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HODGE DECOMPOSITION OF L"-VECTOR FIELDS ON A
BOUNDED DOMAIN AND ITS APPLICATION TO THE NAVIER
STOKES EQUATIONS

FREFRYE-H - %% H8 = (TAKU YANAGISAWA)
DEPARTMENT OF MATHEMATICS,
NARA WOMEN'’S UNIVERSITY
(RAER% - # - W% SWEER L OXFRFE)

ABSTRACT. We present two types of decomposition of L™-vector fields on a
bounded domain in R® into the sum of the scalar and vector potentials, and
the harmonic vector fields with adequate boundary conditions. These decom-
positions concern an extension of Friedrichs’ inequality into L"-space and some
variational inequalities of vector fields which are tangential or normal to the
boundary. As the application of these decompositions, we further present some
existence theorems of solutions of nonhomogeneous boundary value problems
for the stationary Navier-Stokes equations in a bounded domain with multiply
connected boundary.

1. HODGE DECOMPOSITION OF L"-VECTOR FIELDS ON A BOUNDED DOMAIN

In this section, we present the Hodge (or Helmholtz-Weyl) decomposition theo-
rem of L™-vector fields on a bounded domain in R3. In what follows, Q2 is assumed
to be a bounded domain in R® with the C°°-boundary.
First, let us recall the generalized trace theorem for the normal and tangential
components on 65 of the vector fields in the following spaces:
70 () = {u € (L"(Q))3 | divu € L7() } with the norm lulleg,, = Il + [Idivull.,
rot (@) = {u € (L7(2))? | rotu € (L7(Q))* } with the norm |lul|gr,, = |[ull» + |[rot u]l-,

rot

~ where || - || denotes the norm in L"(f2) or (L"())3. It is known that there exist
bounded operators v, and 7, on the E}, (Q) and ET,,(Q) with properties that

v u€EL () — yueWl T (80)*, yu=u-v|sifue C(f),
T i u€ Ely(Q) — mue(WIFT00)*)°, rnu=uxvleifue Cl{),

where v is the outward unit normal to 80 and X* denotes the dual space of the
Banach space X. In fact, these properties are easily derived from the generalized
Stokes formulas such that :
(1) (W Vf)=-(divy, )+ < nu,vf >sn

for all u € E5,, () and all f € W™ (),

(2) (u,rot ¢) = (rotu,¢)+ < TV, Yo >o0

for all u € ET,,() and all ¢ € (WL ()3,
where 7, denotes the usual trace operator from W™ () onto W=+ (89); (-,-)
is the inner product in L2(2) or (L2(R))3; < -,- >aq is the duality pairing between
W= (80)* and W=7 (80) or its vectorial version.



Then, let us define two spaces X" () and V() for 1 < r < oo by
X"(Q) = {ue(L"(N)?|divu € L™(Q), rotu € (L7(N))3, v,u = 0},
Vi) = {ue (L7(N))®|divu € L™(N), rotu € (L™())?, ru = 0},
equipped with the norm ||u||x- and [|u||y- such that
llullx~, [lellve = (divullr + |irot ull, + [lull-.
In Theorem 1.8 below, we shall see that both X" (2) and V" () are closed subspaces
in (W1r(Q))3, since it holds that
3) |IVullr < Cllu|lx- for allu € X"(Q), ||[Vull, < Cllully- for allu € V"(Q)
respectively, where C' = C(r, ) is a constant depending only on r and Q. Further-
more, we define the spaces X[ (?) and V] (92) by
X ={ueX"(Q)|divu=0inQ}, VJ(Q) = {u € V' () |divu = 0in Q}.
Finally, we denote by X7 ,.(2) and V},..(2) the space of L™~ harmonic vector fields
on (2, that is,
Xhar() = {ue X;(2)|rotu =0 inN},
Vi () = {u e V() |rotu =0 inQ}.
Our main result is now stated as follows.
Theorem 1.1. Suppose that §) is a bounded domain in R® with the C*-boundary.

Letl <r < o0.
(1) It holds that

X () = {he(C®()? divu=0,rotu=0inQ, h-v =0indN}(= Xn.-(Q)),
Vi () {h € (C=(£2))?| divu = 0, r0tu = 0inQ, h X v = 0indN}H(= Vier ().
Furthermore, dim Xp,r(Q2) < 00 and dim Vi,r () < 00.

