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Symbolic-Numeric Optimization for Estimation of
Parameters in a Biological Kinetic Model

折居茂夫 堀本勝久
SHIGEO ORII KATSUHISA HORIMOTO

富士通株式会社 産業技術総合研究所・生命情報科学研究センター
FUJITSU LTD * COMPUTATIONAL BIOLOGY RESEARCE CENTER, AIST \dagger

穴井宏和
HIROKAZU ANAI

(株)富士通研究所/(独)科学技術振興機構
FUJITSU LABORATORIES LTD $/\mathrm{C}\mathrm{R}\mathrm{E}\mathrm{S}\mathrm{T}$ , JST $\mathrm{t}$

Abstract
We have been studying a symbolic-numeric optimization for estimation of $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\infty$ in biological

kinetic models by quantifier elimination $(\mathrm{Q}\mathrm{E})$ , in combination with numerical simulation methods. The
optimization method was applied to a model for the inhibition kinetics of HIV proteinase with ten param-
eters and nine variables. We apply this optimization procedure to three sets of observed data and obtain
kinetic parameters by using only one point of each set of the data.

1 Introduction
Many methods for local and global optimization have been developed to model and simulate the global

network of biological molecules in a cell $[1, 2]$ , and some simulators based on various optimization methods
have also been designed (e.g. [3]). In the optimization methods, the estimation of kinetic parameters plays
a key role in the development of kinetic models, which, in turn, promotes functional understanding at the
system level, for example, in several biological pathways $[4, 5]$ . An answer to the estimation of kinetic
parameters is our symbolic-numeric optimization which combines symbolic QE with numerical simulation
$[6, 7]$ . In this paper, firstly, we show our procedure of the optimization for the inhibition kinetics of HIV
proteinase [8], which includes an enhanced procedure of the offset computation. Secondly, we show that
the kinetic parameters for three sets of obeerved data can be estimated by using only one point of each
set of the data.
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2 MATERIALS AND METHODS
2.1 Mathematical Framework

Problem: In this paper, we consider the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ fitting problem: the biological kinetic model analyzed

here is of the form:
$\dot{x}_{1}=v:(X,K)$ (1)

where $X=\{x_{1}, \cdots,x_{n_{\mathrm{s}}}\}$ is a set of variables, and $K=\{k_{1}, \cdots, k_{n_{\dot{f}}}\}$ is a set of parameters. The problem

is to fit the parameters $K$ of the model to the observed data $\tilde{X}=\{\tilde{x}_{l}^{\ell}\}$ for, $i=1,$ $\cdots,n_{x},$ $t=0,1,$ $\cdots,n_{\overline{x}_{\mathrm{t}}}$

under the following additional conditions:
(i) Conservation laws: $h_{:}(X)=0$

(ii)Variable ranges: $X:\in D_{i}$ , where $D_{:}=[a, b],$ $a,$ $b\in \mathbb{R}\cup\{\infty\}$ .

Basic librmula Here we set up the leading formula of this paper. As mentioned above, we have the
following constraints $\Psi$ with error variables ei from kinetic models: $\Psi\equiv\bigwedge_{*}\psi_{:}$ , where $\psi_{i}=\dot{x}:-v_{1}(X,K)+$

$e_{j}=0$. For the error variables we introduce a new variable, $e_{[][]},ax$ , which means the magnitude of the

error variables: $|e.|\leq e_{\max}$ . Moreover, for the variables whose observed data is given, we consider the
following objective conditions: $X_{l}^{(t)}-\overline{X}_{l}^{(t)}=0$, to achieve fitting. Then the . basic formula ’ is given as

$F(\dot{X}, X, K, e_{\max}, e:)\equiv$ ( $\Psi$ A $h_{:}(X)=0$ A $X:\in D_{1}\wedge|e_{i}|\leq e_{\max}$ A $X_{l}^{(t)}-\overline{X}_{l}^{\langle t\rangle}=0$ ). (2)

We apply our symbolic-numeric approach to formulas derived by slightly modifying the basic formula
according to various purposes.

2.2 Optimization Procedure

We explain the concrete procedure of symbolic-numeric optimization, which consists of six parts as
illustrated in Figure 1.

(1) Numerical simulation First we prepare simulation data for $\dot{x}$: and $X:$ , for which we lack observed
data, by performing a numerical simulation of the kinetic models.

