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ABSTRACT. Time-local existence and uniqueness of mild solutions
to the non-stationary incompressible Navier-Stokes equations is es-
tablished around a steady flow. The initial velocity $U_{0}$ is given
by $U_{0}(x):=-f(x)+u_{0}(x)$ , where $-f$ is a stationary solution
and a globally Lipschitz continuous function, and a perturbation
$u_{0}\in L_{\sigma}^{p}$ $(\mathrm{R}$

“
$)$ for $p\geq n$ . The key is to use the Ornstein-Uhlenbeck

semigroup theory, since it is difflcult to regard the drift terms (un-
bounded coefficients in front of first derivatives) as a minor pertur-
bation of Laplacian. Our mild solution satisfies the Navier-Stokes
equations in the classical sense when $f(x)=Mx$ with some ma-
trix $M$ and the pressure term is suitably chosen. Moreover, if $M$ is
skew-symmetric, then the solution is analytic in spatial variables.

1. INTRODUCTION.

This is a survey note of the author’s recent papers [20] joint work
with Matthias Hieber in Darmstadt University of Technology, and [19]
joint work with Matthias Hieber and Abdelaziz Rhandi in University
of Marrakesh.

Key wods and phrases. Navier-Stokes equations, unbounded initial data, glob-
ally Lipschitz continuous, spatial analyticity.

数理解析研究所講究録
1529巻 2007年 1-18 1



OKIHIRO SAWADA

1.1. Problem and Known Results. Consider the flow of an incom-
pressible, viscous ideal fluid in the whole space. That is mathematically
described by the Cauchy problem for the system of the Navier-Stokes
equations in $\mathbb{R}^{n}$ for dimension $n\geq 2$ :

(1.1)

Here, $U=(U^{1}, \ldots, U^{n})$ and $P$ represent the unknown velocity and the
unknown pressure of the fluid; $U_{0}$ is a given initial velocity, and $F$ is a
given external force term, for example, the acceleration of gravity.

There are many contributional works of studying (1.1), see e.g. [1,
7, 11, 26, 29]. In all these results the initial data are assumed that
$U_{0}(x)arrow 0$ as $|x|arrow\infty$ . In particular, when $F=0,$ $(1.1)$ admits a
time-local smooth solution provided the initial velocity $U_{0}$ belongs to
$L_{\sigma}^{p}(\mathbb{R}^{n})$ for $p\geq n$ ; see $[15, 26]$ . Here $L^{p}=L^{p}(\mathbb{R}^{n})$ denotes the standard
Lebesgue space in $\mathbb{R}^{n}$ for $p\in[1, \infty]$ , and its solenoidal subspace is
denoted by $L_{\sigma}^{p}(\mathbb{R}^{n})$ . Throughout of this note we sometimes suppress
the notation of domain $(\mathbb{R}^{n})$ , and we do not distinguish functions of
vector valued and scalar as well as function spaces, if no confusion
occurs likely.

We are now strongly forced to study the solution to (1.1) around the
stationary flow. For this purpose we consider the initial velocity of the
form

(1.2) $U_{0}(x)=-f(x)+u_{0}(x)$ , $x\in \mathbb{R}^{n}$ .

Here $u_{0}\in L^{p}(\mathbb{R}^{n})$ satisfies $\nabla\cdot u_{0}=0$ and $f$ is a globally Lipschitz
continuous function fulfilling the following two conditions:

$(H1)$ $\nabla\cdot f=0$ ,

$(H2)$ $\exists$ scalar function II $\mathrm{s}.\mathrm{t}$ . $\tilde{F}\in C(\mathrm{O}, T;L_{\sigma}^{p}(\mathbb{R}^{n}))$ ,

where

(1.3) $\tilde{F}:=F-\Delta f-(f, \nabla)f$ -VII.

In what follows, one may essentially take $(-f, \Pi)$ as the stationary
solution to (1.1) into account; in this case $\tilde{F}=0$ automatically.

2



THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA

Due to the results of Seregin and \v{S}ver\’ak [43], it is known that a
bounded function $-f$ satisfying stationary $(\mathrm{N}\mathrm{S})$ with $F=0$ in the
classical sense is automatically a constant. However, there are many
non-trivial stationary solutions $\mathrm{i}\mathrm{f}-f$ is allowed to take an unbounded
function, even if $F=0$. In fact, the pair $-f(x)=Mx+V$ and
II $= \frac{1}{2}(M^{2}x, x)+(V, M^{T}x)$ is a stationary solution to (1.1) with $F=0$.
Here $M=(m_{1j})_{1\leq:,j\leq}$

“ is an $n\cross n$ real-valued constant matrix enjoying
tr $M=0$ and $M^{2}$ is symmetric, and $V$ is a real-valued constant vector;
$M^{T}$ denotes the transposed matrix of $M$ .

It is also known that (1.1) admits many exact solutions, which are
studied in e.g. [9, 31, 36]. The reason why (1.1) with (1.2) is con-
sidered is to understand the classificatation of stationary solutions or
exact solutions, for example, their uniqueness of solutions around these,
stability or instability, asymptotic behavior, and so on.

We shall list up the results on the time-local existence and uniqueness
of smooth solutions to (1.1) related to our situation. In [5, 6, 12, 28, 37],
the non-decaying initial velocity is also treated, for example, $U_{0}\in L^{\infty}$ ,
$BUC,$ $B_{\infty,\infty}^{-\mathrm{g}}$ for $0\leq\epsilon<1,\dot{B}_{\infty,\infty}^{-\mathrm{g}}$ for $0<\epsilon<1$ or $B\Lambda\prime \mathit{1}O^{-1}=$

$\dot{F}_{\infty,2}^{-1}$ . Here $BUC$ is the space of all bounded uniformly continuous
functions, $B_{p,q}^{\delta}$ denotes the inhomogeneous Besov space as well as its
homogeneous version $\dot{B}_{p,q}^{s}$ , and $\dot{F}_{p,q}^{s}$ stands for the homogeneous Triebel-
Lizorkin space; see e.g. $[44, 45]$ . Such Besov or Triebel-Lizorkin spaces
are strictly wider than $L^{\infty}$ , however, tbe obtained solutions $U(t)$ belong
to $L^{\infty}$ for any small $t>0$ .