(II) For every u € (L"(£2))3, there ezist pll € Wir(Q), wl € VI(Q) and Al €
Xhar(Q) such that u can be represented as

4) u = hl + rotw!l + Vpl.
Such triplet {pll, wll, A} is subordinate to the estimate
(5) V!l + Jlwllv- + [IR1]- < Ollullr,

with the constant C = C(r,Q) independent of u. The above decomposition (5) is
unique: if u has another expression

u = hll + rotwl + Vpl,
for ﬂl e Wir(Q), wl € VI(Q) and Kl e Xnar(), then we have
(6) hl =, rotw! = rotwl, Vpll = vpl.

(III) For every u € (L"())3, there ezist p~ € Wy (), wt € XI(R) and
ht € Viar () such that u can be represented as

(7 u = ht + rotwt + Vpt.
Such triplet {p*, wt, h'} is subordinate to the estimate
(8) Vet lle + llw{lve + 1Bl < Cliullr,

with the constant C = C(r, Q) independent of u. The decomposition (8) is unique:
if u has another ezpression

u=f:‘-+r0t1;I+Vp-'—,
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forg’;-E e Wy (Q), wle X7(Q) and hie Vhar (), then we have
(9) ht = l?l, rotw* = rot117’-, Vpt = Vp-L.

Remark.

(1) Since Al + rotw! in the part II above belongs to the space
LI(Q) ={ue (L"(Q))®|divu=0inQ,nu=0},
the decomposition (4) yields the following Helmholtz decomposition for
u € (L"(N))3:
u=v+Vp (direct sum),

where v € L7.(Q), p € WH"(Q) with 1 < r < 00. The Helmholtz decompo-
sition was shown for smooth vector fields on @ when r = 2 by Weyl [20].
The case for more general L™-vector fields on 2 was treated by Fujiwara-
Morimoto [7] , Solonnikov [17]and Simader-Sohr [16].

(2) Similar decompositions to (4) and (7) in Theorem 1.1 for L?-vector fields on
Q were investigated by many authors (see, for example, Friedrichs [6], Mor-
rey [14], Georgescu [8], Foias-Temam (5], and Bendali-Domingues-Gallic
[3])-

QOutline of the Proof of Theorem 1.1.

‘We start with the proof of the part (II). Firstly, notice that the scalar and vector
potentials p! and w! are determined formally as the solutions of the following
boundary value problems: ,

Ap! = div v in Q,
(10) I
Qp_ =u-v on 89,

v
and
rot rot wl =rot u in Q,

(11) divw! =0 in Q,
wll x v =0 on 89.

Since we just assume that u € (L"(2))3, we need to seek the weak solutions of (10)
and (11) such that pl! € W (Q) and w! € V7 () satisfying the following weak
forms: '

(12) (Vpl, V) = (u, V) for'p € W (),

(13) (rot wll, rot ¢) = (u,rot ¥) for ¥y € V().

The existence of a weak solution pll € W1"(Q)/R of (10) was proven in [16]. On the
other hand, the existence of a weak solution w!l € V() of (11) relies essentially
on the following variational inequality.

Lemma 1.2. Let {t1,...,%1} be a basis of Vhar(Q). Then there is a constant
C = C(r,) such that the estimate

(14) ||Vl + [jwll-

|(rot w,rot )|
IVl + il

. L
BEVI@), b A0+ 0N ()

=1

SC’sup{

holds for any w € V().
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We assume that Xp,-(2) = {0} to clarify the point of the argument for a while.
General case shall be treated with slight modification (see [9]). Then, the existence
of the weak solution w!l € V7(Q) of (11) can be shown by using Lemma 1.2 as
follows. Let us consider the operator F : V" (Q) —s V' ()* defined by

< Fuw, >= (rot w,rot 1) for Yy € VI (),

where < -, > denotes the duality pairing between V' (Q)* and Ve (Q). It follows
from Lemma 1.2 that the range R(F) of F is closed in V"' ()*. Hence, by virtue
of Hahn-Banach Theorem, we can conclude that

R(F) = VI (Q)*,

which implies the existence of a weak solution wll of (11).

Now, putting hll = u — Vpll —rot wll, it is not difficult to see that Al € X7, ()
by referring to (10), (11). Further, the estimate (5) and the uniqueness of the
decomposition (4) also follow from (10), (11) and the properties of hll stated in the
part L.