1. Set initial conditions $\tilde{X}^{(0\rangle}$ and starting values for unknown parameters $\overline{K}^{\langle 0)}$ as follows: $\overline{X}^{(0)}\equiv$

$\{\tilde{x}^{(0)}|i=1, \cdots, n_{x}\}$ and $\overline{K}^{(0)}=K_{1}^{(0)}\cup K_{2}^{(0)}$ , where $\overline{K}_{1}^{(0)}\equiv\{k_{1}^{(0)}, \cdots, k_{j}^{(0)}\}$ are starting values, and
$\tilde{K}_{2}^{(0)}\equiv\{k_{j+1}^{(0)}, \cdots, k_{n_{j}}^{(0)}\}$ are given fxed pwameters.

2. By numerical simulation of the kinetic model (1), we obtain a time series for $x$: and $\dot{x}_{1}:X_{i}^{(t)}=$

$\{x_{i}^{(t)}|i=1, \cdots n_{1},t)=0,1, \cdots,n_{t}\}$ and $\dot{X}_{1}-(.\ell)=\{\overline{\dot{x}}_{i}^{(t)}|i=1, \cdots,n:, t=0,1, \cdots,n_{t}\}$.

(2) liormulation After choosing some variables from $X$ , we call them
$\ell$

focusing $\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\infty’,$ $\mathrm{Y}$ , and

substitute $\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}/\mathrm{s}i\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ data into the remaining variables:

1. Choose a subset $\mathrm{Y}$ of $X$ : $Y\subseteq X$ .

2. Substitute $\dot{X}$ , $X\backslash \mathrm{Y}$ , in $F$ by the values of $\tilde{\dot{X}},\overline{X}$ at a time point $t:\dot{X}_{i}arrow\overline{\dot{X}}_{1}^{(\ell)}.,\dot{X}:arrow\dot{X}_{i}^{(l)}$ , where
$x:\in\tilde{\dot{X}},X\backslash Y$ . Then we denote the new formula as $F’(\mathrm{Y},K_{1},e_{\max’:}e)$ . We note by $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{n}\dot{\mathrm{u}}\mathrm{n}\mathrm{g}$ a QE

computation for the formula, $\exists \mathrm{Y}\exists K_{1}\exists e_{\max}\exists e:(F’)$ ,
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Figure 1: Flowchart of symbolic-numeric optimization. The variables and vslues are enclosed by the boxes, and
the procedures are numbered corresponding to the description in the text.

(3) Computation of offset by QE Observed data often contain an offset. Therefore, we must first
determine the offset value. Here we consider the case that the offset appears linearly. For the sake of sim-
plicity, we assume that only $\overline{x}_{1}$ has an offset. Let $F_{off\epsilon\epsilon t}’$ be the formula obtained by putting $\overline{x}_{1}’$ -offset
into $\tilde{x}_{1}^{(\iota)}$ of $F$‘, where offset is a variable for offset. By performing QE for $\exists X\exists K_{1}\exists e_{\max}\exists e_{j}(F_{\circ ff\epsilon\epsilon t}’)$,
we obtain the quantifier-hee formula $\pi(offset)$ , which stands for the feasible ranges of offset. Then
we substitute the minimum value of the offiet for the variable offset in $F’$ , and we denote it again by
$F’(\mathrm{Y},K_{1},e_{maae:},e)$ .

(4) Estimation of emax by QE First, we use QE to find the magnitude of emax as small as possible.
By computing QE for $F’(\mathrm{Y}, K_{1}, e:)$ , we obtain a quantifier-free formula $\pi(emax)$ describing the feasible
ranges of emax. Next, we put the minimum value of $e_{\max}$ into $e_{\max}$ in $F’$ , and denote the resulting
formula as $F”(\mathrm{Y},K_{1},e_{i})$ .

And Estimation of $K_{1}$ by QE We obtain a quantifier-free formula $\tau(K_{1})$ describing the feasible
ranges of $K_{1}$ by computing QE for $\mathrm{Y}\exists e:(F’’)$ , Actually, the feasible ranges of $K_{1}$ are usually sufflciently
narrow intervals (e.g., about $10^{-6}$ ) to choose an appropriate specific value of $K_{1}$ .