Considering (1.2) with $f(x)=Rx$ where $R$ is a skew-symmetric
matrix, there are some results. In this situation we can employ the
rotating coordinate to deduce the Navier-Stokes equations with the
Coriolis terms. Since the Coriolis terms are linear perturbations, we
may regard those as minor perturbation of Laplacian. So, it can be
also shown easily that (1.1) admits a time-local unique smooth solution
when the initial velocity is given by (1.2) with $f(x)=Rx$. In fact, in
[38] the author proved the existence of a time-local smooth solution of
(1.1) with (1.2) and $f(x)=Rx$ , provided $u_{0}$ belongs to $\dot{B}_{\infty,1}^{0}$ . Although
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$\dot{B}_{\infty,1}^{0}$ is strictly smaller than $L^{\infty}$ , this space still contains the non-
decaying function.

Moreover, since $U=Rx$ describes pure rotating fluid, it is also
interesting to observe this. In particular, Constantin and Feffermann
[8] showed the existence of time-global smooth solution in this situation,
provided that the rotating speed is fast enough. This fact is called the
global regularity. Babin, Mahalov and Nicolaenko $[2, 3]$ also proved
the global regularity for the less smooth initial data than that of [8].

Dealing with the problem of the rotating obstacle in the viscous
fluid, one reads the similar equations to (1.4) below. On this problem
Hishida [21, 22, 23] established the contraction semigroup theory in
$L_{\sigma}^{2}(\Omega)$ where $\Omega\subset \mathrm{R}^{3}$ is an smooth exterior domain, and constructed
time-local solutions provided initial disturbance belongs to a certain
fractional power Sobolev space. Geissert, Heck and Hieber [10] estab-
lished semigroup theory in $L^{p}$ for general $p\in(1, \infty)$ , and obtained
the time-local solvability of rotating obstacle problem in $L^{p}$ for $p\geq 3$ .
Recently, Hishida and Shibata [24] obtained a time-global smooth so-
lution for small initial disturbance in $L^{3}$ . In the recent works of the
author $[20, 19]$ he was inspired by Hishida’s articles.

Further, the case $f(x)=Jx=(ax_{1}, ax_{2}, -2ax_{3})$ with some constant
$a\in \mathbb{R}$ , was investigated by Giga and Kambe [13]. They studied the
axisymmetric irrotational flow and the stability of the vortex.

Okamoto [35] obtained the uniqueness of classical solutions to (1.1),
when $U$ may grow linearly as $|x|arrow\infty$ ; see also [27]. One of our purpose
in this note is to construct the solutions which belong to the framework
of Okamoto’s uniqueness theorem. However, since Okamoto’s unique-
ness theorem requires the decay on the pressure at $|x|arrow\infty$ , we are
not able to obtain such a solution so far.

1.2. Main Results. Before stating our main results, we consider sim-
ple substitutions $u:=U+f$ and $\tilde{P}:=P-\Pi$ . Then the pair $(U, P)$

satisfies (1.1) in the classical sense, if and only if $(u,\tilde{P})$ satisfies

(1.4)
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Recall $\tilde{F}$ is defined by (1.3), and we denote the matrix operator $A:=$

$-\Delta-(f, \nabla)+(\nabla f)$ . Applying the Helmholtz projection $\mathrm{P}$ onto solenoidal
subspace, we rewrite the first equations of (1.4) as an abstract equation

(1.5) $u’+Au+\mathrm{P}(u, \nabla)u-2\mathrm{P}(u,\nabla)f=\tilde{F}$.

Notice that $\mathrm{P}$ can be expressed explicitly by $\mathrm{P}:=(\delta_{ij}+RR_{j})_{i,j}$ , where
$\delta_{ij}$ stands for Kronecker’s delta, and $R_{i}$ is the Riesz transform defined
by Ri $:=\partial_{i}(-\Delta)^{-1/2}$ for $i=1,$ $\ldots,$

$n$ .
Considering the realization of $A$ (also denoted by $A$), $A$ is an operator

in $L_{\sigma}^{p}(\mathbb{R}^{n})$ defined by

$Au:=-\Delta u-(f, \nabla)u+(u, \nabla)f$

$D(A):=\{u\in W^{2,p}(\mathbb{R}^{n})\cap L_{\sigma}^{\mathrm{p}}(\mathbb{R}^{n});(f, \nabla)u\in L^{p}(\mathbb{R}^{n})\}$ .
Observe that $A$ and $\mathrm{P}$ commute, since $\nabla$ . $Au=0$ if $\nabla\cdot u=0$ . Since
$u,$ $F$ and $f$ are divergence-free, Pu $=u$ as well as $\mathrm{P}\tilde{F}=\tilde{F}$ .