Finally, we mention that Lemma 1.2 stated above is proven by combining another
variational inequality for u with the boundary condition u x v|sq = 0 in Proposition
1.7 and L"-Friedrichs’ inequality (32) in Theorem 1.8 stated below.

We now turn to the proof of the part III. In this case, we determine formally the
scalar and vector potentials p* and w+ as the solutions of the following boundary
value problems:

Apt =divu in ,
(15) n
p- =0on 99,
and
rot rot wt =rot u in Q,
divw® =0 in Q,

16
( ‘) wt v =0 on 80,

wl xv=uxv ondnN.

By the same reasoning as in the proof of the part I, we shall seek the weak solutions
pt € W (9), wh € X5(R) of (15), (16) which satisfy the following weak forms:

(17) (Vp*, V) = (u, V) for ¥y € W3 (Q),

(18) (rot w, rot ¢) = (u,rot ) for V¢ € X7 ().

The existence of a weak solution pt € W2 (Q2)/R of (15) was shown in [15] and
the existence of a weak solution w' € X7(f2) of (16) can be shown by referring to
the following variational inequality. .

Lemma 1.3. Let {¢1,...,¢n} be a basis of Xpar(2). Then there is a constant
C = C(r,) such that the estimate

19) [IVwllr + |lwli

|(rot w, rot )|
IVl + 1l

N
e X7 (@), ¢¢0}+CZI(w,¢j)I

=1

SCsup{

holds for any w € X7(Q2).
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This lemma is derived from the variational inequality for v with the boundary
condition u - v|sq = 0 in Proposition 1.7 and the L™-Friedrichs’ inequality (30) in
Theorem 1.8. The remainder of the proof is quite similar to that of the part II. So
we omit it.

The statement of the part I follows from Theorem 1.8 via standard argument.
We now end the outline of proof of Theorem 1.1. a

One of immediate consequences of Theorem 1.1 is

Corollary 1.4. Let Q) be the same as in Theorem 1.1 and let 1 < r < co. Then
we have

(20) (L7(2))® = Xpor(Q) ® rot VI (Q) & VW (Q) (direct sum),
(21) (L7(9))2 = Vhar () @ rot X5 (Q) @ VW, () (direct sum).

If u is in (W (Q))3, it is not difficult to see that the weak solutions w! and w*
of (11) and (16), in fact, fulfill the following boundary value problems:

—Awl =rot u in Q,
(22) div w!l =0 on 89,
wl x v =0 on 89,

and
—Awt =rot u in Q,
(23) wt v =0 on 890,
rot wh x v =u x v on 09.
It has been checked in [9] that both boundary value problems (22) and (23) take
the form of uniformly elliptic operator with the complementing boundary conditions

in the sense of Agmon-Douglis-Nirenberg [1]. Hence, by virtue of Solonnikov’s
results in [18] and [19], we readily have the following generalized Biot-Savart’s law.

Theorem 1.5. Let Q be the same as in Theorem 1.1. Let 1 < r < oo.

(1) Given u € (WY (2))? with u - v|sq = 0, there ezist a harmonic vector ﬁeld‘

kIl € Xpor () and a 3 x 3 -matriz valued Green function Gll(z,y) defined on ¥ x Q
such that u is represented by

(24) u(z) = hll(z) + rot /Q Gz, y)rotu(y)dy + V /n on (@, ) divu(y)dy,
forallz €,

where gn(z,y) is the Neumann function of Neumann boundary value problem of the
Poisson equation on Q. Furthermore, the Green function Gl obeys the estimates,
for any multi-indices o, 3,

(25) 18285 Gl (z,9)] < Clz —y| 7712118 in T x T,

where C is a constant independent of z, y, ., and 5.

(II) Given u € (W™ (Q))® with u x v|sq = 0, there ezist a harmonic vector field
h*t € Vier(R) and a 3 x 3 -matriz valued Green function G*(z,y) defined on Q¥ x
such that u is represented by

(26) u(z) = ht(z) + rot /ﬂ G*(z,y)rotu(y)dy + V /n o0 (@, y) divu(y)dy,
forallz €9,
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where gp(z,y) is the Green function of Dirichlet boundary value problem of the
Poisson equation on Q). Furthermore, the Green function G+ obeys the estimates,
for any multi-indices o, 3,

(27) 0288G (z,y)| < Clz —y|71 71118 in G x T,
where C i3 a constant independent of z, y, @, and 5.

As the application of Theorem 1.5, we present the following L° —gradient bounds
for smooth vector fields on ) which are tangential or normal to the boundary.