(5) Computation of sum of squares $(SSq)$ by numerical simulation We estimate the goodness-
of-fit for the obtained parameter $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{a}\mathrm{e}K_{1}\mathrm{h}\mathrm{o}\mathrm{m}$the feasible ranges $\mathrm{o}\mathrm{f}K_{1}$ in terms of $SSq$ .

1. Set initial conditions $\overline{X}^{(0)}$ and $K_{1}$ .
2. Perform numerical simulation of kinetic model (1).

3. Compute $SSq:SSq= \sum_{t}(x_{1}^{(\iota)}-\tilde{x}_{1}^{\langle\ell)})^{2}$.
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(6) $\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ If $SSq$ is smaller than a specific level $\theta$ , output $K$ . Otherwise, set new initial values
and go to (1).

2.3 Biological Model

We analyzed a model for the inhibition kinetics of
HIV proteinase [8], as shown in Figure 2. The pro-
teinase monomer $(M)$ is inactive, but the enzyme $(E\rangle$

$hf+Mr^{-}arrow$ $E$ $k_{11}(arrow)$. $k_{1arrow},(arrow)$

$S+E$ $\Leftrightarrow$ ES $k_{21},$ $k_{2}\underline,$

is active in the dimeric form. The dimer catalyzes
ES $arrow$ $E+P$ $k_{3}$

the conversion of the substrate $(S)$ to the product $(P)$ . $E+P$ $\underline{arrow}$ $EP$ $k_{41},$ $k_{42}$

The inhibitor (I) is competitive for the substrate and $E+I$ $-arrow$ $EI$ $k_{51},$ $k_{S2}$

the product, and the inhibitor-binding enzyme is irre $EI$ $arrow$ $EJ$ $k_{6}$

versibly deactivated $(EJ)$ . In the model, there are ten
parameters and nine variables. According to the previ-

Figure 2: Kinetic model for the inhibitor of HIV
ous studies $[8, 9]$ , five parameters $(k_{11},k_{12}, k_{21}, k_{41}, k_{51})$ proteinase. The start values for ten parameters
are given, and the remaining five unknown parameters and the initial values for nine variables [9] are as
$(k_{22}, k_{3},k_{42}, k_{52}, k_{6})$ , two initial values $(E_{|n|\iota}, S_{1nu})$ and follows: $k_{11}=0.1,k12=10^{-4},k_{21}=1\alpha 1,k\mathrm{a}2=$

$300,k_{\theta}=10,k_{41}=1\infty,k_{42}=500,$ $k_{51}=10$
the offiet of the fluorimeter are estimated by the present , $k_{62}=0.1,andk_{6}=0.1;\overline{x}_{1}=0,\overline{x}\mathrm{a}=0.004,\overline{x}_{3}=$

method. The experimental data of the product $[P]$ , 25.0, $\tilde{x}_{4}=0,\tilde{x}\mathrm{s}=0,\tilde{x}_{l}=0,\overline{x}_{7}=$ 0.003, $\tilde{x}_{8}=$

$0,and\overline{x}_{9}=0$ .which are composed of 300 data points measured from
$0$ to 3600 seconds, were dowtoaded from a web site
(http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ .gepasi. $\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{t}\mathrm{u}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l}\epsilon/\mathrm{o}\mathrm{p}\mathrm{t}/\mathrm{h}\mathrm{i}\mathrm{v}\mathrm{f}\mathrm{i}\mathrm{t}$.html).

3 RESULTS
First, we will describe the practical procedure for parameter optimization in the kinetic model for HIV

proteinaee, and then we will evaluate the optimized parameters by using only one point of the observed
data.

