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Thermal conduction in a chain of colliding harmonic oscillators, sometimes called the ding-dong model, is
investigated. We first argue that this system is equivalent to the Dawson plasma sheet model. Next we show the
Lyapunov analysis for this system to characterize its dynamical property. Finally, we reconsider the numerical
study of thermal conduction for this system using the Green-Kubo relation and the direct simulation of Fourier
law. Both show that thermal conduction is normal in thatk(N,T)}N0, at least, at low temperature in a large
system.
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I. INTRODUCTION

Thermal conduction in one-dimensional coupled anhar-
monic oscillators has been one of the central problems in
nonlinear science since the pioneer work by Fermi, Pasta,
and Ulam~FPU! @1#. The original motivation of the numeri-
cal work by FPU was to check equipartition of energy in
one-dimensional coupled anharmonic oscillators. If the sys-
tem is ergodic, equipartition of energy is expected. However,
unexpectedly, equipartition was not realized in their simula-
tion. Instead, recurrence of the initial state was observed.
This astonishing result led to two directions of further inves-
tigation. One is the discovery of solitons or integrable sys-
tems. The other is further numerical study of equipartition or
thermalization. The historical perspective is well reviewed in
Ford’s article@2#. In the second direction, a vast number of
numerical studies has been done. Mainly they investigated
~1! equipartition of energy,~2! local thermal equilibrium,
and ~3! transport properties, i.e., thermal conduction. Some
of these studies showed that some class of systems displays
thermal conduction at finite system size, i.e., the Fourier law
is observed. However, it is still unknown whether the ther-
mal conductivity in the thermodynamic limit is finite or not.
More precisely, what is the necessary and sufficient condi-
tion for normal conduction in one-dimensional anharmonic
oscillator systems?

Recently these puzzles and confusions have been partially
resolved. The key point is that if the heat current has a hy-
drodynamical mode the autocorrelation function for this
mode has a long-time tail. Then, from the Green-Kubo for-
mula, the time integral of the current autocorrelation function
diverges. Thus the thermal conductivity diverges in the ther-
modynamic limit. Numerical evidence was observed in@3#
and analyzed by mode-coupling theory in@4,5#. Finally, in a
general setting for one-dimensional coupled anharmonic os-
cillators, Prosen and Campbell have shown that momentum
conservation implies anomalous thermal conduction, namely,
the thermal conductivity of such one-dimensional systems
diverges in the thermodynamic limit@6#. On the other hand,
coupled anharmonic oscillators with on-site potential do not
satisfy momentum conservation. It is still controversial

whether such systems have normal transport coefficients.
In @7#, a chain of colliding harmonic oscillators, some-

times called the ding-dong model, was investigated. The
Hamiltonian of this system is given by

H5(
i 51

N pi
2

2m
1

1

2
mvp

2qi
2 , ~1!

with the elastic constraints

qi2qi 11<D ~ i 51,2, . . . ,N21!. ~2!

qi represents the displacement of thei th oscillator from its
equilibrium point.D is the lattice spacing. This system rep-
resents coupled ahnarmonic oscillators with on-site potential.
In @7#, thermal conduction in this system was investigated.
However, the numerical study was limited to system sizes
with N510–100. In a similar model, the ding-a-ling model
@8#, saturation of system-size dependent thermal conductivity
evaluated from direct observation of the Fourier law starts
around the system sizeN5300 @9#. This observation sug-
gests that we have to take the system size sufficiently large.
We believe that the analysis in@7# is insufficient for deter-
mining the system-size dependence of the thermal conduc-
tivity of the ding-dong model. As another aspect of statistical
behavior of this system, it has been shown numerically in
@10# that its stationary state in heat conduction satisfies the
fluctuation theorem.

In addition, the ding-dong model is equivalent to the
Dawson plasma sheet model@11# whose Hamiltonian is
given by
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where«0 is the dielectric constant for the vacuum. The equa-
tion of motion is

d2

dt2
Qi52vp

2S Qi2D(
j 51

N

u~Qi2Qj !D , ~4!

with the plasma frequencyvp
254ps2n/m«0 and the mean

spacing of sheetsD5L/N51/n. The step functionu(x) is
defined as

u~x!5H 1, x.0

1

2
, x50

0, x,0.

