

Title	On Rogosinski theorem(Study on Calculus Operators in Univalent Function Theory)
Author(s)	Nunokawa, Mamoru
Citation	数理解析研究所講究録 (2007), 1538: 51-54
Issue Date	2007-02
URL	http://hdl.handle.net/2433/59046
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On Rogosinski theorem

Mamoru Nunokawa

Emeritus Professor of University Gunma Hoshikuki-cho 798-8, Chuo-ward, Chiba 260-0808, Japan e-mail: mamoru_nuno@doctor.nifty.jp

1 Introduction

Let F(z) be analytic and univalent in the unit disc $\mathbb{E} = \{z \mid |z| < 1\}$ and let $D = F(\mathbb{E})$ be the image of \mathbb{E} under the mapping w = f(z). Let f(z) be analytic in \mathbb{E} , but not necessarily univalent, and $f(\mathbb{E}) \subset D$. Then f(z) is said to be subordinate to F(z) in \mathbb{E} , denoted by $f(z) \prec F(z)$. It is well known that if $f(z) \prec F(z)$ in \mathbb{E} , then there exists a function w(z), analytic in \mathbb{E} and with |w(z)| < 1, such that

$$f(z) = F(w(z)), z \in \mathbb{E}.$$

If f(0) = F(0), then w(0) = 0 and $|w(z)| \le |z|$ in E.

Rogosinski[1] proved the following theorem. **Theorem A.** Let $f(z) \prec F(z)$ in E. Then

$$\int_0^{2\pi} |f(re^{i\theta})|^p d\theta \le \int_0^{2\pi} |F(re^{i\theta})|^p d\theta$$

where 0 < p and $0 \le r < 1$.

2 Obtained results

Theorem 1. Let $f(z) \prec F(z)$ in \mathbb{E} and $F(z) \neq 0$ in \mathbb{E} . Then

$$\int_0^{2\pi} \frac{1}{|f(re^{i\theta})|^p} d\theta \le \int_0^{2\pi} \frac{1}{|F(re^{i\theta})|^p} d\theta$$

where 0 < p and $0 \le r < 1$.

Proof. From the assumption of the Theorem, $f(z)^{-p}$ and $F(z)^{-p}$ are analytic in \mathbb{E} and so, from the Poisson integral form of harmonic function theory, we have

$$\frac{1}{f(z)^p} = \frac{1}{F(w(z))^p}$$

$$= \frac{1}{2\pi} \int_{|\zeta|=R} \frac{1}{F(\zeta)^p} \left(\operatorname{Re} \frac{\zeta + w(z)}{\zeta - w(z)} \right) d\zeta$$

where $z = re^{i\theta}$, $\zeta = Re^{i\varphi}$, $|z| = r < |\zeta| = R < 1$, and $|w(z)| \le |z|$. Since

$$\operatorname{Re}\left(rac{\zeta+w(z)}{\zeta-w(z)}
ight)>0\ in\ \mathbb{E},$$

it follows that

$$\int_{0}^{2\pi} \frac{1}{|f(re^{i\theta})|^{p}} d\theta$$

$$\leq \int_{0}^{2\pi} \frac{1}{2\pi} \int_{|\zeta|=R} \frac{1}{|F(\zeta)|^{p}} \left(\operatorname{Re} \frac{\zeta + w(z)}{\zeta - w(z)} \right) d\varphi d\theta$$

$$= \frac{1}{2\pi} \int_{|\zeta|=R} \int_{0}^{2\pi} \frac{1}{|F(\zeta)|^{p}} \left(\operatorname{Re} \frac{\zeta + w(z)}{\zeta - w(z)} \right) d\theta d\varphi$$

$$= \frac{1}{2\pi} \int_{|\zeta|=R} \left\{ \frac{1}{|F(Re^{i\varphi})|^{p}} \int_{|z|=r} \left(\operatorname{Re} \frac{\zeta + w(z)}{\zeta - w(z)} \right) \frac{dz}{iz} \right\} d\varphi$$

$$= \int_{0}^{2\pi} \frac{1}{|F(Re^{i\varphi})|^{p}} d\varphi$$

Putting $R \to r$, we have

$$\int_0^{2\pi} \frac{1}{|f(re^{i\theta})|^p} d\theta \leq \int_0^{2\pi} \frac{1}{|F(re^{i\theta})|^p} d\theta.$$

Prof. Owa (Kinki Univ.) pointed out another proof as the following: if $f(z) \prec F(z)$ in \mathbb{E} and $F(z) \neq 0$ in \mathbb{E} , then $\frac{1}{f(z)} \prec \frac{1}{F(z)}$ and applying Theorem A, we can obtain a proof of Theorem 1.

From Theorem A and Theorem 1, we obtain the following theorem.

Theorem 1'. Let $f(z) \prec F(z)$ in \mathbb{E} and $F(z) \neq 0$ in \mathbb{E} .