Theorem 1.8. Suppose that Q is a bounded domain in R3® with the C*-boundary.
Let1 < r < oo and letu € (W*"(Q))? for s > 142 withu-v|sn = 0 or uxv|sq = 0.
Then we have

(28) [IVullze(y < C{1+Ilullr () +(|divellsmo+Irotullsmo) log(e+|lullwer (@)}
where C = C(r,Q) is a constant independent of u.

As for the definition of bmo-norm on Q and the proof of Theorem 1.6, see [13].

In the proof of Theorem 1.1, we used essentially the following variational in-
equalities and Friedrichs’ inequalities in L"-space. The complete proof of those
inequalities are given in [9].

Proposition 1.7. (Variational inequalities) Suppose that Q is the same domain
as in Theorem 1.1. Let 1 < r < 0o. Then there is a constant C = C(r,Q) such
that the estimate

(29) [IVull. + [lull- < Csup{ l(ﬁg;mvljﬂgﬁ; ),

¢ € (C=(@))3, ¢ xv|sg =0 (resp.d - v|sq = 0) }
holds for any u € (W™ (Q))3 withu X v|gg =0 ( resp. u-vipg =0).

Theorem 1.8. (L"-Friedrichs’ inequalities) Suppose that (2 is the same domain
as in Theorem 1.1. Let1 < r < 00.

(1) Let {¢1,...,dn} be a basis of Xpqar ().
(i) It holds that X" () C (W17(Q))3 with the estimate

N .
(30)  [[Vull, + llull- < C(ldivull + |Irotull, + > |(u,¢;)]) for all u € X"(12),

j=1

where C = C(r,Q).

(i4) Let s > 2. Suppose that u € (L"())% and divu € W*17(Q), rotu €

(W= ()3 and v,u € W*~+7(8Q). Then we have u € (W*™(Q))? with the
estimate

(31) llullwer(a)

N
< C(lldivullwe-1r () + llrotullwe-1o9) + I tllye 1. o) + z; |(w, ¢5)D),
Jj=
where C = C(r, Q).
(II) Let {¢1,...,%L} be a basis of Viar(Q).
(t) It holds that V™ (Q) C (W (Q))® with the estimate

L
32)  [[Vulle + ljull- < C(ldivull, + llrotulle + > |(u,95)]) for all u € V7(Q),
j=1
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where C = C(r, Q).

(ii) Let s > 2. Suppose that u € (L"(Q))® and divu € webT(Q), rotu €
(We=17(0))3 and r,u € (W*~+7(80))>. Then we have u € (W*"(2))* with the
estimate ‘

(33) lullwer(@)
L

< C(lldivullw-1r(@) + Irotullwe-rr@) + Itll a-2.r oy + 21 |(w, 95)0);
J=

where C = C(r, Q).

Finally, we mention the fact that the bases of the harmonic spaces Xpar(S2)
and Vhar () are given explicitly as the solutions of certain elliptic boundary value
problems, when the domain ) satisfies the following

Assumptions:

(i) The boundary 8Q has L + 1 connected components I'g, I'y,....I'y of '~
surfaces. The I'y,...,I'; lie inside 'y and I'; NT; = ¢ for ¢ # j.

(ii) There are N— pieces of C*— surfaces £, ..., Zn such that £;NX; = ¢ for
i # j, and such that

N=0\%, = Uf,'_,l ¥;, is a simply connected domain
with the Lipschitzian boundary.

Proposition 1.9. Suppose that Q is a bounded domain in R3 with the C™-boundary
satisfying the assumptions above. )

(I) (A basis of Xpar()) Fori = 1,...,N, there exists a solution ¢* € C()
unique up to an additive constant of the boundary value problem such that

[ Ap=0in Q,
5841,01 =0 on 89,
(34) a(pi .
[;;;;L = 0,_ [¥*]; = dij
{ i=1,...,N.

Moreover, the vector fields {V@'}Y.,, which are included in (C°(Q))3, form the
basis of the space Xpqar(S2).

Here [f]; means the jump of the value of f on T;, which is given by

17l = flss = Fls;

where 2}', X7 are the two sides of ¥; and v; is the unit normal on X; directed
from £ toward T} .

(II) (A basis of Vaar(Q)) For i = 1,...,L, there erists a unique solution v €
C>(Q) of the boundary value problem such that

Ayt =01inQ,
(35) ¢i|ro =0,
1/’i|r‘,- =&, j=1,...,L.