It is known $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-A$ generates a (non-analytic) $C_{0^{-}}\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}\{e^{-tA}\}_{t\geq 0}$

on $U_{\sigma}$ for $1<p<\infty$ . This semigroup theory follows from the results in
[30, 33, 34] and a standard perturbation theory. This $\{e^{-tA}\}_{t\geq 0}$ is often
called the Ornstein-Uhlenbeck semigroup, we use this terminology. In
general, there is not explicit representation formula of $e^{-tA}$ . However,

if $f(x)=Mx$ , then

(1.6) $e^{-tA} \varphi(x)=\frac{e^{-tM}}{(4\pi)^{n/2}(detQ_{t})^{1/2}}\int_{\mathbb{R}^{n}}\varphi(e^{tM}x-y)e^{-_{4}^{1}(Q_{\ell}^{-1}y,y)}dy$

for $x\in \mathbb{R}^{n}$ and $t>0$ , where $Q_{t}$ is given by $Q_{t}:= \int_{0}^{t}e^{sM}e^{sM^{T}}ds$ .
It thus is straightforward to derive the integral equation by Duhamel’s

principle:

(1.7) $u(t)=e^{-tA}u_{0}- \int_{0}^{t}e^{-(t-s)A}\mathrm{P}(u(s), \nabla)u(s)ds$

+2 $\int_{0}^{t}e^{-(t-s)A}\mathrm{P}(u(s), \nabla)fds+\int_{0}^{t}e^{-(t-s)A}\tilde{F}(s)ds$

for $t\in(\mathrm{O}, T)$ and $u(\mathrm{O})=u_{0}$ . We call a function $u\in C([0, T);L_{\sigma}^{p}(\mathbb{R}"))$

a mild solution if $u$ satisfies (1.7). Formally, (1.7) is equivalent to (1.4).
In fact, under some condition a mild solution $u$ and the suitable choice
of $\tilde{P}$ satisfy (1.4) in the classical sense; see Theorem $1.1-(\mathrm{i}\mathrm{i})$ below. In
what follows, we rather discuss the mild solutions.
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We now state the our existence and uniqueness results for mild so-
lutions in If spaces.

1.1. Theorem. (i) Let $n\geq 2$ and $P\in[n, \infty)$ . Let $f$ be a globally
Lipschitz continuous function satisfying $(H1)$ and $(H2)$ with suitable
$\Pi$ and F. Assume that $u_{0}\in L_{\sigma}^{p}(\mathbb{R}^{n})$ . Then there enist $T_{0}>0$ and a
unique mild solution $u$ in the following class:

(1.8) $[trightarrow t^{\frac{n}{2}(\begin{array}{l}\iota_{-\underline{1}}q\prime\end{array})}u(t)|\in C([0, T_{0});L_{\sigma}^{q}(\mathbb{R}^{n}))$

$(1.9)$ $[t\mapsto t^{\frac{n}{2}(\begin{array}{l}\iota_{-}\iota q\mathrm{p}\end{array})+_{2}^{1}}\nabla\sim u(t)]\in C([0, T_{0});L^{q}(\mathbb{R}^{n}))$

for $q\in[p, \infty]$ .

(ii) In addition, let $f(x)=Mx$ where $M$ is a matri. Then

(1.10) $u\in C^{\infty}(\mathbb{R}^{n}\cross(0, T_{0}))$ .

Moreover, $u$ satisfies (1.4) in the classical sense provided $\tilde{P}$ is taken as

(1.11) $\partial_{k}\tilde{P}=\partial_{k}\sum_{i,j=1}^{n}RR_{j}u^{i}u^{j}-2\sum_{i,j=1}^{n}R_{i}R_{k}u^{j}(\partial_{j}f^{i})$ .

(iii) In addition to the hypothesis of (ii), let $M$ be skew-symmetric.
Let II $= \frac{1}{2}(M^{2}x, x)$ , and let $F$ be analytic in $x$ . Then $u(t)$ is analytic

in $x$ on $t\in(\mathrm{O}, T_{0})$ .

1.2. Remark. (a) Because the Omstein-Uhlenbeck semigroup $\{e^{-tA}\}_{t\geq 0}$

is not analytic, we cannot apply the usual argument to show our mild
solution satisfies (1.4) like the Stokes case, for general Lipschitz func-
tion $f$ . This means that we cannot control the time derivative of $u$ with
valued in $L^{p}$ , although by Serrin’s interior regularity theorem it seems
true that

(1.12) $u(t)\in C^{\infty}(\mathbb{R}^{n})$ almost every $t\in(\mathrm{O}, T_{0})$ .

Unfortunately, (1.12) does not imply that $u$ is a classical solution.
(b) For neither $u_{0}\in L_{\sigma}^{\infty}$ nor $u_{0}\in BUC_{\sigma_{f}}$ it is not easy to get the
mild solutions, since $\mathrm{P}$ is not bounded in such spaces as well as the
Riesz transform. For dealing with non-decaying data we introduce the
homogeneous Besov space $\dot{B}_{\infty,1}^{0}\subset L^{\infty_{J}}$ since $\mathrm{P}$ is bounded in the ho-
mogeneous Besov spacesj other properties of $\dot{B}_{\infty,1}^{0}$ are found in [41]. $In$
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fact, we may obtain the time-local existence and uniqueness results of
the mild solut\’ions $u\in C([0, T_{0});\dot{B}_{\infty,1}^{0})$ provided that $u_{0}\in\dot{B}_{\infty,1}^{0}$ and
$\nabla\cdot u_{0}=0$ at least for the the case $f(x)=Mx_{i}$ the details discussed in
[42].
(c) Thanks to (ii), if $f(x)=Mx$ and $p=n=2$, then we obtain
the time-global solution by the following a $p$riori estimate: there $e$ tist
positive constants $D_{1}$ and $D_{2}$ depending only on $u_{0}\in L_{\sigma}^{2}(\mathbb{R}^{2}),$ $M$ and
$\tilde{F}\in C(\mathrm{O}, \infty;L_{\sigma}^{2}(\mathbb{R}^{2}))$ such that

$||u(t)||_{2}^{2}\leq D_{1}e^{D_{2}t}$ , $t\geq 0$ .
This comes from the Energy estimate, multiplying $u$ into the first equa-
tions of (1.4) and integrating in $x\in \mathbb{R}^{2}$ .
(d) Obniously, the analyticity in $x$ implies that the propagation speed

of mild solution is infinity, that is, the support of $u(t)$ coincides $\mathbb{R}$“ for
any small $t>0$ , even if the support of $u_{0}$ is compact.