~5!

As we can see from the equation of motion Eq.~4!, the
difference between the ding-dong model and the Dawson
plasma sheet model is whether two particles collide with
hard-core interaction or pass through each other. Therefore
as far as energy transport is concerned the two systems are
equivalent. However, this equivalence holds only in the case
of the free boundary condition. For the case of the periodic
boundary condition, this equivalence no longer holds@12#.

Returning to the problem of the system-size dependence
of thermal conductivity, let us consider applying the method
in @6# to the ding-dong model. For the ding-dong model,
there is no momentum conservation, but the system has two
conserved quantities. One is the total energy, and the other is
the energy of motion of the center of mass,

C5
1

2m S (
i 51

N

pi D 2

1
1

2
mvp

2S (
i 51

N

qi D 2

, ~6!

which is an even function of the total momentum. Thus, the
key term in the method of@6# vanishes. Then the method of
@6# for this extra conserved quantity yields a trivial inequality
k>0, wherek is the thermal conductivity in the thermody-
namic limit. So at present the question about the thermal
conductivity of the ding-dong model in the thermodynamic
limit is still open. Detailed reexamination of thermal conduc-
tion in the ding-dong model is therefore needed. This is one
of the aims of the present paper.

After describing the dynamics of our system in Sec. II
first, we give the Lyapunov analysis of this system in Sec.
III. This enables us to characterize its dynamical properties.
As a result, from the behavior of the Lyapunov spectrum, we
know that the ding-dong model is a weakly chaotic~in other
words, mixed! system. Next we carry out a detailed numeri-
cal study of thermal conduction in the ding-dong model in
Sec. IV. We have evaluated thermal conductivity by two
methods. One method uses the Green-Kubo relation. Thus,
we evaluate the thermal conductivity from the equilibrium
properties~without thermal reservoir!. The other method is
direct observation of the Fourier law. We observe the non-
equilibirum stationary state of a given finite system and
evaluate the thermal conductivity from the heat current and
the temperature profile in the stationary state. These two
methods show that the thermal conductivity in the thermo-

dynamic limit seems to be constant, at least at low tempera-
ture. In Sec. V, we summarize our results.

II. MODEL

As for the system of falling balls treated in@13#, it will be
convenient for us to construct the associated map, which is
defined among collisions. The positions and momenta of all
particles are represented by the vectorx:

x5S q1

A

qN

p1

A

pN

D . ~7!

We denote the state just after thekth collision byxk
1 and the

state just before thekth collision byxk
2 . The time when the

kth collision takes place between thei kth particle and the
( i k11)th particle is denoted bytk . We taket050. Our sys-
tem is formally considered as the dynamical system

d

dt
x5F~x!, xPK, ~8!

whereK is defined by

K5$xPRN3RNuH5E, C5C0%. ~9!

HereE andC0 are some constants. The flowf t defined by
Eq. ~8! is given by

f t: K→K. ~10!

Now we define a manifold

M5$xPKuqi2qi 11,D for i 51, . . . ,N21%,K.
~11!

M is an open subset with compact closureM̄ and it has the
piecewise smooth boundary]M . ]M is split into the regular
part ]Mr and the singular part]Ms . The regular part corre-
sponds to two-body collisions, while the singular part corre-
sponds to collisions involving more than two bodies and col-
lisions of more than one pair at the same time. The regular
part ]Mr of the boundary ofM is the union of (N21) sub-
manifolds,

]Mr5 ø
i 51

N21

]Mi , ~12!

where

]M15$xPKuq12q25D, q22q3,D, . . . ,qN212qN

,D%,
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]M25$xPKuq12q2,D, q22q35D, . . . ,qN212qN

,D%,

A ~13!

]MN215$xPKuq12q2,D, q22q3,D, . . . ,qN212qN

5D%.

The regular part]Mr further splits into]Mr
15ø i 51

N21]Mi
1

and]Mr
25ø i 51

N21]Mi
2 where

]M1
65$xPKuq12q25D,q22q3,D, . . . , qN212qN

,D,7~p12p2!.0%,

]M2
65$xPKuq12q2,D,q22q35D, . . . , qN212qN,D,

7~p22p3!.0%,

A

]MN21
6 5$xPKuq12q2,D, q22q3,D, . . . ,qN212qN

5D,7~pN212pN!.0%. ~14!