Moreover, the vector fields {V'}L,, which are included in (C=())3, form the
basis of the space Vpor(S2). . '

The proof of Proposition 1.9 is given in [9]. This proposition will be important
in the next section.
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2. EXISTENCE OF SOLUTIONS OF NONHOMOGENEOUS BOUNDARY VALUE
PROBLEMS FOR THE STATIONARY NAVIER-STOKES EQUATIONS IN A BOUNDED
DOMAIN

As the application of our decomposition theorems stated in §1 to the Navier-
Stokes equations, we present some results on the existence of solutions of nonho-
mogeneous boundary value problems for the stationary Navier-Stokes equations in
a bounded domain.

Let Q be a bounded domain in R® with the smooth boundary satisfying the
assumptions which was stated just before Proposition 1.9 in §1. We consider the
stationary Navier-Stokes equations under the inhomogeneous boundary condition:

—pAu+ (u-V)u+Vp=f in Q,
(36) divu =0 in 0,
u=a on 6.

Here u = u(z) denotes velocity vector fields on €2, p = p(x) pressure, f the
external force, and a the prescribed boundary data; u denotes the coefficient of
viscosity. As a consequence of the incompressibility condition divu = 0 of (36), the
boundary data a should satisfy the following fluz condition

L
(37 ‘ (FC) / a-udS(:Z/ a-vdS) =0.
M i=0 YT
Leray has shown in [12] that the problem (36) has at least one solution for any
> 0, under the restricted fluz condition

(38) (RFC) /a-VdS——-O fori=0,1,...,L.
T

However, the question asking the existence of solution of (36) with a satisfying only
the flux condition (37) has been still open.

We are going to study this problem by applying our decomposition theorem
stated in the preceding section. More precisely, we utilize the following variant of
the decomposition (7) in Theorem 1.1 (III).

Theorem 2.1. For any u € (W12(Q))3, there are p € Wa () N W22(0), w €
X2(0) N (W22(0))3, and h € Viar() such that

(39) u = h+ rotw + Vp.
Such triplet {p, w, h} is subordinate to the estimate
(40) IVDllwiz) + llwliwaa) + lhllwrag) < Cllullwizq),

where C is a constant depending only on Q. Furthermore, the decomposition (39)
is unique in the sense stated in Theorem 1.1.

Qbserving the fact that the scalar potential p and the vector potential w are
determined as the solutions of (15) and (23), this theorem can be easily proven
by combining the argument shown in outline of proof of Theorem 1.1 with the
regularity theory for elliptic boundary value problems.

Before stating the crucial proposition, we observe an elementary fact on the basis
{Vy*}L , presented in Proposition 1.9 (II).

=

Lemma 2.2. Let {Vi'}2, be the basis of Viar () in Proposition 1.9 (II). Then,
it holds that

. . Bt 5,/,1' o
* . J - —— — me—— —
(41) /nvw Vi dzx ,/p,. D dS—/n o dS fori,j=1,...,L.
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Proof . By integration by parts, we see from (35) that

/ﬂwi-widzzfm ‘Wwds /Aw W do

_ [ ¥
B ds,

which implies the first equality in (41). Whereas, the symmetry of the integrand

on the left hand side in the above yields promptly the second equality in (41). O
Put

61/;'

61/

Notice that Lemma 2.2 shows that e;; = e;;.

Based on Theorem 2.1, we now show the following extension theorem of the
boundary data a which satisfies only the flux condition (37).

(42) eij =

‘Proposition 2.3. For any a € (W%2(69))® satisfying the flux condition (37),
there erists an extension A of a into Q0 such that A = h + rot w, h € Vj,r (),
w € X2(Q) N (W22(N))3 and

(43) Yo(h + rot w) = a,

where the 7y s the usual trace operator of Q.
Furthermore, it holds that
(1) the vector potential w obeys the estimates

(44) lwllwasy < clally 3.2 g0,

where ¢ is a constant depending only on Q,
(1) the harmonic part h is given explicitly by

L

(45) h=303 (P @ vaspvet.

k=1 i=k  j=1
Herecij,i=1,...,L, j=1,...,1, aredeﬁnedby
(46) Cij = —a\/&—1=d
i—-104
zuherg}ffﬁ =1, do = 1, and €5 for i > 1 is the (i, j)-cofactor of Gram matriz of
Vi Yoo

€11 ... €14

and d; = detE,-, 1>1.

