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Abstract

We show that the tree property for directed sets is equivalent to the nontriviality of certain
inverse limits.

1 Directed sets and cofinal types

First we review the basic facts about cofinal types.
Definition 1.1 Let (D, <p),(E, <g) be directed sets. A function f : E — D which satisfies
Vd € DJe € EVe' >g e [f(¢') >p d]

is called a convergent function. If such a function exists we write D < F and say E i3 cofinally finer than
D. < is transitive and is called the Tukey ordering on the class of directed sets. A function g: D — E
which satisfies

Ve€ E3d € DVd' € D [g(d') <g e — d' <p d]

is called a Tukey function.

If there exists a directed set C into which D and E can be embedded cofinally, we say D is cofinally
similar with E. In this case we write D = E. = is an equivalence relation, and the eqivalence classes
with respect to = are the cofinal types.

Proposition 1.2 For directed sets D and E, the follwing are equivalent.

(a) D=E.
(b) DSE and EXD.

So we can regard < as an ordering on the class of all cofinal types.

Definition 1.3 For a directed set D,

add(D) % min{|X| | X C D unbounded},

cof(D) % min{|C| | C C D cofinal}.

These are the additivity and the cofinality of a directed set. We restrict ourselves to directed sets D
without maximum, so add(D) is well-defined.

Proposition 1.4 For a directed set D (without marimum),
Ro < add(D) < cof(D) < |DJ.

Furthermore, add(D) is regular and add(D) < cf(cof(D)). Here cf is the cofinality of a cardinal, which
ts the same as the additivity of it.



Proposition 1.5 For directed sets D and E, D < E implies
add(D) > add(E) and cof(D) < cof(E).

From the above proposition we see that these cardinal functions are invariant under cofinal similarity.

2 The width of a directed set

In the following, s is always an infinite regular cardinal. If P is partially ordered set, we use the
notation X<q = {z € X | z < a} for X a subset of P and a € P. As usual, for cardinals x < A,
P = {x C A | |z| < &} is ordered by inclusion.

Definition 2.1 The width of a directed set D is defined by
wid(D) ¥ sup{|X|* | X is a thin subset of D},

where ’a thin subset of D’ means
Vd € D[|X<q| < add(D)].

The reason to consider this cardinal function is to give a characterization of the tree proprety. See
[2, Theorem 7.1]. :

Example 2.2 The set of singletons {{a} | & < A} is thin in P, ), so we have wid(Pc)) > A*. If & is
strongly inaccessible, then P, ) is thin in itself, which shows wid(PA) = (A<*)*.

Lemma 2.3 For a directed set D and a cardinal A > & := add(D), the following are equivalent.

(a) D has a thin subset of size A.
(b) D> P.A.
(c) There exists an order-preserving function f: D — P\ with f[D] cofinal in PcA.

Corollary 2.4 The width of a directed set depends only on its cofinal type.
Lemma 2.5 add(D)* < wid(D) < cof (D)*.

3 The tree property for directed sets

In the following definition, if D is an infinite regular cardinal x, a ‘x-tree on &’ coincides with the
classical ‘k-tree’. Moreover, an ‘arbor’ is a generalization of a ‘well pruned tree’.

Definition 3.1 (x-tree) ({1]) Let D denote a directed set. A triple (T, <7, s) is said to be a x-tree on
D if the following holds.

1) (T, <r) is a partially ordered set.

2) s: T — D is an order preservmg surjection.

3) ForallteT, s[Tgs: T 3 Dc,(+) (order isomorphism).

4) For alld € D, |s~1{d}| < k. We call s71{d} the level d of T.

Note that under conditions 1)2)4), condition 3) is equivalent to 3’):
3’) (downwards uniqueness principle) Vt € TVd' <p s(t)3! t' <r t [s(t') = d'].

We write t | d for this unique ¢'.
If a x-tree {T, <, s) satisfies in addition

5) (upwards access principle) Vt € TVd' >p s(t)3t' >7 t [s(t') = d],

then it is called a x-arbor on D.
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Definition 3.2 (tree property) ([1]) Let (D,<p) be a directed set and (T, <r,s) a s-tree on D.
f: D — T is said to be a faithful embedding if f is an order embedding and satisfies s o f = idp. If for
each k-tree T on D there is a faithful embedding from D to T, we say that D has the s-tree property.
If D has the add(D)-tree property, we say simply D has the tree property.

Proposition 3.3 ([1]) Let D be directed set and let k = add(D). D has the tree property iff for any
k-arbor on D there is a faithful embedding into it.

Proposition 3.4 ([1]) Let D be directed set and let 6 < add(D). For any 0-tree T on D, the number
of faithful embeddings from D into T is less than 6.

Proposition 3.5 ([1]) Let D be directed set and let 6 be a cardinal.

(1) If 0 < add(D) then D has the 0-tree property.
(2) If 6 > add(D) then D does not have the 8-tree property.