In ]Mr
1 F points inside, while in]Mr

2 F points outside. That
is, ]Mr

1 corresponds to states immediately after collisions
and]Mr

2 to states immediately before collisions.
Here we consider only two-body collisions and disregard

collisions involving more than two bodies and collisions of
more than one pair, since it is expected that these collisions
are events of zero measure.

Now we define the collision mapFcol : ]Mr
2→]Mr

1 .
More specifically, we define the collision map for thei th and
the (i 11)th particlesFcol

( i ) : ]Mi
2→]Mi

1 . Next we define
the map for the smooth flowFosc

t(x) : Mø]Mr
1→]Mr

2 for x
PMø]Mr

1 , wheret(x) is the time that it takes from the
statex to the next collision.t(x) is called the first collision
time. More specifically, if thekth collision occurs between

the i kth and (i k11)th particles, then we may writeF
osc

t(xk
1)

:
]Mi k

1→]Mi k11

2 . By definition, the time between successive

collisions is given by

t~xk
1!5tk112tk . ~15!

With this setup, we now define the mapFk that maps the
statexk

1 just after thekth collision to the statexk11
1 just after

the (k11)th collision.Fk is decomposed into two parts, the
motion of the independent harmonic oscillators and the col-
lision process,

Fk5Fcol
( i k11)

+F
osc

t(xk
1)

. ~16!

Obviously, we have

Fk : ]Mi k
1→]Mi k11

1 . ~17!

Succesive iteration gives the following relation:

xn
15Fn21+Fn22+•••+F0~x0

1! ~18!

and

Fn21+Fn22+•••+F0 : ]Mi 0
1→]Mi 1

1→•••→]Mi n22

1

→]Mi n21

1 →]Mi n
1 . ~19!

Next we give the matrix representation of these maps. At
each collision, the colliding particles just exchange their mo-
menta. Therefore, the map of the collision process is given in
the following way. Suppose that at thekth collision, thei kth
particle and the (i k11)th particle collide with each other.
The map from the statexk

2 to the statexk
1 is represented by

the matrix

M col
( i k)

5S I N 0

0 Ci k
D , ~20!

whereI N is theN3N identity matrix and

Ci k
51

i kth

1 ↓
�

1

0 1 ← i kth

1 0

1

�

1

2 ,

~21!

where vacant entries represent zero. Thus, we have

xk
15M col

( i k)xk
2 . ~22!

The motion of the independent harmonic oscillators is
easily constructed. Set the statexk

1 just after thekth collision
and the statexk11

2 just before the (k11)th collision. The
map between these states is

xk11
2 5M

osc

t(xk
1)

xk
1 . ~23!

The matrixM
osc

t(xk
1)

is given by
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M
osc

t(xk
1)

5S cos@vpt~xk
1!#I N

1

mvp
sin@vpt~xk

1!#I N

2mvp sin@vpt~xk
1!#I N cos@vpt~xk

1!#I N

D .

~24!

Thus we have obtained the matrix representation of the
whole time evolution,

xn
15 )

k50

n21

~M col
( i k11)M

osc

t(xk
1)

!x0
1 , ~25!

where the product is time ordered.

III. LYAPUNOV ANALYSIS

The dynamics of this system is singular at collisions.
Thus, the Lyapunov analysis differs from those for smooth
dynamical systems. We have to reformulate the Lyapunov
analysis in a suitable form. In order to get the tangent map of
the map obtained in the previous section, we change the
variables from Cartesian coordinates to the action-angle vari-
ables

qi5A 2Ji

mvp
cos~a i !, pi5A2mvpJisin~a i !, ~26!

for i 51,2, . . . ,N. The Hamiltonian becomes

H5vp(
i 51

N

Ji1~hard-core collisions!. ~27!

Between the collisions, the equation of motion is given by

d

dt
Ji50 and

d

dt
a i5vp . ~28!

Therefore, we have

Ji~ t !5const and a i~ t !5vpt1a i~0!. ~29!

Now we define the new vectorX,

X[S J1

A

JN

a1

A

aN

D . ~30!