Remark. Notice that the topological characterization of the domam ) appears
exphcxtly through the harmonic part h above.

We are now in a position to introduce the definition of a weak solution of (36).
Firstly, take an extension A of a into ) such that

(47) Ae (Wl.Z(Q))S, divA=0in Qa 70(A) =a, ”A”lez(ﬂ) S c”a”W%ﬂ(aQ)'
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Note that the extension A of a given in Proposition 2.3 certainly fulfills the
conditions (47). Then, putting v = u — A, one sees that the boundary value
problem (36) is converted into

—uAv+(v-V)v+(v'V)A+(A-V)'U+Vp=f in Q,
(48) A dive =0 in 0,
v =0 on 89,

where
Ff=Ff+urd—(4-V)A.

We introduce here the following function spaces: Let Hj ,(f2) be the completion
of Cg5, () with respect to the Dirichlet norm (|V - ||z3(q). Here Cg, () ={ue
(Cs( Q))3 |div u = 0 in©}. We denote by Hj ,(£2)" the dual space of Hj , (). The
inner product and the norm in L?(f) or (Lz(Q))3 are denoted by (-, ) and || - ||,
respectively. Hereafter we assume that f € Hj ,,(Q) Since A € (W12(£))3, one
easily sees that f € Hj (Q)*. Then we call v is a weak solution of (48), provided
that v € Hj , (§) satisfies the following integral identity:

(49) w(Vo,V¢) — (v, (v V)¢) = (4, (v V)¢) — (v, (A- V)$) =< f,¢ >
for every ¢ € ]HIO (R), where < -, > denotes the duality pairing between H; , (0 )
and H{ , (). Furthermore, if v is a weak solution of (48) with an A satisfying (47),

we then call u = v + A a weak solution of (36).
Now we state our main theorem in this section.

Theorem 2.4. Suppose that f € Hg , M, a € (W2(6Q))% and Joga-vdS=0.
Then, if the estimate

0 vy BT

wex(N), Vw#0 ||Vw”2

holds, there exists at least one weak solution u of (36).
Here h is the harmonic part of the extension A of the boundary data a given by
Proposition 2.3 (ii), and

x(Q) = {wEIH[O (Q)|3qeL2(Q)st Vq=—(w-V)w in Q}.

Furthermore, it should be noticed here that the estimate
(h, (w - V)w) < ||hlls@yllwllLe@) || Vw2 )
< Caslibllzs@)VwliZaq)

holds for every w € H} ,(2)(D x(©)). Here C,3 is the optimal constant of the
Sobolev’s inequality for a bounded domain © C R? such that

llwllze) < ClIVwlizaqy-

Hence we readily derive from Theorem 2.4 the following corollary, which states that
the smallness of the harmonic part h of the extension A of the boundary data a

compared to the coefficient of viscosity p ensures the existence of a weak solution '

of (36).

Corollary 2.5. Let f and a be the same data as in Theorem 2.4. Then, if the
estimate

(51) - Cusllhllze@) < p
holds, there exists at least one weak solution of (36).
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We give the proof of Proposition 2.3 which is divided into three steps.
Proof of Proposition 2.3.

Step 1. Since a € (WH2(09))° and [,qa-vdS = 0, the existence of an exten-
sion A of a satisfying the conditions (47) follows from the well-known results (for
example, see [11]).

Step 2. For the extension A obtained in the preceding step, we apply Theorem 2.1
to obtain the decomposition such that

, A="h+rot w+ Vp,
where h € Viar(), w € X2(Q) N (W22(R2))3 and p € W,**(2). However, since
0 = div A = div h + div (rot w) + div (Vp) = Ap in @

and
) YoP = 07
we conclude that p = 0 in . Therefore, we see that
A=h+rot w.
Thza estimate (44) is the direct consequence of (40) in Theorem 2.1. and the estimate
in (47).

