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Equilibrium and stationary nonequilibrium states in a chain of colliding harmonic oscillators

Mitsusada M. Sano
Department of Fundamental Sciences, Faculty of Integrated Human Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan

~Received 21 April 1999!

Equilibrium and nonequilibrium properties of a chain of colliding harmonic oscillators~ding-dong model!
are investigated. Our chain is modeled as harmonically bounded particles that can only interact with neigh-
boring particles by hard-core interaction. Between the collisions, particles are just independent harmonic
oscillators. We are especially interested in the stationary nonequilibrium state of the ding-dong model coupled
with two stochastic heat reservoirs~not thermostated! at the ends, whose temperature is different. We check the
Gallavotti-Cohen fluctuation theorem@G. Gallavoti and E. G. D. Cohen, Phys. Rev. Lett.74, 2694~1995!# and
also the Evans-Searles identity@D. Evans and D. Searles, Phys. Rev. E.50, 1994 ~1994!# numerically. It is
verified that the former theorem is satisfied for this system, although the system is not a thermostated system.

PACS number~s!: 05.20.2y, 05.45.2a, 44.10.1i

I. INTRODUCTION

For more than a decade, nonequilibrium statistical me-
chanics has been revived by many authors from the micro-
scopic point of view. A vast literature related to this topic
has been published. It was actually a fruitful revival. The
main question there is, ‘‘How do the dynamical properties of
a given system explain phenomenology derived from
~non!equilibrium statistical mechanics?’’ A partial answer
has been is obtained for a class of hyperbolic systems. For
instance, the dynamical characterization of hydrodynamic
transport properties, especially diffusion, is obtained for ho-
mogeneous chaotic systems using the escape rate formalism
@1#. The second example is entropy production by defining
the time evolution of the Gibbs entropy for a given system
@2#. The phase space contraction plays an important role
there. Another formulation of entropy production does not
need the phase space contraction, but needs coarse graining
and the thermodynamic limit@3#. A third example is moti-
vated by the results of numerical simulation of nonequilib-
rium molecular dynamics~i.e., a thermostated system or
Nosé-Hover system! @4#. Proposing a guiding principle~the
so-called chaotic hypothesis!, the fluctuation of a stationary
nonequilibrium state is characterized by entropy production
@4#. The derived theorem is named the Gallavotti-Cohen
fluctuation theorem~the GCFT!.

One experimental verification of the GCFT can be carried
out for the heat conduction in a nonlinear lattice chain. Since
the work of Fermi, Pasta, and Ulam~FPU!, a number of
models have been numerically investigated. Recently, an ex-
perimental verification of the GCFT has been done for a FPU
b chain with a thermostat@5#. Furthermore, stimulated by the
work of @4#, the uniqueness of a stationary nonequilibrium
state and the existence of entropy production in stochasti-
cally driven nonlinear lattice chain have been rigorously
proved@6#. In this paper, we treat a different model from@5#,
and additionally, under a different condition~stochastic
boundary condition!. More precisely, we investigate equilib-
rium and stationary nonequilibrium states in the ding-dong
model coupled with a heat reservoir, not a thermostat, espe-
cially the Fourier law and entropy production. A detailed

investigation of the Fourier law and the Green-Kubo relation
of heat conduction for the ding-dong model is found in@7#.
Our aim here is to verify the GCFT@4# and another theorem
@the Evans-Searles~ES! identity# @8# which concerns the en-
semble of initial conditions, for the ding-dong model with a
heat reservoir, not a thermostat. As mentioned in@9#, a math-
ematical proof of the GCFT for this type of system~dynami-
cal system1 stochastic heat reservoir! is beyond present
mathematical ability.~See also@10# for a generalization to
Langevin dynamics.! Thus we carry out a numerical compu-
tation. As a result, we present an example of the verification
of the GCFT under the stochastic boundary condition.

The organization of this paper is as follows. In Sec. II, we
introduce the ding-dong model. In Sec. III, the equilibrium
property of the ding-dong model is examined numerically. In
Sec. IV, the stationary nonequilibrium state of the ding-dong
model is investigated. We consider heat conduction and en-
tropy production. The GCFT and ES identity are checked
numerically. In Sec. V, we summarize our conclusions.