The proof of Theorem l.l-(i) is based on Kato’s iteration procedure.
The key is to derive appropriate $If-L^{q}$ smoothing estimates for the
Ornstein-Uhlenbeck semigroup $e^{-tA}$ , including the gradient. Unique-
ness follows by Gronwall’s inequality.

To prove Theorem l.l-(ii) we use the explicit representation formula
of the Ornstein-Uhlenbeck semigroup (1.6), when $f(x)=Mx$. In-
volving the k-th derivatives in $x$ into the iteration, it is proved that
$u\in C(\mathrm{O}, T_{0;}C^{k}(\mathbb{R}"))$ for all $k\in$ N. To control the time derivatives of
$u$ we introduce the notion of a weak solution. From (1.10) we may see
that $u$ satisfies (1.5), and that $(u,\tilde{P})$ satisfies (1.4) provided $\tilde{P}$ is given
by (1.11).

An observation of analyticity goes back to work of Masuda [32] based
on the implicit function theory. In this note we give another proof of
the analyticity of $u$ in $x$ . We shall derive the higher order derivatives
in $x$ of $u$ . More precisely, we establish the following estimate:

(1.13) $||\partial_{x}^{\beta}u(i)||_{q}\leq D_{3}(D_{4}m)^{m}t^{-\frac{m}{2}-_{\overline{2}}(\frac{1}{p}-_{q}^{1})}$

“

with some positive constants $D_{3}$ and $D_{4}$ for all $t\in(\mathrm{O}, T_{0}),$ $q\in[p, \infty]$

and $\beta\in \mathrm{N}_{0}^{n}$ with $m=|\beta|$ . Here we use the conventional notation $\partial_{x}^{\beta}$ $:=$

$\partial_{1}^{\beta_{1}}\cdots\partial_{n^{n}}^{\beta}$ for multi-index $\beta=(\beta_{1,)}\ldots\beta_{n})\in \mathrm{N}_{0}^{n}$ . Clearly, (1.13) yields
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the analyticity of $u$ in $x$ by Stirling’s formula and Cauchy’s criterion.
Indeed, there exists a constant $C>0$ such that the size of radius of the
convergence of Taylor’s expansion $(=:\rho(t))$ is estimated from below by

$\rho(t)=\lim_{marrow}\sup_{\infty}(\frac{||\partial_{i}^{m}u(t)||_{\infty}}{m!})^{-1/m}\geq c\sqrt{t}$

for each $i=1,$ $\ldots,$
$n$ . The main idea to derive (1.13) is dividing the

time-interval of (1.7) into $(0, (1-\epsilon)t)$ and $((1-\epsilon)t, t)$ , and taking
$\epsilon=1/|\beta|$ . This technique was developed by Giga and the author
$[17, 39]$ to show (1.13) when $f=0$ .

This note is organized as follows. In Section 2 we recal the Ornstein-
Uhlenbeck semigroup theory, and also we prepare the estimates used in
the proof of Theorem 1.1. In Section 3 we give propositions and their
idea of proofs briefly.

(Acknowledgment). The author would like to thank Professor Gior-
gio Metafune and Professor Enrico Priola for giving him many advice
on the Ornstein-Uhlenbeck semigroup theory. The author would also
like to thank Professor Kenji Nakanishi for letting him know how to
prove that the mild solution is a classical solution via weak solutions.
The work of the author is partly supported by the Japan Society for
the Promotion of Science.

2. SEMIGROUP THEORY.

We prepare the linear estimates used for the proof of Theorem 1.1. In
this section let $f$ be a vector-valued globally Lipschitz function satis-
fying $\nabla\cdot f=0$ .

We define the operator $A$ by

$Au:=-\Delta u-(f, \nabla)\nabla u+(u, \nabla)f$ ,
$D(A):=\{u\in W^{2,p}\cap L_{\sigma}^{\mathrm{p}};(f, \nabla)u\in L^{p}\}$ .

Thanks to add the lower order terms, we see $\nabla\cdot\{(f, \nabla)u-(u, \nabla)f\}=0$

provided $\nabla\cdot u=0$ and $\nabla\cdot f=0$ . Therefore, $A$ and $\mathrm{P}$ commute.
It is known $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-A$ generates a non-analytic $C_{0}$-semigroup in $L_{\sigma}^{p}(\mathbb{R}^{n})$

for $1<p<\infty$ . The family $\{e^{-tA}\}_{t\geq 0}$ is also a $C_{0}$-semigroup on $L^{1}$ , and
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a semigroup in $L^{\infty}$ (lack of strong continuity), however, it is difficult
to make sense the Helnholtz decomposition in such spaces.

We are now state $L^{p}-L^{q}$ smoothing properties for the semigroup
$e^{-tA}$ as well as gradient estimates up to second derivatives. Note that
due to the non-analyticity of Ornstein-Uhlenbeck semigroup, gradient
estimates do not follow from the general theory of analytic semigroup.

2.1. Lemma. Let $n\geq 2,1\leq p\leq\infty$ and $p\leq q\leq\infty$ . Then there eaist
constants $C>0$ and $\omega\in \mathbb{R}$ such that

(2.1) $||\nabla^{k}e^{-tA}\varphi||_{q}\leq Ce^{\omega t}t^{-\frac{k}{2}-_{\overline{2}}(\begin{array}{l}\underline{1}-\underline{1}q\mathrm{p}\end{array})}$

“

for all $\varphi\in L^{p}(\mathbb{R}")$ and $k=0,1,2$ . Moreover, let either $1\leq p\leq q\leq\infty$

and $k=1,2$ or $1\leq p<q\leq\infty$ and $k=0,1,2$ . Then for $\varphi\in L^{p}(\mathbb{R}")$

(2.2) $t^{\frac{k}{2}+\frac{n}{2}(_{p}^{1}-\frac{1}{q})}||\nabla^{k}e^{-tA}\varphi||_{p}arrow 0$ as $tarrow \mathrm{O}$ .

