

Title	Directed sets and inverse limits(The interplay between set theory of the reals and iterated forcing)
Author(s)	Karato, Masayuki
Citation	数理解析研究所講究録 (2007), 1530: 27-30
Issue Date	2007-02
URL	http://hdl.handle.net/2433/58924
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Directed sets and inverse limits

Masayuki Karato (柄戸 正之)
karato@ruri.waseda.ac.jp
早稲田大学大学院理工学研究科
Graduate School for Science and Engineering,
Waseda University

Keywords: cofinal type, directed set, inverse limit, tree property, Tukey ordering

Abstract

We show that the tree property for directed sets is equivalent to the nontriviality of certain inverse limits.

1 Directed sets and cofinal types

First we review the basic facts about cofinal types.

Definition 1.1 Let $\langle D, \leq_D \rangle$, $\langle E, \leq_E \rangle$ be directed sets. A function $f: E \to D$ which satisfies

$$\forall d \in D \exists e \in E \forall e' \geq_E e [f(e') \geq_D d]$$

is called a convergent function. If such a function exists we write $D \leq E$ and say E is cofinally finer than $D \leq E$ is transitive and is called the Tukey ordering on the class of directed sets. A function $g \colon D \to E$ which satisfies

$$\forall e \in E \exists d \in D \forall d' \in D [g(d') \leq_E e \rightarrow d' \leq_D d]$$

is called a Tukey function.

If there exists a directed set C into which D and E can be embedded cofinally, we say D is cofinally similar with E. In this case we write $D \equiv E$. \equiv is an equivalence relation, and the equivalence classes with respect to \equiv are the cofinal types.

Proposition 1.2 For directed sets D and E, the following are equivalent.

- (a) $D \equiv E$.
- (b) $D \leq E$ and $E \leq D$.

So we can regard \leq as an ordering on the class of all cofinal types.

Definition 1.3 For a directed set D,

$$\operatorname{\mathsf{add}}(D) \stackrel{\operatorname{\mathsf{def}}}{=} \min\{|X| \mid X \subseteq D \text{ unbounded}\},$$
 $\operatorname{\mathsf{cof}}(D) \stackrel{\operatorname{\mathsf{def}}}{=} \min\{|C| \mid C \subseteq D \text{ cofinal}\}.$

These are the additivity and the cofinality of a directed set. We restrict ourselves to directed sets D without maximum, so add(D) is well-defined.

Proposition 1.4 For a directed set D (without maximum),

$$\aleph_0 \leq \operatorname{add}(D) \leq \operatorname{cof}(D) \leq |D|.$$

Furthermore, add(D) is regular and $add(D) \le cf(cof(D))$. Here cf is the cofinality of a cardinal, which is the same as the additivity of it.

Proposition 1.5 For directed sets D and E, $D \leq E$ implies

$$\mathsf{add}(D) \ge \mathsf{add}(E)$$
 and $\mathsf{cof}(D) \le \mathsf{cof}(E)$.

From the above proposition we see that these cardinal functions are invariant under cofinal similarity.

The width of a directed set 2

In the following, κ is always an infinite regular cardinal. If P is partially ordered set, we use the notation $X_{\leq a} = \{x \in X \mid x \leq a\}$ for X a subset of P and $a \in P$. As usual, for cardinals $\kappa \leq \lambda$, $\mathcal{P}_{\kappa}\lambda = \{x \subseteq \lambda \mid |x| < \kappa\}$ is ordered by inclusion.

Definition 2.1 The width of a directed set D is defined by

$$wid(D) \stackrel{\text{def}}{=} \sup\{|X|^+ \mid X \text{ is a thin subset of } D\},\$$

where 'a thin subset of D' means

$$\forall d \in D[|X_{\leq d}| < \mathsf{add}(D)].$$

The reason to consider this cardinal function is to give a characterization of the tree proprety. See [2, Theorem 7.1].

Example 2.2 The set of singletons $\{\{\alpha\} \mid \alpha < \lambda\}$ is thin in $\mathcal{P}_{\kappa}\lambda$, so we have wid $(\mathcal{P}_{\kappa}\lambda) \geq \lambda^+$. If κ is strongly inaccessible, then $\mathcal{P}_{\kappa}\lambda$ is thin in itself, which shows wid $(\mathcal{P}_{\kappa}\lambda) = (\lambda^{<\kappa})^+$.

Lemma 2.3 For a directed set D and a cardinal $\lambda \geq \kappa := \operatorname{add}(D)$, the following are equivalent.

- (a) D has a thin subset of size λ .
- (b) $D \geq \mathcal{P}_{\kappa} \lambda$.
- (c) There exists an order-preserving function $f: D \to \mathcal{P}_{\kappa} \lambda$ with f[D] cofinal in $\mathcal{P}_{\kappa} \lambda$.

Corollary 2.4 The width of a directed set depends only on its cofinal type.

Lemma 2.5 $add(D)^+ \le wid(D) \le cof(D)^+$.