II. DING-DONG MODEL

We introduce the ding-dong model@7# which was intro-
duced as a simplified model of the ding-a-ling model@11# in
the context of heat conduction. The ding-a-ling model con-
sists of harmonic oscillators placed on a line with free par-
ticles. The free particles are placed between each neighbor-
ing harmonic oscillator. In this model, the interaction is the
elastic collision between the neighboring free particle and
the particle of the oscillator. Between collisions, the free par-
ticles and harmonic oscillators move independently. The
ding-dong model is obtained by just removing all free par-
ticles in the ding-a-ling model. Thus, in this case, the neigh-
boring harmonic oscillators can elastically collide with each
other. It is not well known, but the ding-dong model is
equivalent to Dawson’s one-dimensional plasma sheet model
@12–16#. Thus, the ding-dong model is never an artificial
model, but a physical model. The Hamiltonian of the ding-
dong model is given as
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with the elastic constraint

qi 1111>qi . ~2!

qi represents the displacement from thei th lattice point. For
our convenience, we set the lattice constant toa51. Par-
ticles move as harmonic oscillators around the lattice point,
but can collide with the nearest neighbor particles to ex-
change energy. Some statistical properties of the ding-dong
model have been investigated by several authors: Kitahara
et al. @13–16# for the properties of a one-dimensional plasma
and Prosen and Robnik@7# for heat conduction~the Fourier
law! by extensive numerical calculation.

Here we comment on one point of the numerical aspects
of the ding-dong model. Since particles are arranged in a
one-dimensional line and collide with each other, this model
has numerical merit. Almost the time of numerical time evo-
lution is spent for the calculation of the next collision time.
In this case, the use of the heap sort algorithm accelerates the
numerical calculation.

Next we show the setup of time evolution of the ding-
dong model and explain approximately the behavior of the
system, i.e., chaoticity. Detailed investigation of the ding-
dong model is found in@7#. First we note the following point.
We investigate the statistical behavior of the ding-dong
model. Thus we consider only two-body collisions, since it is
expected that three-body and higher-body collisions are
events with Lebesgue measure zero. Therefore, ‘‘collision’’
means a two-body collision hereafter. We denote astk the
time that thekth collision occurs and$tk%k52`

1` is a set of
collisions. Further, we set the intercollision timetk as

tk5tk2tk21 . ~3!

The collision is elastic. Then if thei th particle collides with
the (i 11)th particle, after collision, their momenta are ex-
changed:

pi
15pi 11

2 , ~4!

pi 11
1 5pi

2 , ~5!

where i 51,2, . . . ,N21. Between collisions, the system
obeys the following Hamiltonian equation of motion:

d

dt
qi5pi ,

d

dt
pi52qi . ~6!

The map from thekth collision to the (k11)th collision can
be constructed as

F5FcollisionsFoscillator
t(xk) , ~7!

where x5(q1 ,q2 , . . . ,qN ,p1 ,p2 , . . . ,pN)Á. t(x) is the
time that the next collision occurs starting from the pointx.
t(x) is called the ceiling function.xk is the position and
momentum at thekth collision.Fcollision for the collision be-
tween thei th and the (i 11)th particles is given as

¨

q1
1

q2
1

A

qN
1

p1
1

p2
1

A

pi
1

pi 11
1

A

pN
1

©
5

¨

1 0 0 0 0 ••• 0 0 ••• 0

0 1 0 0 0 ••• 0 0 ••• 0

A � A � 0 0 ••• A

0 0 1 0 0 ••• 0 0 ••• 0

0 0 ••• 0 1 0 ••• 0 0 ••• 0

0 0 ••• 0 0 1 ••• 0 0 ••• 0

A � A A A

0 0 ••• 0 0 0 ••• 0 1 ••• 0

0 0 ••• 0 0 0 ••• 1 0 ••• 0

A � A A A

0 0 ••• 0 0 0 ••• 0 0 ••• 1

© ¨

q1
2

q2
2

A

qN
2

p1
2

p2
2

A

pi
2

pi 11
2

A

pN
2

©
. ~8!

Foscillator
t(xk) is given as
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1
q1„tk1t~xk!…

q2~ tk1t~xk!!