The proof of (2.1) is given by [30, Proposition 5.4], [4, Theorem 4.7
and Corollary 4.8]. For more details see [18, Corollary 5.2 and Theorem
5.3]. To get (2.2) we use the triangle inequality, and the fact that $C_{0}^{\infty}$

is a densely subset of $IP$ for $p<\infty$ .
In the case where $f(x)=Mx$, the Ornstein-Uhlenbeck semigroup

$\{e^{-tA}\}_{t\geq 0}$ has an explicit representation (1.6). Thanks to (1.6), we
may derive the higher order derivatives.

2.2. Lemma. $Letn\geq 2,1\leq p\leq q\leq\infty,$ $f(x)=Mx$ with some $mat\dot{m}$

M. Then there exist constants $C_{1},$ $C_{2},$ $C_{3}>0$ and $\omega_{1},$ $\omega_{2}$ , W3, $\omega_{4}\in \mathrm{R}$

(depending only on $n,$ $p,$ $q$ and $\Lambda f$) such that

(2.3) $||\nabla^{m}e^{-tA}\varphi||_{q}\leq C_{1}e^{(\omega_{1}+\omega_{2}m)t}t^{-\frac{n}{2}(\frac{1}{\mathrm{p}}-\frac{1}{q})}||\nabla^{m}\varphi||_{p}$

for all $t>0,$ $m\in \mathrm{N}$ and $\varphi\in W^{m,p}(\mathbb{R}^{n})$ , and

(2.4) $|| \nabla^{m}e^{-tA}\varphi||_{q}\leq C_{2}(C_{3}m)^{m/_{et}}2(w\mathrm{s}+w_{4}m)t-\frac{\prime*}{2}(\frac{1}{\mathrm{p}}-\frac{1}{q})-\frac{m}{2}||\varphi||_{p}$

for all $t>0,$ $m\in \mathrm{N}$ and $\varphi\in L^{p}(\mathbb{R}^{n})$ .

2.3. Remark. If $M$ is skew-symmetric, then $\omega_{2}=0$ in (2.3).

The proof of above lemma was shown in [20]. Thanks to (1.6), we
see that

(2.5) $\nabla e^{-tA}=e^{tM}e^{-tA}\nabla$ .

9
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If $M$ is skew-symmetric, then $e^{tM}$ is unitary, so Remark 2.3 holds true.

3. PROOF OF THEOREM 1.1.

For a given globally Lipschitz continuous function $f$ satisfying $(H1)$ and
$(H2)$ with suitable $\Pi$ and $F$ , we consider the substitution $u(x, b)$ $:=$

$U(x, t)+f(x)$ and $\tilde{P}(x, t):=P(x, t)-\Pi(x)$ . If $(U, P)$ is a solution of
(1.1) in the classical sense, then $(u,\tilde{P})$ satisfies (1.4). In what follows,
we mainly deal with the mild solutions.

We only show the proof of Theorem 1.1 for the case $p=n$; because,
in the case $p>n$ the proof is essentially similar and easier then that of
$p=n$ . Firstly, we state the proposition which yields Theorem l.l-(i).

Proof of Theorem l.l-(i). Let $n\geq 2,$ $T>0$ and $u_{0}\in L_{\sigma}^{n}(\mathbb{R}^{n})$ . Assume
that $\tilde{F}\in C(\mathrm{O}, T;L_{\sigma}"(\mathbb{R}^{n}))$ . Recall that $\tilde{F}=F-\Delta f-(f, \nabla)f-\Pi$ with
suitable scalar function $\Pi$ , and that $\nabla\cdot f=0$ . For $j\in \mathrm{N}$ and $t\in(\mathrm{O}, T)$

we define functions $u_{j}$ successively by

$u_{1}(t):=e^{-tA}u_{0}+ \int_{0}^{t}e^{-(t-s)A}\tilde{F}(s)ds$ ,

$u_{j+1}(t):=u_{1}(t)- \int_{0}^{t}e^{-(t-s)A}\mathrm{P}\{(u_{j}(s), \nabla)u_{j}(s)-2(u_{j}(s), \nabla)f\}ds$.

Since $\{e^{-tA}\}_{t\geq 0}$ acts on $L_{\sigma}^{p}(\mathbb{R}^{n})$ for $p\in(1, \infty)$ , it follows from the defi-
nition of the Helmholtz projection that the functions $u_{j}$ are divergence-
free for all $t>0$ and all $j\in \mathrm{N}$ .

As usual, using (2.1) and (2.2), we derive a priori estimates. In fact,
for $6\in(0,1)$ we may obtain bounds for

$\sup_{0<t<\tau_{0}t^{\frac{1-\delta}{2}}}||u_{j}(t)||"/\delta$ and $\sup_{0<t<T_{0}}t^{\frac{1}{2}}||\nabla u_{\mathrm{j}}(t)||$

“

for any $T\leq T_{0}$ uniformly in $j$ provided that $T_{0}$ is small enough. These
uniform bounds imply that $t^{1}\sim-2\overline{2_{\mathrm{Q}}}"||u_{j}(t)||_{q}$ as well as $t^{1-\frac{n}{2q}}||\nabla u_{j}(t)||_{q}$ are
bounded for $q\in[n, \infty),$ $t\leq T_{0}$ and all $j\in$ N. The continuity of these
functions follows from similar calculations.