3 The tree property for directed sets

In the following definition, if D is an infinite regular cardinal κ , a ' κ -tree on κ ' coincides with the classical 'k-tree'. Moreover, an 'arbor' is a generalization of a 'well pruned tree'.

Definition 3.1 (κ -tree) ([1]) Let D denote a directed set. A triple $\langle T, \leq_T, s \rangle$ is said to be a κ -tree on D if the following holds.

- 1) $\langle T, \leq_T \rangle$ is a partially ordered set.

- 2) s: T → D is an order preserving surjection.
 3) For all t ∈ T, s ↑ T≤t: T≤t → D≤s(t) (order isomorphism).
 4) For all d ∈ D, |s⁻¹{d}| < κ. We call s⁻¹{d} the level d of T.

Note that under conditions 1)2)4), condition 3) is equivalent to 3'):

3') (downwards uniqueness principle) $\forall t \in T \forall d' \leq_D s(t) \exists ! \ t' \leq_T t \ [s(t') = d'].$

We write $t \downarrow d$ for this unique t'.

If a κ -tree $\langle T, \leq_T, s \rangle$ satisfies in addition

5) (upwards access principle) $\forall t \in T \forall d' \geq_D s(t) \exists t' \geq_T t \ [s(t') = d'],$

then it is called a κ -arbor on D.

Definition 3.2 (tree property) ([1]) Let $\langle D, \leq_D \rangle$ be a directed set and $\langle T, \leq_T, s \rangle$ a κ -tree on D. $f: D \to T$ is said to be a faithful embedding if f is an order embedding and satisfies $s \circ f = \mathrm{id}_D$. If for each κ -tree T on D there is a faithful embedding from D to T, we say that D has the κ -tree property. If D has the add(D)-tree property, we say simply D has the tree property.

Proposition 3.3 ([1]) Let D be directed set and let $\kappa = \operatorname{add}(D)$. D has the tree property iff for any κ -arbor on D there is a faithful embedding into it.

Proposition 3.4 ([1]) Let D be directed set and let $\theta < \operatorname{add}(D)$. For any θ -tree T on D, the number of faithful embeddings from D into T is less than θ .

Proposition 3.5 ([1]) Let D be directed set and let θ be a cardinal.

- (1) If $\theta < \operatorname{add}(D)$ then D has the θ -tree property.
- (2) If $\theta > \operatorname{add}(D)$ then D does not have the θ -tree property.

Thus we are interested in the case $\theta = \operatorname{add}(D)$.

Proposition 3.6 ([2]) If E has the tree property, $D \leq E$ in the Tukey ordering and add(D) = add(E), then D also has the tree property. Thus the tree property is a property about the cofinal type of a directed set.

Corollary 3.7 ([1]) If D has the tree property, then add(D) has the tree property in the classical sense.

Theorem 3.8 ([1]) For a strongly inaccessible cardinal κ , the following are equivalent:

- (a) κ is strongly compact.
- (b) All directed sets D with $add(D) = \kappa$ have the tree property.

Condition (b) also holds for $\kappa = \aleph_0$.

4 Inverse limits

Now we give a characterization of the tree property in terms of various inverse systems.

Theorem 4.1 Let D be a directed set, and let θ be a cardinal. The following are equivalent:

- (a) D has the θ -tree property.
- (b) For any inverse system $\langle A_d, f_{dd'} | d, d' \in D, d \leq d' \rangle$ of sets satisfying $|A_d| < \theta$ for all $d \in D$, the inverse limit $\lim_{d \in D} A_d$ is nonempty.
- (c) For any inverse system $\langle A_d, f_{dd'} | d, d' \in D, d \leq d' \rangle$ of groups (respectively of abelian groups or free abelian groups), satisfying $|A_d| < \theta$ for all $d \in D$ and $\exists d_0 \in D \forall d \geq d_0 \ [f_{d_0d} \neq 0]$, the inverse limit $\varprojlim_{d \in D} A_d$ has a nonzero element.
- (d) For any inverse system $\langle A_d, f_{dd'} \mid d, d' \in D, d \leq d' \rangle$ of vector spaces, satisfying $\dim(A_d) < \theta$ for all $d \in D$ and $\exists d_0 \in D \forall d \geq d_0 \ [f_{d_0d} \neq 0]$, the inverse limit $\varprojlim_{d \in D} A_d$ has a nonzero element.

Proof (a) \Rightarrow (b) Let $\langle A_d, f_{dd'} | d, d' \in D, d \leq d' \rangle$ be an inverse system of nonempty sets, such that $|A_d| < \theta$ for all $d \in D$. Without loss of generality, we may assume that $\langle A_d | d \in D \rangle$ is a disjoint family. Put $T := \bigcup_{d \in D} A_d$ and define $s : T \to D$ so that $s^{-1}\{d\} = A_d$ for any $d \in D$. For $t, u \in T$ define the ordering \leq_T on T so that

$$t \leq_T u \iff \text{if } t \in A_d, u \in A_{d'} \text{ then } d \leq_D d' \text{ and } f_{dd'}(u) = t.$$

Then $\langle T, \leq_T, s \rangle$ is a θ -tree on D, and $\varprojlim_{d \in D} A_d$ is the set of all faithful embeddings from D into T. Hence (a) implies (b).

