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Solution Method of Multi-Objective Decision Problem
for Eco-Conscious Management by Particle Swarm Optimization

Eri Domoto, Koji Okuhara, Hiroaki Ishii
Graduate School of Infornation Science and Technology,

Osaka University

1. Introduction

Supply chain management (SCM) $[1, 2]$ is the technique of carrying out management of
the supply chain which treated from manufacture to the customer and includes global
operation. SCM aims at the profit. improvement, a cost cut and shortening the product
time for delivery in the whole supply chain. The management activities supported by
modem mass production and mass consumption [3-5] are increasing the environment
load [6] in many actual problems. In future management activities, it is necessary to
take notice of the influence on environment etc., replying to various needs from a
consumer. A life cycle assessment is in the technique of evaluating the environmental
influence of the life cycle of a product. A Life Cycle Assessment (LCA) $[7, 8]$ is one of
the evaluation methods for environmental preservation and evasion of resources drain.
LCA gives not only the indicator of the recycling design for realizing sustainable
development, but also the estimation of effectiv$e$ mechanism of manufacture. In LCA, it
is important to reduce the environmental load when the products are manufactured at
machine tool and the products are transported in logistics. In order to solve an
optimization problem, we use the Particle Swarm Optimization which is one of the
meta-heuristics. Particle Swarm Optimization (PSO) [9] is a method solving a
continuous nonlinear optimization problem efficiently which is developed by Kennedy
and used as the simulation of the simplified social model. It is known as a result of
much old numerical simulations that it is possible to calculate the semi optimal solution
which is equivalent to the global optimal solution of multimodal function of a
continuous variable or it high accuracy. In this paper, we propose the target order
quantity considering environmental issue for SCM by PSO. First, we formulate a model
whose aim is to minimize cost in the multistage SCM, taking environmental issue into
consideration. Next the optimum target order quantity is calculated using PSO.
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2. Model Formulation

2.1 Basic Model of Single Stage in Supply Chain

It is thought that consumer causes demand for one retailer. Here, demand at stage $i$

in period $t$ is shown by normal distribution $D^{\int_{\prime}}\in N(d,\sigma^{2})$ with average $d$ and
variance $\sigma^{2}$ . Demand forecast $\tilde{d}_{t}^{i}$ during lead time at stage $i$ is formulated by

$\tilde{d_{t}}^{i}-L^{i}\hat{d}_{t}^{i}$ (1)

Where, $L^{i}$ is lead times for stage $i$ and $\hat{d}_{t}^{i}$ is demand forecast at stage. $i$ in
period $t$ using moving average method with period $p$ .

$\hat{d}_{t}^{i}\Leftrightarrow\frac{\sum_{j- 1}^{p}D_{t- j}}{p}$ (2)

Standard deviation of demand forecast during lead time at stage $i$ is given
by $\overline{\sigma}_{l}’-\sqrt{L^{i}}\sigma$ . Under there environment, demand variable level at stage $i$ in period $t$

is expressed by

$y_{t}^{i}-\tilde{d}^{i},+a^{i}\tilde{\sigma}_{t}^{i}$

$\langle$3)

where, $a^{i}$ is control parameter about customer satisfaction at stage $i$ . And, order
quantity $O_{t}^{i}$ at stage $i$ in period $t$ is given by

$O_{t}^{i}-D_{t}^{i}+y_{t+1}^{i}-y_{t}^{i}$

(4)

2.2 Fornulation of Multistage Supply Chain

We formulate fundamental model which is discussed in this paper. In problem
definition and formulation, we consider these quantities such as $D_{t}^{i},$ $y_{t}^{\dot{\iota}},$ $O_{t}^{i},$ $S_{t}^{i}$ ,
where $S_{t}^{i}$ denotes inventory at stage $i$ in period $t$ . Index $i$ expresses retailer by 1,
wholesaler by 2, distributor by 3, and factory by 4. We consider price of product, $p_{D}^{i}$ ,
order and logistics cost, $P^{i}o$

’ restocking fee in order, $p_{r}^{i}$ , restocking fee in demand, $p_{b}^{i}$ ,
holding cost, $p_{S}^{i}$ , and stock out cost, $p_{u}^{i}$ , per unit. In the same way we consider
environment load, cost for production, $e_{D}^{i}$ , logistics, $e_{O}^{i}$ , restocking in order, $e_{r}^{i}$ ,
restocking in demand, $e_{b}^{i}$ , and holding inventory, $e_{S}^{i}$ , per unit.