It can be also shown that these sequences are Cauchy sequences,
once we choose $T_{0}$ small enough if necessary. We thus conclude that
there are unique limit functions

$[t\mapsto t^{\frac{1}{2}-\frac{n}{2q}}u(t)]\in C([0, T_{0}];L_{\sigma}^{q})$, $[t\vdasharrow t^{1-\frac{n}{2q}}v(t)]\in C([0, T_{0}];L^{q})$

10
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of the sequences $\{t^{\frac{1}{2}-\frac{n}{2q}}u_{j}(b)\}_{j\geq 1}$ and $\{t^{1-\frac{n}{2q}}\nabla u_{j}(t)\}_{j\geq 1}$ . Finally, note
that $v(t)=t^{1/2}\nabla u(t)$ and that $u$ is a mild solution on $[0, T_{0}]$ . Unique-
ness of mild solutions follows from standard Gronwall’s inequality; see
e.g. [14]. This completes the proof of Theorem l.l-(i).

Next, we show the idea of the proof of Theorem l.l-(ii). Smoothness
of mild solution is also obtained by a modification of the proof above.

Proof of Theorem l.l-(ii). Consider the case when $f(x)=Mx$. To
show (1.10) we establish the smoothing estimates with higher order
differentiations; see Lemma 2.2. In order to get the up to $\ell$-th derivative
in $x$ for $m\in \mathrm{N}$, we involve

(3.1) $\sup_{0<t<T}t^{\frac{\ell}{2}}||\nabla^{\ell}u_{j}(b)||_{n}$

for all $p\leq m$ into the iteration scheme. To derive a priori estimates, we
divide the time-interval $(0, t)$ of integrals of (1.7) into two parts $(0, t/2)$

and $(t/2, t)$ to distribute the singularities.
Similarly as the proof of Theorem $1.1-(\mathrm{i})$ , we choose $T_{m}>0$ small

enough so that the quantities (3.1) are uniformly bounded. This implies

(3.2) $u\in C(0, T_{m};C^{m}(\mathbb{R}"))$ .

We see $T_{m}\sim m^{-m}$ , in general. (It is possible to take $T_{\ell}$ independent
of $m$ , if we divide the time-interval more cleverly, and if $M$ is skew-
symmetric; see the proof of Theorem $1.1-(\mathrm{i}\mathrm{i}\mathrm{i}).)$

We may extend the time-interval $(0, T_{m})$ up to $T_{0}$ , since mild solution
exists uniquely (no blow-up) at least until $T_{0}$ . We see (3.2) for all
$m\in \mathrm{N}$ , this yields $u\in C(\mathrm{O}, T_{0;}C^{\infty}(\mathbb{R}^{n}))$ .

For establishing the estimates for time derivatives, we will use the
notion of a weak solution. Here the weak solution is a function satisfy-
ing (1.4) in distribution sense. Notice that our mild solution is a weak
solution. We now take test-function $\varphi\in C_{0}^{\infty}(\mathbb{R}^{n})$ , and $h\in C^{1}(0, T)$

satisfying $h(\mathrm{O})=h(T)=0$ for simplicity. Let

$<\psi,$ $\varphi>:=\int_{\mathrm{R}}"\psi(x)\varphi(x)dx$ ,

and $A^{*}$ denotes the dual of $A$ , i.e., $<A\psi,$ $\varphi>=<\psi,$ $A^{*}\varphi>$ . Assume
that $u$ is the mild solution obtained in Theorem l.l-(i). Multiplying $\varphi$

11
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and $h’$ into (1.7), and integrating over $(0, T)\cross \mathbb{R}^{n}$ , we get

$\int_{0}^{T}<u(t),$ $\varphi>h’(t)dt$,

$= \int_{0}^{T}<e^{-tA}u_{0},$ $\varphi>h’(t)dt-\int_{0}^{T}<\int_{0}^{t}e^{-(t-s)A}\mathrm{P}\tilde{F}(s)ds,$ $\varphi>h’(t)dt$

$+ \int_{0}^{T}<\int_{0}^{t}e^{-(t-s)A}\mathrm{P}\{2(u(s), \nabla)f-(u(s), \nabla)u(s)\}ds,$ $\varphi>h’(t)dt$

$= \int_{0}^{T}<u_{0},$ $A^{*}e^{-tA^{*}} \varphi>h(t)dt-\int_{0}^{T}\int_{0}^{t}<\tilde{F}(s),$ $A^{*}e^{-(t-s)A}\mathrm{P}\varphi>dsh(t)dt$

$+ \int_{0}^{T}\int_{0}^{t}<\mathrm{P}\{2(u(s), \nabla)f-(u(s), \nabla)u(s)\},$ $A^{*}e^{-(t-s)A}\varphi>dsh(t)dt$

$= \int_{0}^{T}<Au(t)-\tilde{F}(t)+\mathrm{P}(u(t), \nabla)u(t)-2\mathrm{P}(u(t,),$ $\nabla)f,$ $\varphi>h(t)dt$ .

Note that $\varphi\in C_{0}^{\infty}\subset D(A)$ . Since $u\in C((\mathrm{O}, T_{0}];C^{2}(\mathbb{R}"))$ , we can
make sense Au$(x, t)$ pointwisely. Moreover, the right-hand-side is well-
defined at any $t\in(0, T_{0}]$ as well as these integrations are continuous
in time. Hence, we can verify that $<u(\cdot),$ $\varphi>\in C^{1}(0, T)$ . We conclude
that for all $t\in(\mathrm{O}, T)$

$<u_{t}(t)+Au(t)-\tilde{F}(t)+\mathrm{P}(u(t), \nabla)u(t)-2\mathrm{P}(u(t), \nabla)f,$ $\varphi>=0$ .

Let $\tilde{P}$ be given by (1.11), from above we have

$<u_{t}-\Delta u-(f, \nabla)u+(u, \nabla)u-(u, \nabla)f+\nabla\tilde{P}-\tilde{F},$ $\varphi>=0$ .