(b) \Rightarrow (a) Let $\langle T, \leq_T, s \rangle$ be a given θ -tree on D. Define $f_{dd'}: s^{-1}\{d'\} \to s^{-1}\{d\}$ so that $f_{dd'}(t) = t \downarrow d$.

Then $\langle s^{-1}\{d\}, f_{dd'} \mid d, d' \in D, d \leq d' \rangle$ is an inverse system of nonempty sets, and $\lim_{\substack{d \in D}} s^{-1}\{d\}$ is the set of all faithful embeddings from D into T.

(b) \Rightarrow (c) Let $\langle A_d, f_{dd'} \mid d, d' \in D, d \leq d' \rangle$ be a given inverse system of groups, and assume that $|A_d| < \theta$ for all $d \in D$ and that there is some $d_0 \in D$ such that $f_{d_0 d} \neq 0$ for all $d \geq d_0$. Put

$$B_d := f_{dd'}[A_{d_0} \setminus \{0\}] \quad \text{for } d \ge d_0,$$
 $g_{dd'} := f_{dd'} \upharpoonright B_{d'} \quad \text{for } d' \ge d \ge d_0.$

Then $\langle B_d, g_{dd'} \mid d, d' \in D_{\geq d_0}, d \leq d' \rangle$ is an inverse system of nonempty sets. By (b), we can pick some $b \in \varprojlim_{d \geq d_0} B_d$. Since $D_{\geq d_0}$ is cofinal in D and D is directed, we can extend this b to a unique

 $a \in \left(\varinjlim_{d \in D} A_d \right) \setminus \{0\}.$ (c) \Rightarrow (b) Let $\langle A_d, f_{dd'} \mid d, d' \in D, d \leq d' \rangle$ be an inverse system of nonempty sets such that $|A_d| < \theta$ for all $d \in D$. Since (a), and hence (b) is always true for $\theta = \aleph_0$, we may assume $\theta > \aleph_0$. For $d \in D$, let B_d be the free abelian group with generators in A_d , i.e.

$$B_d := \{b \in {}^{A_d}\mathbb{Z} \mid b(x) = 0 \text{ for all but finitely many } x \in A_d\}.$$

Let $\operatorname{supt}(b) := \{x \in \operatorname{dom}(b) \mid b(x) \neq 0\}$. We identify $b \in B_d$ with the expression $n_0x_0 + \cdots + n_kx_k$, where $\{x_0,\ldots,x_k\} \supseteq \operatorname{supt}(b)$ and $b(x) = \sum_{\substack{i \leq k \\ x_i = x}} n_i$ for $x \in A_d$. Clearly $|B_d| < \theta$. For $d \leq d'$ in D, put

Then $\langle B_d, g_{dd'} \mid d, d' \in D, d \leq d' \rangle$ is an inverse system of free abelian groups, and $g_{dd'} \neq 0$ for any $d \leq d'$ in D. Thus by (c), there is some $b^* \in \left(\underbrace{\lim_{d \in D} B_d}\right) \setminus \{0\}$. Since $b^* \neq 0$, there is some $d_0 \in D$ such that $b^*(d_0) \neq 0$ for all $d \geq d_0$. Put

$$F_d := \sup b^*(d) \cap f_{d_0d}^{-1}[\sup b^*(d_0)] \quad \text{for } d \ge d_0,$$

$$h_{dd'} := f_{dd'} \upharpoonright F_{d'} \quad \text{for } d' \ge d \ge d_0.$$

Note that $h_{dd'}[F_{d'}] = F_d$. Now $\langle F_d, h_{dd'} \mid d' \geq d \geq d_0 \rangle$ is an inverse system of nonempty finite sets. Since any directed set has the \aleph_0 -tree proprety, $\lim_{d \geq d_0} F_d \neq \emptyset$. Take any $a \in \lim_{d \geq d_0} F_d$. There is a unique

 $a' \in \underset{d \in D}{\underline{\lim}} A_d$ which extends a. (b) \Rightarrow (d) This is similar to the proof of (b) \Rightarrow (c).

 $(d) \Rightarrow (b)$ This is similar to the proof of $(c) \Rightarrow (b)$.

Corollary 4.2 If G is the inverse limit of $(G_d, f_{dd'} \mid d, d' \in D, d \leq d')$ where each G_d is finite (i.e. G is a profinite group), then $G \neq 0$ iff $\exists d_0 \in D \forall d \geq d_0 \ [f_{d_0 d} \neq 0]$.

References

- [1] O.Esser and R.Hinnion, Large Cardinals and Ramifiability for Directed Sets, Math. Log. Quart. (1) **46** (2000), 25–34.
- [2] M.Karato, Cofinal types around $P_{\kappa}\lambda$ and the tree property for directed sets, 数理解析研究所講究録 (Sūri kaiseki kenkyūsho kōkyūroku), 1423 (2005), 53–68.