Thus we are interested in the case § = add(D).

Proposition 3.6 ([2]) If E has the tree property, D < E in the Tukey ordering and add(D) = add(E),
then D also has the tree property. Thus the tree property is a property about the cofinal type of a directed
set.

Corollary 3.7 ([1]) If D has the tree property, then add(D) has the tree property in the classical sense.

Theorem 3.8 ([1]) For a strongly inaccessible cardinal x, the following are equivalent:

(a)  is strongly compact.
(b) All directed sets D with add(D) = s have the tree property.

Condition (b) also holds for k = Ro.

4 Inverse limits
Now we give a characterization of the tree property in terms of various inverse systems.

Theorem 4.1 Let D be a directed set, and let 6 be a cardinal. The following are equivalent:

(a) D has the 0-tree property.
(b) For any inverse system (A4, faar | d,d' € D, d < d') of sets satisfying |Agq| < 0 for all d € D, the
inverse limit im Ay is nonempty.

deD
(c) For any inverse system (A4, faar | d,d' € D, d < d') of groups (respectively of abelian groups or
free abelian groups), satisfying |Aa| < 8 for all d € D and 3do € DVd > dy [faoa # 0}, the inverse
limit @Ad has a nonzero element.

(d) For any inverse system (Ag, faar | d,d' € D, d < d’) of vector spaces, satisfying dim(Ag) < 0 for
alld € D and 3do € DVd > dp | fdod # 0], the inverse limit %Ad has a nonzero element.
€
Proof (a) = (b) Let (A4, faw | d,d’ € D, d < d’) be an inverse system of nonempty sets, such that
|A4| < @ for all d € D. Without loss of generality, we may assume that (A4 | d € D) is a disjont family.
Put T := (Jyep Aq 8nd define s: T — D so that s~1{d} = A4 for any d € D. For t,u € T define the
ordering <7 on T so that

t<ru & ifte Ag,u€ A,d' then d <p d' and faar(u) =t.

Then (T, <r, s) is a 6-tree on D, and lim A; is the set of all faithful embeddings from D into T. Hence
€D

(a) implies (b).
(b) = (a) Let (T, <r,s) be a given f-tree on D. Define fza: s~ {d'} — s~1{d} so that fia(t) =tld.
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Then (s~!{d}, faz' | d,d’ € D, d < d’) is an inverse system of nonempty sets, and lim s=*{d} is the set
d

—
D
of all faithful embeddings from D into T. ¢
(b) = (¢) Let (A4, faar | d,d’ € D, d < d’) be a given inverse system of groups, and assume that
|Ag| < 6 for all d € D and that there is some dy € D such thatfy,4 # 0 for all d > dy. Put

By: = far[A4, \{0}]  ford 2> dy,
gdd' 1 = fdd’ rBd’ for d, 2 d 2 do.

Then (Bg,g4a | d,d’' € D>q4,, d <d') is an inverse system of nonempty sets. By (b), we can pick

some b € }_ingd. Since D54, is cofinal in D and D is directed, we can extend this b to a unique
d>do

ae (limay)\ {0}
deD
(c) = (b) Let (Aq4, fagr | d,d’ € D, d < d’') be an inverse system of nonempty sets such that |A4| < 6

for all d € D. Since (a), and hence (b) is always true for § = Rg, we may assume 8 > Ry. For d € D, let
By be the free abelian group with generators in Ay, i.e.

By = {b € 44Z | b(z) = 0 for all but finitely many = € A4}.

Let supt(b) := {z € dom(b) | b(z) # 0}. We identify b € By with the expression nozg + - -+ + ngz,

where {z,...,zx} 2 supt(b) and b(z) = Z n; for x € Ag. Clearly |Bg| < 6. For d < d' in D, put

i<k
Ti=T

gdd' : By - By
w w

noZo + -+ +nkTr > nofaa(To) + - + nefaar (k).
Then (Bg,g94s | d,d' € D, d < d') is an inverse system of free abelian groups, and gqar # O for any
d £ d’' in D. Thus by (c), there is some b* € (?@Bd) \ {0}. Since b* # 0, there is some dy € D such
€D
that b*(dg) # 0 for all d > dp. Put

Fy: =supt b*(d) N fd‘ob[supt b*(do)] for d > dy,
haa : = faar | Far ford' > d > dy.

Note that hqq [Fg] = F4. Now (Fg,hge | &' > d > dp) is an inverse system of nonempty finite sets.

Since any directed set has the Ro-tree proprety, im F; # . Take any a € lim F;. There is a unique
d>do d>dy

o/ € lim A; which extends a.
€D
(b) = (d) This is similar to the proof of (b) = (c).
(d) = (b) This is similar to the proof of (c) = (b). m]

Corollary 4.2 If G is the inverse limit of (Ga, fag | d,d’' € D, d < d') where each G4 is finite (i.e.
G is a profinite group), then G # 0 iff 3do € DVd > do [f4.q # 0)-
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