A

qN„tk1t~xk!…

p1„tk1t~xk!…

p2„tk1t~xk!…

A

pN„tk1t~xk!…

2 51
p1~ tk!sin@t~xk!#1q1~ tk!cos@t~xk!#

p2~ tk!sin@t~xk!#1q2~ tk!cos@t~xk!#

A

pN~ tk!sin@t~xk!#1qN~ tk!cos@t~xk!#

p1~ tk!cos@t~xk!#2q1~ tk!sin@t~xk!#

p2~ tk!cos@t~xk!#2q2~ tk!sin@t~xk!#

A

pN~ tk!cos@t~xk!#2qN~ tk!sin@t~xk!#

2 , ~9!

wherexk is the kth collision point. With the condition that
the center of mass is zero, if we carry out a certain canonical
transformation,

x5~q,p!°X5~Q,P!, ~10!

whereQ5(Q1 , . . . ,QN21),P5(P1 , . . . ,PN21), then after
diagonalization, we obtain the Hamiltonian finally:

H5
1

2 (
i 51

N21

~l iQi
21m i Pi

2!5E, ~11!

where thel i ’s andm i ’s are determined by the diagonaliza-
tion. The elastic constraint Eq.~2! now becomes

F ( i )~Q![ (
k51

N21

~Uik2Ui 11 k!Qk<1, ~12!

where i 51,2, . . . ,N21 and Uik is the matrix element for
the diagonalization. The Hamiltonian is for an
(N21)-dimensional anisotropic harmonic oscillator with
hard walls satisfying Eq.~12!. We can check that the hard
walls surround the stable equilibrium point at the origin.
Hence if the total energy is sufficiently low, the system is
integrable. Because the trajectory goes around the stable
equilibrium point, there is a critical value of the total energy
for chaos@7#. But when the total energy is high enough, the
system behaves like an integrable system. In this case, the
particle moves ballistically and collides with the walls de-
fined in Eq.~12!. Therefore, in the intermediate total energy
range, the system exhibits chaos. From numerical calculation
for a few-body system, in this range, the system seems to be
nonhyperbolic@15#. But we expect that a chaotic sea domi-
nates the phase space in this energy range of a system with a
sufficiently large number of particles and the system has ef-
fectively an important requirement of the GCFT, i.e., the
transitive Anosov property.

III. EQUILIBRIUM PROPERTIES

In this section, we show the equilibrium properties of the
ding-dong model. First, in order to characterize how particles
interact with each other, we calculate the intercollision time
distribution. Numerical calculation was done for the total
energy E5120 and the number of particlesN5100. The
result obtained is depicted in Fig. 1. The distribution shows

good agreement with the exponential distribution

P~t!dt5ae2atdt, ~13!

where a depends on the total energy and the number of
particles. This implies that particles randomly collide with
each other.

Second, we check the velocity distribution. Figure 2
shows the result starting from a certain random initial con-
dition with the total energyE52500 and the total number of
particlesN52500 after 10 000 collisions. The distribution
well fits a Gaussian distribution, namely, the Maxwell distri-
bution. Therefore, in some sense, the system is expected to
behave as a gas system.

Third, we consider the heat current in the ding-dong
model. We define the heat current at thekth collision be-
tween thei th and (i 11)th particles:

FIG. 1. Intercollision time distributionN5100,E5120. ~a! The
plot is obtained after 105 collisions.~b! Log scale of~a!.
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2
~pi 112pi !~pi 11

2 2pi
2!d~qi 112qi11!d~ t2tk!.

~14!

The heat current distribution is depicted in Fig. 3. The plot is
obtained forN5250, E5250. The distribution has an unfa-
miliar form and is symmetric with respect toj 50.

These three distributions in the equilibrium state will be
compared with those in the stationary nonequilibrium state in
Sec. IV. In particular, we will remark the deviation from the
equilibrium case in the stationary nonequilibrium state.

IV. STATIONARY NONEQUILIBRIUM STATE, THERMAL
CONDUCTION, AND ENTROPY PRODUCTION

In this section, we investigate the stationary nonequilib-
rium state of the ding-dong model, especially the Fourier law

and entropy production.
Before introducing the recent theory, we recall the follow-

ing two important facts from thermodynamics. A system
coupled to heat reservoirs having different temperature at the
boundaries obeys the Fourier law

j5k“T, ~15!

wherej is the heat current vector andk is the heat conduc-
tivity. The entropy productions(x) is defined as

s~x!5 j•“S 1

TD . ~16!

