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1 Introduction

Let F(z) be analytic and univalent in the unit disc E = {z | |z| < 1} and let D = F(E) be
the image of E under the mapping w = f(z). Let f(z) be analytic in E, but not necessarily
univalent, and f(E) C D. Then f(z) is said to be subordinate to F(z) in E, denoted by

f(z) < F(2). It is well known that if f(z) < F(2) in E, then there exists a function w(z),
analytic in E and with |w(2)| < 1, such that

#(z) = F(w(2)), 2 €E.
If £(0) = F(0), then w(0) = 0 and |w(2)| < |2| in E.

Rogosinski[1] proved the following theorem.
Theorem A. Let f(z) < F(z) in E. Then
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where 0 <pand 0<r < 1.

2 Obtained results
Theorem 1. Let f(z) < F(z) in E and F(z) #0 in E.

Then
/ " 1 de < / > 1 do
o |f(re®)P = Jo |F(re?)lr

where 0 <pand0<r <1.
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Proof.  From the assumption of the Theorem, f(z)? and F(z)™? are analytic in E and so,
from the Poisson integral form of harmonic function theory, we have
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fz)p — F(w(z))
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where z = re?, ( = Re*?, |z] =r < |{| = R < 1, and |w(2)] < |2].

Since ¢ +u(2) v
w(z ]
Rﬁ((-w(z)) >0inE,

it follows that
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Putting R — r, we have
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Prof. Owa (Kinki Univ.) pointed out another proof as the following : if f(z) < F(z) in
E and F(z) # 0 in E, then 7(1—2-)- < 'ile)' and applying Theorem A, we can obtain a proof of
Theorem 1. '

From Theorem A and Theorem 1, we obtain the following theorem.

Theorem 1'. Let f(z) < F(z) in E and F(2) # 0 in E.

Then
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where p 1s arbitrary real number and 0 < r < 1.

Theorem 2. Let f(2) < F(2) = 2™(am + 0m+12 + Gme22> +...) in E and let z,
k=1,2,3,...,n,0< || < |22| < |z3] € -+ < |z|, are the zeros of F(z) in E which are to
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be written with their multiplicities. ’
Then, if F(2) # 0 on certain circle |z} =r < 1, z = re', we have
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where 0 < p.

Proof. Without generalization, we can choose R, 0 < R < 1 in such a manner that
F(z) # 0 on the circle |2| = R. Let us construct a function B(z) which has the same zeros
with the same multiplicities in |2] < R < 1 as F(z) has, and so, we choose

{
_(*\" 11 B(2 — =)
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Putting () ) .
9(z) = (F( )), 0<p and z=re

then g(2) is analytic in |z| < R and g(2) # 0 in |z| < R. From the Poisson integral form of
harmonic functions, we have

o) =55 [ ol0me(EEE) do

where |z] =r < |(| = R < 1 and { = Re.
Then, we have |
- w o (F0) ™ (E50) %

Re(gtzgg)>0 in |2| <R,

Here, we have

|B(w(z))] <1 on |zl=r<R<1,
and
[BOI=1 on [{|=
Then, it follows that
1 [BGen)r
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2 oea (6) ™ (555) 0
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Putting R — r, we have
2x 1 kI.—-Il lzkl
‘/0‘ Mdﬁ > 27 —r'—"T';—
This completes the proof of Theorem 2.
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