Then

$$\int_0^{2\pi} |f(re^{i\theta})|^p d\theta \leq \int_0^{2\pi} |F(re^{i\theta})|^p d\theta$$

where p is arbitrary real number and $0 \le r < 1$.

Theorem 2. Let $f(z) \prec F(z) = z^m (a_m + a_{m+1}z + a_{m+2}z^2 + ...)$ in \mathbb{E} and let z_k , $k = 1, 2, 3, ..., n, 0 < |z_1| \le |z_2| \le |z_3| \le ... \le |z_n|$, are the zeros of F(z) in \mathbb{E} which are to

be written with their multiplicities.

Then, if $F(z) \neq 0$ on certain circle |z| = r < 1, $z = re^{i\theta}$, we have

$$\int_0^{2\pi} \frac{1}{|f(re^{i\theta})|^p} d\theta \geq \frac{2\pi}{r^{m+n}} \prod_{k=1}^n |z_k|$$

where 0 < p.

Proof. Without generalization, we can choose R, 0 < R < 1 in such a manner that $F(z) \neq 0$ on the circle |z| = R. Let us construct a function B(z) which has the same zeros with the same multiplicities in |z| < R < 1 as F(z) has, and so, we choose

$$B(z) = \left(\frac{z}{R}\right)^m \prod_{k=1}^l \frac{R(z-z_k)}{R^2 - \bar{z}_k z}, \quad l \leq n.$$

Putting

$$g(z) = \left(\frac{B(z)}{F(z)}\right)^p, \quad 0$$

then g(z) is analytic in |z| < R and $g(z) \neq 0$ in |z| < R. From the Poisson integral form of harmonic functions, we have

$$g(z) = \frac{1}{2\pi} \int_{|\zeta|=R} g(\zeta) \operatorname{Re}\left(\frac{\zeta+z}{\zeta-z}\right) d\varphi$$

where $|z| = r < |\zeta| = R < 1$ and $\zeta = Re^{i\varphi}$.

Then, we have

$$\begin{split} \left(\frac{B(w(z))}{F(w(z))}\right)^p &= \left(\frac{B(w(z))}{f(z)}\right)^p \\ &= \frac{1}{2\pi} \int_{|\zeta|=R} \left(\frac{B(\zeta)}{F(\zeta)}\right)^p \operatorname{Re}\left(\frac{\zeta+w(z)}{\zeta-w(z)}\right) d\varphi. \end{split}$$

Here, we have

$$\operatorname{Re}\left(\frac{\zeta + w(z)}{\zeta - w(z)}\right) > 0 \quad in \quad |z| < R,$$

$$|B(w(z))| < 1$$
 on $|z| = r < R < 1$,

and

$$|B(\zeta)| = 1$$
 on $|\zeta| = R$.

Then, it follows that

$$\frac{1}{|f(re^{i\theta})|^p} > \frac{|B(w(re^{i\theta}))|^p}{|f(re^{i\theta})|^p} \\
= \left| \frac{1}{2\pi} \int_{|\zeta|=R} \left(\frac{B(\zeta)}{F(\zeta)} \right)^p \operatorname{Re} \left(\frac{\zeta + w(z)}{\zeta - w(z)} \right) d\varphi \right|.$$

Therefore, we have

$$\int_{0}^{2\pi} \frac{1}{|f(re^{i\theta})|^{p}} d\theta$$

$$> \int_{0}^{2\pi} \left| \frac{1}{2\pi} \int_{|\zeta|=R} \left(\frac{B(\zeta)}{F(\zeta)} \right)^{p} \operatorname{Re} \left(\frac{\zeta + w(z)}{\zeta - w(z)} \right) d\varphi \right| d\theta$$

$$= \left| \frac{1}{2\pi} \int_{|\zeta|=R} \left(\frac{B(\zeta)}{F(\zeta)} \right)^{p} \int_{0}^{2\pi} \operatorname{Re} \left(\frac{\zeta + w(z)}{\zeta - w(z)} \right) d\theta d\varphi \right|$$

$$= \left| \int_{|\zeta|=R} \left(\frac{B(\zeta)}{F(\zeta)} \right)^{p} d\varphi \right|$$

$$= \left| \int_{|\zeta|=R} \left(\frac{B(\zeta)}{F(\zeta)} \right)^{p} \frac{d\zeta}{i\zeta} \right|$$

$$= \left| 2\pi \left(\frac{B(0)}{F(0)} \right)^{p} \right|$$

$$= 2\pi \frac{\prod_{k=1}^{l} |z_{k}|}{R^{m+l}} > 2\pi \frac{\prod_{k=1}^{l} |z_{k}|}{R^{m+n}}.$$

Putting $R \to r$, we have

$$\int_0^{2\pi} \frac{1}{|f(re^{i\theta})|^p} d\theta > 2\pi \frac{\prod\limits_{k=1}^n |z_k|}{r^{m+n}}.$$

This completes the proof of Theorem 2.

References

[1] W.Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., (2), 48(1943), 48-82.