equation. If
we denote the probability distribution in the phase space at
the nth time step byr(x,y;n), then it defined by

r~X,Y;n11!5E
21/2

1/2

dxE
21/2

1/2

dy L~X,Y;x,y!r~x,y;n!,

~3!

where the integral kernelL is called the Frobenius-Perron
operator

L~X,Y;x,y!5d„X2u~x,y!…d„Y2v~x,y!…, ~4!

whereu(x,y) andv(x,y) are the right-hand side~rhs! of Eq.
~2!.

Our aim is to solve an eigenvalue problem:

E
21/2

1/2

dxE
21/2

1/2

dy L~X,Y;x,y!r~x,y!5esr~X,Y! ~5!

or symbolically

Lr5esr. ~6!

We sometimes setz5es. The quantities$sn%n50
` , which are

related to the eigenvalues$zn5esn%, are called the Pollicott-
Ruelle resonances. Although in this section we directly diag-
onalize the operatorL, another analysis exists. It uses the
following Fredholm determinant:

Z~s!5det~12e2sL!. ~7!

By the relation det(12A)5exp@tr ln(12A)#, the determinant
is rewritten to

Z~s!5exp@ tr ln~12z21L!#

5expF2 (
n51

`
z2n

n
tr~L n!G . ~8!

tr(L n) can be evaluated as the sum over the contributions of
the periodic points@23#. This method is fully used in the
Appendix for the system whenK is positive integer.

The matrix representation for the Frobenius-Perron opera-
tor L is achieved by using the Fourier basis set
$e2p inx%n52`

` ,

Lkl,mn5E
21/2

1/2

dXE
21/2

1/2

dYE
21/2

1/2

dxE
21/2

1/2

dy L~X,Y;x,y!

3e2p i (kX1 lY2mx2ny), ~9!

wherek,l ,m,nPZ. The integral is explicitly performed and
yields

Lkl,mn5a~k,l ,m,n!b~k,l ,n!, ~10!

with

a~k,l ,m,n!5H 1 for K~k1 l !1k2m50,

sin@p$K~k1 l !1k2m%#

p$K~k1 l !1k2m%
otherwise

~11!

and

b~k,l ,n!5H 1 for k1 l 2n50,

0 otherwise.
~12!

In Fig. 1 we depict the numerical result of direct diago-
nalization of the matrixLkl,mn . The matrix size is 121
3121. The matrix is banded and very sparse and its ele-
ments take zero or finite value. Thus, the convergence of
eigenvalues is quite good. Figure 1~a! is the result forK
51.00 which corresponds to the Arnold cat map. Except the
leading resonancez51, all resonances degenerate atz50.
This would be related to the number theoretical anomaly of
the Arnold cat map as reported in@24#. This behavior shall be
investigated in detail in the Appendix. Figure 1~b! is the
result for K51.30. In this case, anomalous degeneracy
seems to be released. The Pollicott-Ruelle resonances are
distributed in the unit circle and are paired with the complex
conjugate one. In order to examine the parametric depen-
dence of the Pollicott-Ruelle resonances, we plot the abso-
lute value of the Pollicott-Ruelle resonance versusK in Fig.
2. It is clearly noticed that some resonances are rapidly mov-
ing if K is supposed to be time. The most drastic case is the
case whenK is a positive integer~the Arnold cat map!. All
resonances exceptz51 shrink to z50. Besides this case,
when K is certain rational, it is observed that some reso-
nances are falling toz50. Furthermore, the rapid moving
resonances are bounded by the circle with a well-defined
radius. Unfortunately, we do not know the reason why some
resonances move so rapidly. For the case whenK is a posi-
tive integer, we can explain the behavior of the resonances.
In the Appendix we shall prove that the resonances for the
Arnold cat map infinitely degenerate, except the leading one.
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III. DIFFUSION COEFFICIENT

We only consider the diffusion along they axis. The hy-
drodynamic mode can be examined by the leading Pollicott-
Ruelle resonance of the following weighted Frobenius-
Perron operator.

L~X,Y;x,y;ky!5eikyDyd„X2u~x,y!…d„Y2v~x,y!….
~13!

Dy is the difference between the initial and final positions of
they component in one step iteration for the extended phase
space. From Eq.~2! we read

Dy5Kx. ~14!