We formulate
$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}_{\mathrm{S}}\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}\mathrm{e}$

.
ordeer variable $x_{t}^{i}(x_{ts-\iota.+1}^{i}.$

”$x_{ts+1}^{i},\cdots,x_{ts+tp}^{i}\mathrm{J}\cdot ts$ is
plan start time. And $tp$ is plan period. $x_{t}^{\dot{i}}$ satisfies maximlzlng profit of tot supply
chain as follows;

$\min$ $2^{u}, \sum_{t- t- t.+1}-\prime m(c^{\int_{t}}-p^{\int_{D}}D^{\int_{t}})$ , (5)

$\min$ $\sum^{m\mathrm{f}\mathrm{f}}t\cdot,- u-\ovalbox{\tt\small REJECT} L^{l}$. sl $g_{t}^{i}$ , (6)
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st. $c_{t}^{i}=p_{s}^{i}S_{t}^{i}+p_{u}^{i}u_{t}^{i}+p_{\mathit{0}}^{i}O_{t}^{i}+p_{r}^{i}r_{t}^{i}+p_{b}^{i}b_{t}^{i}$ ,

st. $g_{t}^{i}=e_{S}^{i}S_{t}^{i}+e_{O}^{i}O_{t}^{i}+e_{r}^{i}r_{t}^{i}+e_{b}^{i}b_{t}^{i}+e_{D}^{i}D_{t}^{i}$,

(7)

(8)

$z_{t+1}^{i}=S_{i}^{i}-y_{t}^{i}+O_{t-L_{o}^{i}+1}^{i}-r_{i}^{i}$ , (9)

$y_{t}^{i}-D_{t}^{i}-b_{t}^{i}$ , (10)
$S_{t}^{i}- \min(f_{+}(_{Z_{t}^{i}})\hat{S}^{i})$ , (11)
$u_{t}^{i}-f_{-}(z_{t}^{i})$ , (12)
$O_{t}^{i}-f_{+}(x^{i},)$ , (13)
$r_{t}^{i}- \min(S_{t}^{j},f_{-}(x_{t}^{i}))$, (14)
$D_{t}^{i}-O_{t}^{i- 1}$ , (15)
$b_{t}^{i}arrow r_{t-L^{\mathrm{t}- 1},}^{i- 1}$ , (16)
$L_{\epsilon}^{i}\geq L_{O}^{i}\geq 0$ , (17)
$\hat{S}^{\iota’}\mathrm{z}0$ , (18)
$L_{r}^{i}\mathrm{z}0$ , (19)

$c_{t}^{i}$ denotes total cost of multistage, $g_{t}^{i}$ denotes total environmental load of
multistage and from eq. (9) to eq. (16) are derived by model assumptions. $r_{t}^{i}$ denotes
restocking in order, $b_{t}^{i}$ denotes restocking in demand, $u_{t}^{i}$ denotes quantity out of
stock and $z_{t}^{i}$ denotes inventory variable. $\hat{S}^{i}$ denotes limit inventory in stage $i$ . And
inventory quantity $S_{t}^{i}$ must not be beyond limit inventory $\hat{S}^{i}$ in each stage. We
consider lead time of order, $L_{o}^{i}$ , restocking, $L_{r}^{i}$ , and plan, $L_{e}^{i}$ . $L_{O}^{i}$ is a lead time which
until it orders form the next stage $i+1$ and retums to the present stage $i$ , and $L_{r}^{i}$ is a
lead time which until it retums the goods to th$e$ next stage $i+1$ from the pre$s$ent stage
$i$ . $L_{\epsilon}^{i}$ is lead tim$e$ of period to build a plan.

3. Solution Method

We use Multi Objective Particle Swarm Optimization (MOPSO) $[10, 11]$ which
extended PSO as a multiple-purpose optimization technique, in order to decide order
quantity. PSO consists of very bri$e\mathrm{f}$ algorithm. However, it is the technique of the ability
to solve a continued type nonlinear optimization problem efficiently. It is observed as
the optimization technique for the $s$ingle purpose function in recent years. The
multiple-purpose optimization technique MOPSO which improved the algorithm of
$\mathrm{P}\mathrm{S}O$ so that it could deal with a multiple-purpose optimization problem is proposed.
MOPSO can ask for the multiple-purpose optimal solution set, i.e., the Pareto solution
set, efficiently.