Thus the total entropy productionS of the domain with lin-
ear temperature gradient for a one-dimensional system is

S5E
L

R

dx s~x!5 j S 1

TR
2

1

TL
D , ~17!

whereTL and TR are the temperature of the left and right
heat reservoirs, respectively. Later, this result will be com-
pared with the numerical calculation of the GCFT and ES
identity.

A. Gallavotti-Cohen fluctuation theorem
and Evans-Searles identity

We here briefly summarize the GCFT@4# and the ES
identity @8#. The original derivation was for two-dimensional
shearing flow with a thermostat@4#. We assume that the sys-
tem is chaotic. More precisely,~A! the system is a transitive
Anosov system. Further, we assume that~B! the system is
dissipative and~C! the system is time-reversible. The en-
tropy production is defined as the contraction rate of the
phase space volume@2#. The condition~B! implies that the
entropy production is positive for this setting. Dynamical
characterization of entropy production starts from the idea of
Sinai, Ruelle, and Bowen~SRB!, i.e., the construction of the
SRB measurem̄. The SRB measure can be constructed by
the expansion coefficient of the Poincare´ map St. Here we
consider the finite time average of the entropy production at
x:

st~x!5
1

t (
j 52t/2

t/221

s~Sjx!5^s&at~x!, ~18!

whereS is the Poincare´ map. Fluctuation of the entropy pro-
duction from its mean value is characterized byat(x). We
denotept(p)dp5P(atP(p,p1dp)) the probability mea-
sure for at . We consider the ratio of the probabilities
pt(p)dp andpt(2p)dp. The GCFT is the following rela-
tion:

pt~p!

pt~2p!
5et^s&p. ~19!

The proof is given by using the construction of the SRB
measure~i.e., the expansion coefficient!. For the detailed
derivation, see@4#. This relation is considered to be the result
of the large deviation property. In the next subsection, for the
stationary nonequilibrium state of the ding-dong model, we

FIG. 2. Velocity distribution forN52500,E52500. Starting
from a certain initial condition and after long time evolution, this
plot is obtained. The dotted line is Gaussian fitting.

FIG. 3. Heat current distribution forN5250,E5250. ~a! Nor-
mal scale. The plot is obtained after 105 collisions.~b! Log scale of
~a!.
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check the linearity of lnpt(p)/pt(2p) in p. In our experi-
ment, we do not use a thermostat, but a stochastic heat res-
ervoir. Therefore, in the strict sense, the numerical experi-
ments carried out in quite different conditions from those of
the GCFT. As a dynamical system, the condition~A! is ef-
fectively valid, and the condition~B! is valid. But the condi-
tion (C), i.e., time-reversality, should be replaced by the
terminology of stochastic dynamics. On the other hand, the
ES identity concerns the ensemble of initial conditions@8#:

mL~Ep!

mL~E2p!
5et^s&p, ~20!

wheremL represents the Liouville measure andEp is the set
of initial conditions having the valuep of the observable.
The formula is very similar to the GCFT. But the ES identity
measures transient behavior toward the stationary state. We
have to carefully distinguish them. The difference between
the two theorems is explained in detail in@17#.

B. Numerical results

Let us define the heat reservoir. We set the walls at the
ends of the system. The other side of the wall is the heat
reservoir. In the numerical calculation, we set the walls at the
first lattice point minus 0.8 and at theNth lattice point plus
0.8. All numerical calculation has been done in this setting.
The momentum of particles in the heat reservoir is distrib-
uted according to the distribution

P~p!dp5
upu
T

expS 2
p2

2TDdp. ~21!

For the left~right! reservoir, we take the plus~minus! sign of
momentum. This setting of the heat reservoir is very impor-
tant @18#. We set the temperature of the heat reservoir at the
endsTL ~left! andTR ~right!, respectively. When a particle at
the ends (i 51,N) collides with the wall, the particle instan-
taneously collides with a particle inside the heat reservoir.
The temperature of the heat reservoir is set toTL52.0 and
TR51.5, which were well checked the Fourier law in@7#.
The local temperatureTk around thekth particle is defined as

Tk5^pk
2&. ~22!