The matrix elements of the operator Eq.~13! is given by

Lkl,mn~ky!5a~k,l ,m,n;ky!b~k,l ,n!, ~15!

with

a~k,l ,m,n!55
1 for K~k1 l !1

kyK

2p
1k2m50,

sinFpH K~k1 l !1
kyK

2p
1k2mJ G

pH K~k1 l !1
kyK

2p
1k2mJ otherwise.

~16!

The diffusion coefficient for they component is

Dy5 lim
n→`

1

2n
^~yn2y0!2&. ~17!

Here the bracket represents the ensemble average of orbits.
Dy is related to the leading resonances0(ky) @1,5#,

Dy52
1

2

]2

]ky
2

s0~ky!U
ky50

. ~18!

In Fig. 3 we depict theK-dependence of the diffusion coef-
ficient Dy . The dotted line represents the curveDy
5K2/24. Using the periodic orbit theory, it is shown that
whenK is positive integer, the diffusion coefficientDy takes
this valueK2/24 @21,22#. In @21#, the diffusion coefficient for
other value ofK has been numerically evaluated by taking

FIG. 1. Pollicott-Ruelle resonances$zn5esn%: The unit circle is
drawn with the dotted line.~a! K51.00. The map is the Arnold cat
map.~b! K51.30.

FIG. 2. Parametric dependence of Pollicott-Ruelle resonances:
When K51,2,3, all resonances exceptz51 shrink to z50. For
some rational values, some resonances shrink toz50. Rapidly
moving resonances seem to be bounded in a circle with a well-
defined radius.
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ensemble average of orbits. Then a similar curve has been
obtained, but it had large statistical error. Here we have used
the explicit evaluation of the diffusions coefficient. We ex-
pect that the reliable digits are, at least, five. It is clearly seen
that the dotted curve obtained from the periodic orbit theory
is a nice approximation for the case whenK is a small non-
positive integer. However, whenK becomes large away from
the positive integer, the deviation from this theoretical curve
~the dotted line! seems to become large. In addition, note that
the calculated curve seems to be a smooth, not fractal, object.

IV. SUMMARY

We have calculated the Pollicott-Ruelle resonances for the
sawtooth map. It is shown that the off-leading resonances are
rapidly moving in an erratic way if the bifurcation parameter
K is supposed to be time. In particular, whenK is a positive
integer, the sudden shrink of resonances~exceptz51) to z
50 occurs. This phenomena is rigorously proved in the Ap-
pendix. Even whenK is certain positive rational, some reso-
nances also shrink toz50. The reason for this behavior is
unknown.

Note added in proof. Recently Dr. A. Tanaka followed my
numerical calculation and found that the convergence of the
second leading resonance with increasing the matrix size is
rather bad whenK is a noninteger. This problem probably is
due to the choice of the basis set. In addition, Professor S.
Tasaki showed, in his unpublished work, that the choice of
the basis set for the Arnold cat map has a delicate problem.

APPENDIX

In this appendix we show that the Pollicott-Ruelle reso-
nances for the Arnold cat map have the leading onez05es0

51, and otherszn5esn50 for n>1. For simplicity, we con-
sider the following Arnold cat map withK as a positive
integer:

S x8

y8
D 5AS x

yDmod 1, ~A1!

where

A5S K11 1

K 1D . ~A2!

For the Arnold cat map, the number of fixed points of order
m is precisely given by det(Am2I ) @24#. The Fredholm de-
terminant of the Arnold cat map is

Zcat~z!5det~12z21L!

5expF2 (
m51

`
z2m

m
tr~L m!G

5expF2 (
m51

`
z2m

m (
pPFixAm,m5npr

1

udet~Jp
r 2I !uG

5expF2 (
m51

`
z2m

m G
5

z21

z
, ~A3!

whereJp is the Jacobian of the Arnold cat map for the primi-
tive periodic pointp. FixAm is the set of fixed points of order
m. We note thatJp

r 5Anpr5Am, since the map is linear.np is
the period for the primitive periodic pointp. From the second
line to the third line, we used the fact that(pPFixAm,m5npr1

5det(Am2I ). Therefore, the Pollicott-Ruelle resonances for
the Arnold cat map arez51, corresponding to the invariant
density, and the rest is infinitely degenerated atz50. This is
what we have observed in Fig. 1~a!. The proof is completed.
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