The equation of motion between collisions is now

d

dt
X52J“XH, ~31!

whereJ is the symplectic matrix

J5S 0 I N

2I N 0 D . ~32!

Between collisions, the time evolution of the infinitesimal
deviationdX is given by

d

dt
dX5S 2

]2H
]J]a

2
]2H
]a2

]2H
]J2

]2H
]a]J

D dX5S 0 0

0 0D dX. ~33!

Thus, between the collisions, the time evolution ofdX is just

dX~ t !5dX~0!, ~34!

as long as no collisions occur. Therefore, in order to get the
tangent map, we have to consider only the contribution from
the collisions.

Let us consider how to changedX in the collision pro-
cess. We denote the infinitesimal quantities after and before
the kth collision by dXk

2 and dXk
1 , respectively. What we

need is the 2N32N monodromy matrixMk satisfying the
following condition:

dXk
15MkdXk

2 . ~35!

Here we note the relation amongdXk
6 and thedxk

6’s. From
Eq. ~26!, we obtain the relations

dXk
15R~xk

1!21dxk
1 , ~36!

dxk
25R~xk

2!dXk
2 , ~37!

where

R~xk
2!5S R11 R12

R21 R22
D , ~38!

R~xk
1!215S Q11 Q12

Q21 Q22
D ~39!

with the matrices

R115S q1
2

2J1
2

�

qN
2

2JN
2

D ,

R125S 2
p1

2

mvp

�

2
pN

2

mvp

D , ~40!
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R215S p1
2

2J1
2

�

pN
2

2JN
2

D ,

R225S mvpq1
2

�

mvpqN
2
D , ~41!

and

Q115S mvpq1
1

�

mvpqN
1
D ,

Q125S p1
1

mvp

�

pN
1

mvp

D , ~42!

Q215S 2
p1

1

2J1
1

�

2
pN

1

2JN
1

D ,

Q225S q1
1

2J1
1

�

qN
1

2JN
1

D . ~43!

In theRi j andQi j all vacant entries represent zero. At thekth
collision, the i kth particle and (i k11)th particle exchange
their momenta. In addition, the conditionqi k

2qi k115D is

satisfied. Therefore, the infinitesimal quantities satisfydqi k
5dqi k11. Using this condition, we obtain the relation be-

tweendxk
2 anddxk

1 :

dxk
15Nkdxk

2 , ~44!

where

Nk5S Ci k 0

0 Ci k
D . ~45!

To setNk in this way is important for the symplectic condi-
tion of the tangent map. Now, using Eqs.~36!, ~37!, and~44!,
we have

dXk
15R~xk

1!21dxk
15R~xk

1!21Nkdxk
2

5R~xk
1!21NkR~xk

2!dXk
2 . ~46!

Thus,Mk is given by

Mk5R~xk
1!21NkR~xk

2!. ~47!

The matricesR(xk
1)21, Nk , andR(xk

2) obtained here satisfy
the symplectic condition

tMJM5J where M5R~xk
1!21,Nk ,R~xk

2!. ~48!

Therefore,Mk itself satisfies the symplectic condition. Fi-
nally, the time evolution of the infinitesimal quantitydX,
namely, the tangent map, is given by

dXk
25Mk21Mk22•••M1M0dX0

2 . ~49!

Let us consider the Lyapunov spectrum of this system.
First check the dimension of the Lyapunov spectrum. The
number of particles isN. Then the dimension of the phase
space is 2N, from which we have to subtract the number of
conserved quantities.~1! The total energyE is conserved.~2!
The energy of the center of mass is conserved. Thus, the
dimension of the Lyapunov spectrum is 2N22. The
Lyapunov exponents are given by

lm5 lim
k→`

1

tk
lnF U)l 50

k21

MldX0
2,(m)U

udX0
2,(m)u

G , ~50!

wheredX0
2,(m) is the displacement to themth eigendirection

and the product of the matricesMi is time ordered. The
Lyapunov spectrum is now

l1>l2>•••>l2N . ~51!

We have to eliminate two irrelevant Lyapunov exponents
which correspond to the above-mentioned conserved quanti-
ties. These Lyapunov expoents have zero value. After re-
numbering, we have the Lyapunov spectrum

l1>l2>•••>l2N22 . ~52!