^•••& means the time average or phase space average. For
numerical calculation, we use the time average.

First we check the Fourier law. Figure 4 is the tempera-
ture profile (N550,TL52.0,TR51.5). The end plots corre-
spond to the temperature of the left and right heat reservoirs,
respectively. There is an edge effect. The temperature of the
end of the bulk at the left~right! is notTL (TR), respectively.
~This edge effect can be removed by the trick in@7#. We also
used this trick and have done a few numerical calculation.
The result of that is similar to that in this paper. Thus the
edge effect does not change the conclusion of the verification
of the GCFT.! Relaxation to the stationary nonequilibrium
state is very slow. We check the stationary condition from
the constancy of the time-averaged local current and tem-
perature. The temperature profile is still a zigzag shape, not
smooth, but we can see the linear dependence of the Fourier
law.

In order to check the statistical difference between the
equilibrium state and the stationary nonequilibrium state, we
check three distributions investigated for equilibrium states
in Sec. III. In Fig. 5, the distribution of intercollision time is
depicted (N5250,TL52.0,TR51.5). After 105 collisions
and 33106 collisions, 105 collisions are sampled. The mean
intercollision time is on the order of 1022 for this case. The
distribution obtained well fits an exponential distribution.
This shows that the collisions occur randomly. Compared
with the equilibrium case, we cannot see a difference. But in
the following two distributions, we can see the difference
between the equilibrium state and the stationary nonequilib-
rium state.

In Fig. 6, the velocity distribution is shown. As expected,
the distribution shows good agreement with a Gaussian dis-

FIG. 4. Temperature distributionN550,TL52.0,TR51.5. The
plot is obtained starting from a certain initial condition, and after
53106 collisions. The end plots correspond to the temperatures of
the left and right heat reservoirs.

FIG. 5. Intercollision time distributionN5250,TL52.0,TR

51.5. ~a! The plot is obtained after 105 collisions and 33106 col-
lisions. ~b! Log scale of~a!.
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tribution ~i.e., the Maxwell distribution!, but toward the sta-
tionary state, gradually the tail of the distribution becomes
asymmetric. This asymmetry suggests energy transfer. This
asymmetry is naturally observed in the heat current distribu-
tion.

Time variation of the heat current distribution is depicted
in Fig. 7. Note that the distribution is not Gaussian as in the
equilibrium state. After a long run, the tail of the distribution
becomes asymmetric, which seems to be evidence of station-
ary energy transfer. We remark that in the stationary non-
equilibrium state, the velocity distribution and heat current
distribution are asymmetric in their tails. The stationary non-
equilibrium state is close to the equilibrium state in some
sense.

In Fig. 8~a!, the spatial distribution of the time-averaged

heat currentj̄ i ,t5(1/t)* t
t1t j i(t8)dt8 is depicted. It was ob-

tained after 33106 collisions starting from a certain initial
condition. Although there is still fluctuation, the heat current
is almost constant over all sites. In Fig. 8~b! the relaxation of

the mean heat currentJt5(1/N)( i 51
N j̄ i ,t is depicted forN

550. The relaxation is very slow.
The entropy production can be checked by using Eq.~19!

~the GCFT! and Eq.~20! ~the ES identity!. We define the
distribution ofPt(z) of the following quantityz:

z5
Jt

J`
. ~23!

In this case, the GCFT becomes

ln
Pt~z!

Pt~2z!
5tzS5tzJ̀ S 1

TR
2

1

TL
D . ~24!

We consider that the system does not possess a thermostat,
but has a stochastic heat reservoir. Thus this relation is not so
trivial for our system. It is worth testing Eq.~24! numeri-
cally.

First, we check the ES identity for our ding-dong model
with a heat reservoir. In Fig. 9, we show the result (N
5100,TL52.0,TR51.5). In Fig. 9~a!, the time evolution of
the mean heat current distribution is depicted. Figure 9~a! is

FIG. 6. Velocity distributionN5250,TL52.0,TR51.5. The plot
is obtained starting from a certain initial condition, up to 105 colli-
sions and 33106 collisions. ~a! Initial (105 collisions! and final
(33106 collisions! distribution. ~b! Log scale. The distribution
tends to a Gaussian distribution but the tail of the distribution is
asymmetric.