Step 3. By virtue of the orthogonahza.tlon of Schmidt and Proposition 1.9 (II) we
obtain an orthonormal basis {w'}%, of Vha,(ﬂ) given by :

w‘(z) = Zc;jvw ,

Jj=1
where c;; are the same constants as in (46). Then, we have

L
h= Z(A,‘w")’wi

i=1

= Z( A ZC;JVW) Z Clkvwk

i=1 j=1

= 2( 5" cuean(, VT

i=1 j,k=1

L L i
= Z(Z Cik_(z cij (A, Vi) Vyt.

k=1 i=k j=1
On the other hand, from (35) and (47) we can see

(A, Vi) = /8 (e nywds - /ﬂ (div Ay ds

=/ a-vdS.
T';

Hence, it follows from (52) (53) that

e [ @vasvet,
k=1 i=k  j=1
which is the equality (45). Now we complete the proof of Proposition 2.3. 0O
We finally give
Proof of Theorem 2.4.
Let A be the same extension of a as in Proposition 2.3. We are going to seek a
weak solution v of (48), that is, v € H} (1) satisfying the identity (49) for every

(52)

(53)
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¢ € HG (). The existence of this weak solution is shown with the aid of the Leray-
Schauder theorem, provided that the following uniform bound of the Dirichlet norm
of all possible weak solutions of (48) with every i (> p) holds:

(54) sup V]| < o0,
vES(fi),AE[1,00)

where
S(@) = {v € Hy , () |vis a weak solution of (48) with /i in place of p}.

However, for u sufficiently large, we can show the existence theorem of a weak
solution of (48) as follows (see, the proof of Theorem 2.1 in [2]).

Lemma 2.8. There erist constants i = fi(A) and M = M(f) such that, for every
v € S(i1) with fi € [, 00), the estimate

tal gl

(55) IVell <

holds.
" So, we have only to show the uniform estimate such that

(56) sup V|| < o0,
vES(ii),A€[u,A]

in place of (54).

The proof of the uniform estimate (56) is carried out by contradiction. Let
us assume that (56) does not hold. Then there exists a sequence {u;}$2; C [, )
converging to some o € [, fi], for which the norm N; = ||Vv7|| of the corresponding
solution v/ € S(u;) tends to infinity. Put w? = N 'v7. Since ||Vw|| =1 for all j,
we can extract a subsequence from {v7}%2,; which converges weakly in Hj ,(£2) and
strongly in (L%(£2))® to some element of w € Hj () N (L%(R))%. We can assume,
without loss of generality, that the whole sequence {w’ }‘J?_‘i_.l converges to w in the
sense above mentioned. Since v? € S(u;), it holds that

(57)  u3(Ve/, V) — (v, (07 - V)§) — (4, (v - V)§) — (v/, (4-V)g) =< f,¢ >,
for every ¢ € H} (). Taking ¢ = N; 'w’ = N; %07 in (57), we have
pi — (A, (w? - V)w') =< fw > N;l.
Passing to the limit j — oo in the above equality, it is not difficult to see
1 _
(58) 1- ;J(A’ (w ’ V)'LU) =0, mo€ [ﬂ’ “]'
On the other hand, multiplying both sides of (57) by N; 2, then taking the limit
j ~ oo in the resulting equality, we obtain
~((w-V)w,¢) = (w,(w-V)$) =0

for every ¢ € H} ,(f). Hence, w € Hj () is a weak solution of the stationary
Euler equation: 3¢ € L?(f) such that -

(59) _ (w-VYw+Vg=0, divw=0 inQ.

We remark that the function g in (59), in fact, satisfies that g|r, = c;(const.) for
i=0,1,...,L (see Lemma 2 in [4]).
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Therefore, remembering that the extension A is given by the form A = h+rot w
as in Proposition 2.3, we find from (58), (59)

1
1= (4, (w V)

1
=—-—(4,V
%( q)

= ——l—(h + rot w, Vq)
Ko

1 1
= —-—(h,Vq) — —(rot w, Vg).
uo( q) “0( q)

Whereas,
(rot w,Vgq) = / v x w-VgdS + (w,rot (Vg))
0
= - / vxVq-wdS
o)
=0,
~ because q|r, = ci(const.), i =0,1,...,L, and v x V is a tangential differentiation

on 8Q. Consequently, we finally reach

1
=-——(hV
uo( q)

1
= —(h, (w - V)w).
uo( (w- V)w)
Hence, from the assumption (50) it follows that

1 ‘
1= —(h,(w- V)w) < 2|Vl < [Vul?,
Ho Ho

which contradicts with that |[Vw|| < 1. We complete the proof of Theorem 2.4. O

We can show the similar statement to Theorem 2.4 when Q is a 2-D bounded
domain. We will give such generalizations of Theorem 2.4, and some concrete
results concerning the existence of weak solutions of (36) when (2 is restricted to
an annulus or a concentric circle and so on, in the forthcoming paper [10].
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