Here we do not consider the case of a quadruplet, in which
the value of the Lyapunov exponents is a complex number.
In our case, the Lyapunov exponents make pairs,l15
2l2N22 , l252l2N23 , . . . . This is a consequence of the
symplecticity. Thus, we have

(
m51

2N22

lm50. ~53!

The numerical result of the calculation of the Lyapunov
spectrum forN550 is shown in Fig. 1. It is known from a
vast number of numerical studies that for a hyperbolic sys-
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tem, if the Lyapunov spectrum is arranged in decreasing or-
der of indices, it is linear with respect to the indices. How-
ever, in Fig. 1, the Lyapunov spectrum is not linear with
respect to the indices. This is a typical behavior of mixed
systems as shown for various systems in@14#. Thus, Fig. 1 is
numerical evidence of the coexistence of stable and unstable
motions. Next we consider the Kolmogorov-Sinai~KS! en-
tropy hKS which is a characteristic quantity for the chaoticity
of a given system. Since the ding-dong model does not seem
to be a hyperbolic system as shown in Fig. 1,hKS is not well
defined for the ding-dong model. Therefore we definehKS
tentatively by the Pesin formula, which is valid only for hy-
perbolic systems,

hKS5 (
l i.0

l i . ~54!

We show the behavior ofhKS versusE/N in Fig. 2 for N
510. For smallE/N, hKS increases approximately linearly
with increasingE/N. For E/N.5 hKS increases with in-
creasing E/N very slowly. The fitting ~dashed line! is
0.275 ln(E/N).

IV. THERMAL CONDUCTION

In this section, we study thermal conduction in the ding-
dong model. The thermal conduction in systems with on-site
potential is investigated in@8,9# for the ding-a-ling model
and in @7# for the ding-dong model. It is believed that in
these models the thermal conduction is normal, that is, the

thermal conductivity behaves ask(N)}N0. However, the
authors in@7# commented on the system-size dependence of
the thermal conductivity from the numerical results of a sys-
tem with N510–100 only. There is no systematic study of
the system-size dependence of thermal conductivity. The aim
of this section is to check this for the ding-dong model.
While the thermal conductivity was measured by three dif-
ferent methods for the ding-dong model in@7#, we use two
methods,~1! the estimation of the thermal conductivity from
the Green-Kubo formula and~2! the direct observation of the
Fourier law. All discussion in this section will be done by
settingD5m5vp51.

A. Green-Kubo formalism

We define the heat current at each site by

j k~ t !5
1

2
~pk112pk!~pk11

2 2pk
2!d~qk2qk1121!

5
1

2
~pk11

2 2pk
2! (

n(k)52`

`

d~ t2tn(k)!, ~55!

wheretn(k) denotes then(k)th collision between thekth and
(k11)th sites and the momenta in Eq.~55! should be evalu-
ated just before each collision. We define the total heat cur-
rent

JN~ t !5 (
k51

N

j k~ t !, ~56!

and the average heat current over all sites

J̄N~ t !5
1

N (
k51

N

j k~ t !. ~57!

The Green-Kubo formula for thermal conduction gives the
thermal conductivity as

k~N,T!5
1

T2N
E

0

`

dt^JN~0!JN~t!&c . ~58!

Here ^•••&c represents the average over the canonical en-
semble. If there is no phase transition@15#, we can replace
this canonical ensemble average by the microcanonical aver-
age^•••&mc specifying the energy from a given temperature,

^A&c5^A&mc1oS 1

ND , ~59!

whereA is some observable.
In the escape rate formalism for the thermal conduction

@16#, the following quantityGN(t) plays a central role:

GN~ t !2GN~0!5E
0

t

dt J̄N~t!. ~60!

FIG. 1. Lyapunov spectrum:N550, E/N51.0. The number of
samples for averaging is 1000.

FIG. 2. Kolmogorov-Sinai entropyhKS versusE/N: N510. The
number of samples for averaging is 300. The fitting~dashed line! is
0.0275 ln(E/N).
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The moment of this quantity is called the Helfand moment
@16#. From the diffusive behavior ofGN(t) we can discuss
thermal conduction. If the diffusive behavior ofGN(t) per-
sists forever, we have

lim
t→`

^@GN~ t !2GN~0!#2&mc

2t
5E

0

`

dt^J̄N~0!J̄N~t!&mc .