This holds true for all $\varphi\in C_{0}^{\infty}(\mathbb{R}^{n})$ . Therefore, $(u,\tilde{P})$ satisfies (1.4)
in the classical sense at any $t\in(0, T_{0})$ and $x\in \mathbb{R}^{n}$ . Furthermore,
higher order derivatives of $u$ in time can be calculated, analogously.
This implies that (1.10).

Finally, we show the proof of Theorem l.l-(iii). It is sufficient to
establish the estimates for higher order derivatives of $u$ in $x$ , which is
formally equivalent to (1.13). Again, we only discuss the case $p=n$ in
what follows.

3.1. Proposition. Let $n\geq 2,$ $u_{0}\in L_{\sigma}"(\mathbb{R}^{n})$ and $f(x)=Mx$, where
$M$ is skew-symmetric. Let $\Pi=\frac{1}{2}(M^{2}x, x)$ , and let the extemal force

12
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$F\in C(\mathrm{O}, T;L_{\sigma}^{n}\cap C^{\infty})$ with some $T>0$ . Let $6\in(1/2,1]$ . Suppose that
there exist positive constants $L_{1}$ and $L_{2}$ such that

(3.3) $||\partial_{x}^{\beta}F(t)||_{q}\leq L_{1}(L_{2}|\beta|)^{|\beta|-\delta}t^{-\mathrm{u}_{2^{-_{\overline{2}}(\frac{1}{n}-\frac{1}{q})}}}\beta$

“

hold for $t\in(\mathrm{O}, T)$ and $q\in[n, \infty]$ . Assume that $u$ is a mild solution in
the class

$u\in C([0, T);L_{\sigma}^{n})\cap C(0, T;L_{\sigma}^{r})$

for some $r>n$ . Suppose that there erist positive constants $M_{1}$ and $M_{2}$

such that

$M_{1} \geq\sup_{0\leq\iota<T}||u(t)||"$ ’ $\Lambda f_{2}\geq\sup_{0<t<T}t\overline{2}"(\frac{1}{n}-^{\underline{1}}’.)||u(t)||_{r}$ .

Then there enisi positive constants $D_{5}$ and $D_{6}$ depending only on $n,$ $r$ ,
$M,$ $L_{1},$ $L_{2},$ $M_{1},$ $M_{2},$ $T$ and 6 such that

(3.4) $||\partial_{x}^{\beta}u(t)||_{q}\leq D_{5}(D_{6}|\beta|)^{|\beta|-\delta}t^{-_{2^{-_{2}^{\mathrm{g}}(\frac{1}{n}-_{q}}}^{1\mathrm{f}\mathrm{l}\iota_{)}}}$

for all $q\in[n, \infty],$ $t\in(\mathrm{O}, T]$ and multi-index $\beta\in \mathrm{N}_{0}"$ .

Obviously, (3.4) implies (1.13). Notice that (3.3) holds true if $F(t)$

is analytic in $x$ . Also, $\tilde{F}=F$ , since $\Delta Mx=0$ and $(Mx, \nabla)Mx+\nabla\Pi$

$’=0$ .

Proof of Proposition 3.1. We use an induction with respect to $m=|\beta|$ .
Let $m_{0}\geq 2$ (determined later). From above arguments we see

(3.5) $||\partial_{x}^{\beta}u(t)||_{q}\leq D_{5}t^{-\frac{m}{2}-\frac{n}{2}(}" q\iota_{-}\iota_{)}$

hold true for all $t\in(0,T)$ and $m=|\beta|\leq m_{0}$ , provided $D_{5}$ is chosen
large enough.

Hence, we assume that $m\geq m_{0}$ . We suppose by assumption of
induction that (3.4) holds for all $q\in[n, \infty]$ and all $|\beta|\leq m-1$ . We
claim that (3.4) holds for $|\beta|=m$ . For simplicity, we first prove the
assertion under the additional assumptions that $T\leq 1,$ $n\geq 3$ and
$q<\infty$ . The claim then follows by minor modifications of the proof
given below.
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Let $q\in[n, \infty)$ , and let $\epsilon\in(0,1)$ . We have

$|| \partial_{x}^{\beta}u(t)||_{q}\leq||\partial_{x}^{\beta}u_{1}||_{q}+(\int_{0}^{(1-\epsilon)t}+\int_{(1-\epsilon)t}^{t})||\partial_{x}^{\beta}e^{-(t-s)A}\mathrm{P}(u(s), \nabla)u(s)||_{q}ds$

+2 $( \int_{0}^{(1-\epsilon)t}+\int_{(1-\epsilon)t}^{t})||\partial_{x}^{\beta}e^{-(t-s)A}\mathrm{P}(u(s), \nabla)f||_{q}ds$

$=:B_{1}+B_{2}+B_{3}+B_{4}+B_{5}$ .

We shall estimate each the above terms $B_{1}-B_{5}$ separately.
To this end, taking into account $\epsilon=1/m$ , the estimates for $B_{1},$ $B_{2}$

and $B_{4}$ are derived from (2.4) as follows:

$B_{1}+B_{2}+B_{4} \leq C_{4}(C_{5}m)m-\delta t^{-_{2n}}(\mathrm{r}\perp-\frac{1}{q})-\frac{m}{2}$ , $t\in(\mathrm{O}, T)$

for constants $C_{4}$ and $C_{5}$ independent of $t$ and $\beta$ .
Main difficulties arise from $B_{3}$ .