In MOPSO, the searching point $\mathrm{x}\in R^{m}$ which is distributed in the shape of a group
and moves in the search space of $m$ dimension generates the move vector $\mathrm{v}\in R^{n}$

using the position information $\mathrm{g}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}\in R^{m}$ on the Pareto solution shared with group’s
position information $\mathrm{p}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}\in R^{n}$ of the best solution which self has in groups, and it
searches for a solution. And it is the technique of considering a set of gbest which
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finally remained as th$e$ Par$e\mathrm{t}\mathrm{o}$ optimum meeting set. The search method of MOPSO is
shown below.

Step (A) Initialize
First, the searching point number $N_{t}$ , the number of times of repetition $N_{K}$ , and

saving point number maximum $N_{R}^{\mathrm{m}u}$ are determined. And initial setting of
$\mathrm{x}\{i$), $\mathrm{p}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}(i),$ $\mathrm{g}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}(r)$ , $\mathrm{v}(i)$ is performed. However, $i$ expresses a searching point
number and $r$ expresses a saving point number. $\mathrm{x}(i)(1\leq i\mathrm{s}N_{J})$ is determined at
random within a limit value, and sets with $\mathrm{v}(i)-0(1si\leq N_{J}),$ $\mathrm{p}\mathrm{b}\mathrm{e}\mathrm{s}t\langle i)-x(i)(1\mathrm{s}rsN_{I})$ ,
gbest $(r)-x(i)(r-i,1\leq r\leq N_{l})$ . gbest $(r)(N_{I}+1\leq r\leq N_{R}^{\mathrm{m}\cdot \mathrm{x}})$ does not have an initial
value, and it is $N_{R}-N_{l}$ in initial setting when the saving point number is set to $N_{R}$ .

Step (B) Generate hypercube
In the case of dealing with $n$ purpose optimization problem $(n>1)$ , Since a

searching point $\mathrm{x}(i)$ has $n$ purpose functions, the position in the n-dimensional
purpose functional space is decided by those values. And each searching point can be
evaluated. The position information pbest(i) on the best solution which these searching
points itself has, and the position information gbest $(r)$ on the Pareto solution shared in
groups have $n$ objective functions similarly, and exist in $n$ -dimensional objective
function space. A Hypercube ( $n$ -dimensional cube) is generated so that only arbitrary
numbers may divide th$en$ -dimensional purpose functional space where all gbest $(r)$

exists.

Step (C) Selection of gbst $(h)$

The procedure which chooses gbest $(h)$ which is needed when generating a mov$e$

vector $\mathrm{v}(i)$ at Step 1-4 is as follows. In objective-function space, the number of

gbest $(r)$ which belongs to each Hypercube is set to $c$ paying attention to all the
Hypercub$e$ containing at least one gbest $(r)$ . rand $0$ is set to the uniform random
numbers from $0$ to 1. rand $\mathrm{o}/c$ specifies one Hypercube which becomes th$e$ maximum
and sets to as Hypercub$eh$ . $\mathrm{g}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}(r)$ is chosen at random ffom Hypercube $h$ , and

selected gbest $(r)$ is $s$et to gbest $(h)$ . Thus, it draws near to the domain where the

density of gbest $(r)$ is low by choosing gbest $(h)$ . And it is effectiv$e$ in the ability to
perform wide range search.

Step (D) New searching point generation
In the $k+1\mathrm{t}\mathrm{h}$ search, the $i$ th searching point $\mathrm{x}_{k+1}(i)$ moves to the new position

shown by eq. (20) according to the move vector $\mathrm{v}_{i\mathrm{s}1}(i)$ described by formula eq. (20)

in search space.
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$\mathrm{v}_{k+1}(i)=w\cdot \mathrm{v}_{k}(i)+rand_{1}()\cdot(\mathrm{p}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}(i)-\mathrm{x}_{k}(i))+rand_{2}0\cdot(\mathrm{g}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}(h)-\mathrm{x}_{k}(i))$ (20)