~61!

We now set

FN~ t ![
^@GN~ t !2GN~0!#2&mc

2
. ~62!

However, in general for a finite system, the diffusive behav-
ior of GN(t) does not persist, but saturates in some time
interval, sayt* . In Fig. 3, we plot the behavior ofFN(t) for
E/N51.0 andN510,20,40,80,160,320. In the short time re-
gime t,t* , GN(t) diffuses as FN(t);t. Then for t
.t* FN(t) converges oscillatorily to some value.t* is the
time at which the system reaches equilibrium. For larger sys-
tem sizeN, t* becomes longer, approximately in proportion
to N. As the system size becomes large, the slope ofFN(t) is
approximately constant. There is a tendency to decreasing
slope, as the system size increases. This behavior is exam-
ined later in detail. We define the diffusion coefficient for
finite systems,

DN5 lim
t→t*

FN~ t !

t
. ~63!

Here we define the thermal conductivity for a finite system
as follows:

k~N,T!5
N

T2
DN . ~64!

We have to consider the thermodynamic limitN→`. From
these observations, the thermal conductivity in the thermo-
dynamic limit would be defined by

k~T!5
1

T2
lim
t→`

lim
N→`

N
FN~ t !

t
. ~65!

In Fig. 4, we depict theN dependence ofDN for E/N
50.5,1.0. This showsDN}N21.0. In Fig. 5, we show the
result for theN dependece ofNDN . From Eq.~65!, Fig. 3,
Fig. 4, and Fig. 5, we know that the thermal conductivity is
finite in the thermodynamic limit, at least at low temperature
@17#. Of course, we also have to check whether the thermal
conductivityk(T) diverges or is finite in the thermodynamic
limit by direct numerical simulation of the Fourier law.

In Fig. 6, we plot the energy dependence of the diffusion
coefficient DN(T). First, we note the relation between the
temperatureT and the total energyE. From the numerical
result, we know

T'1.27
E

N
. ~66!

From the fitting of Fig. 6, we have

DN~T!}T2.65. ~67!

Therefore, the temperature dependence of the thermal con-
ductivity is given by

k~N,T!}T0.65'T2/3. ~68!

FIG. 3. Behavior ofFN(t): E/N51.0. From bottom to top,N
510,20,40,80,160,320,640. Each curve is obtained from an average
over 5000 initial conditions. In the short time regime,FN(t) dif-
fuses asFN(t);t. Then later it converges to some oscillatory value.
As the system size becomes larger, the diffusive regime becomes
longer. The slope of the diffusive regime is approximately constant.
However, there is a tendency to decreasing slope asn the system
size increases.

FIG. 4. N dependence ofDN : E/N50.5 ~solid squares!, 1.0
~circles!. The number of samples for averaging is 500–1000.

FIG. 5. N dependence ofNDN : E/N50.5 ~solid squares!, 1.0
~circles!. The number of samples for averaging is 500–1000.
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Next we confirm that the hydrodynamic mode is not impor-
tant for our system. If the heat current has a hydrodynamic
mode, the heat current can be written as

J5Jdi f f1n TdSv, ~69!

whereJdi f f is the heat current due to thermal diffusion,n is
the density,T is the temperature,dS is the excess entropy,
and v is the velocity. The current autocorrelation function
can be written as

^J~0!J~ t !&5^Jdi f f~0!Jdi f f~ t !&1~nTdS!2^v~0!v~ t !&,
~70!

where we assumed that ^Jdi f f(0)v(t)&50 and
^Jdi f f(t)v(0)&50. If the velocity autocorrelation function
has a long-time tail, the thermal conductivity will diverge
from the Green-Kubo formula. Here we check the velocity
autocorrelation function for a tagged particle. In Fig. 7, we
depict the power spectrum of the velocity of the tagged par-
ticle for the system sizeN5200. The tagged particle is the
100th one from the left. Figure 7 clearly shows that the
power spectrum is Lorentzian, not power law. Therefore, in
our system, there is no power law behavior in time, at least at
low temperature. This implies that there is no hydrodynamic
contribution to the heat current. This is another support for
the normal thermal conduction in our system.