$B_{3} \leq C\int_{(1-\epsilon)t}^{t}(t-s)^{-_{2}^{1}}||\partial_{x}^{\beta}(u(s)\otimes u(s))||_{q}ds$

with some $C:=C(n, M)$ . Here we have used [20, Lemma 3.7], that
is, $||\nabla e^{-tA}\mathrm{P}||_{\mathcal{L}(L^{q})}\leq c_{t^{-1/2}}e^{\omega t}$ for some $C>0$ and some cv $\in \mathrm{R}$ for all
$t>0$ and $q\in[1, \infty]$ . We now calculate $\partial_{x}^{\beta}(u\otimes u)$ by Leibniz’s rule.
We divide the sum into two parts:

$B_{3} \leq 2C\int_{(1-\epsilon)t}^{t}(t-s)^{-\frac{1}{2}}||\partial_{x}^{\beta}u(s)||_{q}||u(s)||_{\infty}ds$

$+C \int_{(1-\epsilon)t}^{t}(t-s)^{-_{2}^{1}}\sum_{0<\gamma<\beta}||\partial_{x}^{\gamma}u(s)||_{q}||\partial_{x}^{\beta-\gamma}u(s)||_{\infty}ds$

$=:B_{3a}+B_{3b}$ .

Here, $\gamma<\beta$ denotes $\gamma_{i}\leq\beta_{1}$ for all $i$ and $|\gamma|<|\beta|$ for multi-indices $\beta$

and $\gamma;:=\prod_{i=1}^{n}\frac{\beta_{l}l}{\gamma 1!(\beta:-\gamma.)!}$ is the binomial coefficient.

Recall that $||u(s)||_{\infty}\leq Cs^{-1/2}$ for some $C$ . So, we have

$B_{3a}+B_{5} \leq C_{6}\int_{(1-\epsilon)t}^{t}(t-s)^{-_{2}}s^{-_{2}}||\partial_{x}^{\beta}u(s)||_{q}ds\iota\iota$

for some $C_{6}$ , since we derive the estimate for $B_{5}$ as well.
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Estimating $B_{3b}$ , by assumption of induction we obtain

$B_{3b} \leq C\int_{(1-\epsilon)t}^{t}(’t-s)^{-\frac{1}{2}}\sum_{0<\gamma<\beta}D_{5}(D_{6}|\gamma|)^{|\gamma|-\delta_{S}-\frac{n}{2}(^{\underline{1}}-\frac{1}{q})-\mathrm{u}\gamma}" 2$

$\cross D_{5}(D_{6}|\beta-\gamma|)^{|\beta-\gamma|-\delta}s^{-\frac{}{2}(\frac{1}{n}-\frac{1}{q}-\frac{|\beta-\gamma|}{2})}" ds$

$\leq CD_{5}^{2}D_{6}^{m-2\delta}J_{\epsilon}\sum_{0<\gamma<\beta}|\gamma|^{|\gamma|-\delta}|\beta-\gamma|^{|\beta-\gamma|-\delta}t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{m}{2}}$ .

Here
$J_{\epsilon}:= \int_{1-\epsilon}^{1}(1-\tau)^{-_{2}}\tau^{-\frac{n}{2}(\frac{1}{n}-_{\mathrm{q}})-\frac{m}{2}-_{2}^{1}}d\sim\tau\iota\iota$.

Note that $J_{1/m}\leq 1/(2\tilde{C}_{3}+2)$ and $\lim_{marrow\infty}J_{1/m}arrow 0$ , since $r>2$ . For
the multiplication of multi-sequences we apply Kahane’s lemma [25,
Lemma 2.1] to obtain

$B_{3b}\leq C_{7}D_{5}^{2}D_{6}^{m-2\delta}m^{m-\delta}t^{-\frac{n}{2}(\frac{1}{n}-1_{)-\frac{m}{2}}}q$ ,

where $C_{7}$ depends also on 6; indeed, $C_{7} \sim\sum_{j=1}^{\infty}j^{-1/2-\delta/2}$ .
Combining the estimates for $B_{1^{-}}B_{5}$ , and applying a Gronwall’s type

inequality [17, Lemma 2.4], there exists $\epsilon_{m}\in(0,1)$ such that
$||\partial_{x}^{\beta}u(t)||_{q}\leq 2b_{\mathrm{g}_{m}}t-2\mathrm{A}-_{2}^{q}$ , $t\in(\mathrm{O}, T)$ .

We have taken $\epsilon_{m}:=1/m$ , we fix $m_{0}\in \mathrm{N}$ which is the smallest number
satisfying $J_{1/m} \leq\frac{1}{2C_{6}}$ .

Finally, we verify (3.4) for all $m$ under suitable choices of $D_{5}$ and $D_{6}$ .
To get (3.4) for $|\beta|=m\leq m_{0}$ , it is sufficient to choose $D_{5}$ large enough
such that (3.5) holds, where $m_{0}$ is given above. Also, it is sufficient to
take $D_{6}\geq(2C_{7}D_{5})^{1/\delta}$ , then (3.4) holds for all $m\geq m_{0}$ . The proof is
complete. $\square$

If $M$ is skew-symmetric, then $||e^{tM}||\leq 1$ . It is not enough to assume
that $||e^{tM}||\leq C$ for some $C>1$ , at least for the author.

One can get the similar results on the Keller-Segel equations, FUjita
equation (semilinear heat equation) of algebraic nonlinearity, Allen-
Cahn equation, and other equations of parabolic type. See the details
in [40].

At the end of this note we show a modification of iteration argu-
ments. Recall that the mild solution $u$ is a unique limit of successive
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approximation $u_{j}$ . Take $\beta\in \mathrm{N}_{0}^{n}$ arbitrary. We now define for $j\in \mathrm{N}$

$\psi_{j}(t):=||\partial_{x}^{\beta}u_{j}(t)||_{q}$ ,

and argue in the similar way in the proof of Proposition 3.1 to get $\partial_{x}^{\beta}u\in$

$C(\mathrm{O}, T_{0;}L^{q})$ by applying the sequence version of Gronwall’s inequalities.
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