FIG. 7. Heat current distributionN5250,TL52.0,TR51.5,
starting from a certain initial condition, for 105 collisions and 3
3106 collisions After sufficient time evolution, the tail of the dis-
tribution becomes asymmetric.

FIG. 8. Spatial distribution of heat current and relaxation of
mean heat current~a! Spatial distribution of heat current that oc-
curred up to 33106 collisions starting from a certain initial con-
figuration. N5250,TL52.0,TR51.5 ~b! Relaxation of mean heat
current.N550,TL52.0,TR51.5.
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obtained from the time evolution of 50 000 random initial
configurations. The initial condition is prepared as follows.
We checked and fixed the mean average of the total energy.
With this total energy, the initial position and momentum are
randomly sampled. It seems that the distribution tends to a
limiting form obeying the central limit theorem. From nu-
merical calculation,J` can be estimated asJ`'0.400 and
also TR8'1.66, TL8'1.87 ~the temperatures of the particles
n5N and 1, respectively!. The entropy production is now
S[J`(1/TR821/TL8)'0.0271. Note thatS is obtained from
the actually observed temperature slope of the bulk. In Fig.
9~b!, we check the ES identity. We can see the linearity of
(1/t)ln@m(z)/m(2z)# in z clearly, which suggests that the ES
identity holds and the entropy production is nonzero. But the
entropy production is below our theoretical prediction. Sev-
eral reason can be considered:~1! the difficulty of prepara-
tion of the ensemble of initial conditions;~2! the system does
not reach the stationary state;~3! the boundary effect;~4! the
size effect, i.e., the thermodynamic limit. Among these pos-
sibilities, we believe that the reason is points~1! and ~2!,
especially point~2!. In order to check this, we are actually
doing a long-time run. However, our CPU power is not suf-
ficient for this numerical calculation~i.e., long time for the
stationarity and ensemble average!. It is estimated that it will
take about two months on our machine, so this problem is
reserved for future study.

The GCFT can be checked by long-time run of one tra-
jectory toward the stationary nonequilibrium state. In Fig.
10, we depict the numerical result. Figure 10~a! is obtained

from a long-time run. Numerically we estimateJ`'0.469,
TR8'1.70 ~site n5N), TL8'1.86 ~site n51). Thus, S
'0.0237. Figure 10~b! clearly shows that the linear depen-
dence onz and the slope agrees with the theoretical predic-
tion of S. It is surely shown that the entropy production of
thermodynamics coincides with the entropy production of
the GCFT.

V. SUMMARY

We have investigated nonequilibrium properties of the
ding-dong model coupled with a heat reservoir motivated by
the work of@4,5,8,9#. We have checked the Fourier law and
entropy production in this model. Numerical calculation has
shown that the GCFT holds and the entropy production is
surely nonzero. Therefore, we obtain strong evidence that the
GCFT is valid for the case of a heat reservoir~stochastic
boundary condition!. In this sense, the numerical result sug-
gests that the GCFT may be generalized to the case of a
stochastic boundary condition as was tried in@9#. For the ES
identity, a careful check is needed again. We believe that the
discrepancy is due to the lack of stationarity. This point will
be clarified in future work.
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FIG. 9. Check of the ES identity.~a! Heat current distribution
mt(z) (t530,60,90) obtained from 50 000 random initial condi-
tions. ~b! J vs (1/t)ln@mt(z)/mt(2z)#, t530,60,90. N5100,TL

52.0,TR51.5. The line labeled ‘‘Theory’’ corresponds to the the-
oretical slopeS.

FIG. 10. Check of the GCFT.~a! Heat current distributionPt(z)
(t530,60,90) obtained from a given trajectory.~b! J vs
(1/t)ln@Pt(z)/Pt(2z)#, t530,60,90. N550,TL52.0,TR51.5. The
line labeled ‘‘Theory’’ corresponds to the theoretical slopeS. The
GCFT prediction agrees with the theory.
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