B. Stationary state in a finite system

For the second method, i.e., the direct observation of the
Fourier law, we have to introduce heat reservoirs. We con-
sider two heat reservoirs which consist of ideal gas with
temperaturesTL ~left! and TR ~right! and are placed at the
left and right sides, respectively. The boundaries between the
system and the two reservoirs consist of two walls. The par-
ticles in the reservoirs obey the Maxwell distribution at given
temperatures. If the particles at the ends of the system,
namely, the first particle and theNth particle, collide with
the boundary walls, then these particles instantaneously ex-
change their momenta with the particles of the reservoirs,
whose momenta obey the distribution

P~p!5
upu
T

expF2
p2

T G , ~71!

where T5TL (TR) for the first ~the Nth) particle, respec-
tively. It should be noted that we have to adjust the positions
of the walls appropriately so that the particles of the system
and the walls may collide efficiently.

The phenomenological Fourier law is given by

J52k“T. ~72!

There are two methods to evaluate the thermal conductivity
from direct simulation of the stationary state.~1! Thermal
conductivity in a global sense is defined by

kG~N,T!52JNN/~TR2TL!. ~73!

HereJN is the time average of the energyDEn injected from
the ~cold and hot! reservoirs,

JN5 lim
t→`

1

t (
n51

m(t)

DEn . ~74!

DEn represents the energy exchange with the~cold and hot!
reservoirs.m(t) is the number of collisions with the reser-
voirs up to the timet. We may use the heat current averaged
over all sites:

JN5 lim
t→`

1

t E0

`

dt J̄N~ t !. ~75!

~2! Thermal conductivity in the local sense is defined as the
ratio between the local heat current and the local temperature
gradient.

We measure the thermal conductivity in the global sense.
In Fig. 8, we depict theN dependence of the thermal con-
ductivity determined by direct observation of the Fourier
law. In the high temperature regime, it behaves ask(N,T)
;N12d where 0,d!1, while in the low temperature re-
gime, it behaves ask(N,T);N0, i.e., normal conduction.

V. SUMMARY

We have shown that the ding-dong model, unlike the FPU
model, indeed exhibits normal conduction, at least in the low
temperature regime. This is the central result of this paper.

FIG. 6. Temperature dependence of the diffusion coefficient
DN : N550. As a result of fitting, it behaves likeDN(T);T2.65.
The number of samples for averaging is 300.

FIG. 7. Power spectrum of velocity of the tagged particle:N
5200. The tagged particle is the 100th one, namely, the middle
particle. From bottom to top,E/N50.5,1.0,2.0. The number of
samples for averaging is 250.
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As explained in Sec. I, we expect that the Dawson plasma
sheet model has the same energy transport properties. The
main difference between the FPU model and the ding-dong
model is the conserved quantity. For the FPU model the total
momentum is conserved, while for the ding-dong model it is
not conserved. Instead the ding-dong model has the different
conserved quantityC in Eq. ~6!. The anomalous properties of
the conductivity in the FPU model are justified in terms of
the conservation of total momentum, as pointed out by
Prosen and Campbell@6#. The application of their method to
the ding-dong model yields just the trivial inequalityk>0.
Therefore, for the ding-dong model there is a regime where
the system displays the normal conduction. However, for

high temperature, there is the possibility that the ballistic
motion destroys the normal conduction. This problem is re-
served for future study.

In order for FPU-type models to have normal thermal
conduction, the dimension should be larger than 1. In fact, in
@20#, it is shown that the two-dimensional FPU model still
has anomalous conduction, but the three-dimensional FPU
model seems to be normal.

Other examples in one dimension that display normal
conduction are the hyperbolic billiard system~the Lorentz
gas model, a pseudo-one-dimensional system! @18# and the
multibaker system with energy, which is a toy model of the
Lorentz gas model@19#. These models are independent par-
ticle systems. Therefore, these systems are essentially differ-
ent from the ding-dong model. The ding-dong model is one
of the rare examples of one-dimensional interacting particle
systems displaying normal conduction. Finally, a kinetic
theory for the ding-dong model has been investigated in@21#.
It will be published elsewhere.
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