$\mathrm{x}_{k+1}(i)-\mathrm{x}_{k}(i)+\mathrm{v}_{k+1}(i)$ (21)

In eq. (20), $w$ expresses an inertia weight and $rand_{1}0,$ $rand_{2}0$ expresses the uniform
random numb$e\mathrm{r}s$ from $0$ to 1. The 1st clause of the right-hand side is a vector showing
the inertia to the direction to which it moved last time. The 2nd clause of the right-hand
side is a vector which draws a searching point near to the position of the best solution
which self has. The 3rd clause of the right-hand side is a vector which draws a searching
point near to the position of gbest $(h)$ . In addition, various search becomes realizable
by random number $rand_{1}(),$ $rand_{2}0$ .

Step (E) Searching point evaluation
An objective-function value is calculated from the position of a searching point

$\mathrm{x}_{k\cdot 1}(i)$ .

Step (F) Updating and preservation of pbest (i), gbest $(r)$

This step consists of the following step A-F.

Step (F-1)
When $\mathrm{x}_{k+1}(i)$ is superior to pbest $(i)$ to a certain objective-function value, it

updates pbest(i) to $\mathrm{x}_{k*1}(i)$ .

Step (F-2)
Although $\mathrm{x}_{k\dagger 1}(i)$ is superior to pbest(i) to a certain purpose function value, when

inferior to pbest(i) to other purpose function values, it decides at random whether to

update pbest(i) to $\mathrm{x}_{k+1}(i)$ .

Step $(\mathrm{F}\cdot 3)$

When gbest $(r)$ inferior to $\mathrm{x}_{k*1}(i)$ exists to all the objective-function values, one is
updated to $\mathrm{x}_{\iota*1}(i)$ .
Except it, it is deleted by next processing Step (F-6).

Step (F-4)
When $\mathrm{x}_{k*1}(i)$ is excellent in at least one purpose function value to all gbest $(r)$

(that is, it is the Pareto solution), if it is $N_{R}<N_{R}^{\mathrm{m}\cdot \mathrm{x}},$ $\mathrm{x}_{l\star 1}(i)$ is saved as new
gbest $(r)(r\cdot N_{R}+1)$ .
Moreover, since the one saving point number increases at this time, the saving point
number is set to $N_{R}+1$ .
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Step $(\mathrm{F}\cdot 5)$

If it is $N_{R}\mathrm{z}N_{R}^{\mathrm{m}\cdot \mathrm{x}}$ on condition of Step (F-4), the number of gbest $(r)$ saves only
$\mathrm{x}_{l\star 1}(i)$ belonging to the Hypercube which is below a certain value as new
gbes$\mathrm{t}(r)(r-N_{R}+1)$ .
Moreover, at this time, since the one saving point number increases, the saving point
number is set to $N_{R}+1$ .
Step $(\mathrm{F}\cdot C)$

gbest $(r)$ which became a non-PARETO solution at the tim$e$ of preservation and
updating is deleted. The saving point number at this time is newly set to $N_{R}$ .
Step (G) Search end

The procedure of Step $(\mathrm{B}\cdot \mathrm{F})$ is repeated until it $\mathrm{r}e$aches the specified number $N_{K}$ of
repeated calculation. Search will be ended if the number of calculation reaches $N_{K}$ .
And a $s$et of gbest $(r)$ which finally remained is considered as the Pareto optimum
solution set.

4. Numerical Example

In this section, we use MOPSO to solve the proposed model. Figure 1 and 2 shows
the result of Cost and $\mathrm{C}\mathrm{O}2$. In other words period 16-30 are prediction periods. As for
these graphs, the solid lines shows stage 1, the dashed lines shows stage 2 and the
dotted lines shows stage 3. In MOPSO, We use a population of 45 particles, a repository
size of 100 particles and from 100 to 10000 search times. Co$s\mathrm{t}$ and CO2 have little
change on a stage 1. The cost of the sum total on every stage is generally the same.
However, it turns out that it takes for going to a stage 3 by $\mathrm{C}\mathrm{O}2$, and is increasing.

5. Conclusions

In this paper, we proposed the optimum target order quantity considering
environmental issuer for supply chain management by MOPSO. Proposed model
provides new optimal $s$trategy which focus on environmental conscious in logistics and
inventory of supply chain management from supplier to maker.
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