3.1 Procedure for Optimizing Parameters in HIV inhibition Model

To perform the numerical simulation (in (1) of 2.2), $K_{1}$ and $K_{2}$ , are defined as the flve unknown
parameters and the five given parameters, and the nine variables are allocated to $[P],$ $[E],$ $[S],$ [ES], $[M]$ ,
$[EP],$ $[I],$ $[EI]$ , and $[EJ]$ . Then we set the start value $\tilde{K}^{(0)}$ and the initial value $\tilde{X}^{(0)}$ . The start values
for ten parameters and the initial values for nine variables are cited from the previous study [9] (see the
legend in Figure 2). Ako, the two initial values, Einit and Sinit, are changed within a limited range with
reference to the previous studies $[8, 9]$ : 31 discrete values for $([E]=0.00350,0.00355, \cdots, 0.00500)$ and 13
values for $([S]=\mathit{2}3.0,\mathit{2}3.5, \cdots, 29.0)$ . The focusing variables $\mathrm{Y}$ (in (2) of 2.2) are simply obtained by the
symbolic computation with QE bom the relationship between $X\mathrm{a}\mathrm{n}\mathrm{d}K_{1}$ in the model. In the inequality
$v_{i}(X,K)\Delta t+x_{j}^{t}\geq 0$ , the ehmination of $\Delta t$ by QE outputs five inequalities including five parameters:
$100*[E]*[I]-k5\mathit{2}*[EI]-k6*[EI]>0,100*[E]*[I]-k5\mathit{2}*[EI]>0,100*[E]*[P]-k42*[EP]-k3*[ES]<$

$0,100*[E]*[P]-k42*[EP]>0$ , and$100*[E]*[S]-k\mathit{2}\mathit{2}*[ES]-k3*[ES]>0$. Among the five unknown
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Table 1: Goodness of fit with optimized parameters by symbolic-numeric method. (a) is in the case of
$\mathrm{I}=0$ , which means no inhibition. (b) is in the case of $\mathrm{I}=0.0015$ . $(\mathrm{c})$ is in the case of $\mathrm{I}=0.003$ . $Itr$ is the
iterations number of the symbolic-numeric optimization.

$.=\mathit{3}3610_{-\infty \mathrm{s}50}[\epsilon)\varpi eI\mathrm{f}\mathrm{f}\ \mathrm{r}\cdot \mathrm{a}\mathrm{r}:\ovalbox{\tt\small REJECT} B.F\mathrm{c}$.
$\mathrm{A}s=\mathrm{A}ts\Re_{\overline{\theta}}\mathrm{r}_{\overline{\theta}_{\sim}\overline{\theta}21\vec{\mathrm{o}}.29_{-}9\iota 21082\cdot\cdot 0_{\sim}\infty 78}$

984 1 0.00350 95.5 140.3 9.907 $87SS$ 0.00824
lS48 1 0.00350 26.6 144.2 9.936 544.2 0.00951

$\mathrm{W}\mathrm{n}\mathrm{d}\infty$ 0.004389 24.79 201.1 7.362 1171 $l.3l\mathrm{B}*04$ $3.00\mathrm{B}\star 4$ 0.00347
&thn

$\underline{\mathrm{X}\mathrm{u}\mathrm{m}\dot{u}}$’ $l79.7$ $\theta.46$ 1117 0.0831 $0.l2_{d}^{\Phi}4$

$\underline{[\mathrm{b})}$.
$\frac{\mathrm{m}\cdot b\mathrm{f}\mathrm{f}RS_{\mathrm{m}}b\mathrm{A}s\mathrm{A}\mathrm{n}\mathrm{A}gp\wedge p\mathrm{g}_{\mathrm{Q}}}{33610.003\infty 2\mathit{3}019\overline{\mathrm{o}}.\overline{\epsilon}9.90918780.1030.09\ulcorner/20.0321}$:
984 1 0.00350 23.5 111.9 9.971 870.1 0.105 $0.0\Omega 0$ 0.0320
1848 1
Mendes $-$ 0.004637 26.79 201.1 $?.3\hat{0}2$ $\mathrm{u}71$ $1.S1\mathrm{B}+04$ $3.00\mathrm{B}+4$ 0.00985
& Kell

$\underline{m\mathrm{i}*-}-$179.7 9.46 11170.$08S1$ 0.1:.24-

$=\varpi eI\alpha B\mathrm{R}k\approx ks,Pgbks\mathrm{a}(\mathrm{c})\mathit{3}3\mathit{6}10.0\mathrm{Q}49527.\overline{\mathrm{o}}250.99.7^{-}612960.1030.0oe90_{\sim}0089\overline{\mathrm{o}}$

$984$ 1 0.00470 $.’ 8.0$ $16_{\wedge}^{\sigma}.8$ 9.980 $\mathrm{u}u$ 0.102 0.0982 $0.00\iota 9\overline{\mathrm{b}}$

1848 $l$ 0.00390 29.0 38.67 $9.9\infty$ I342 0. $10l$ 0.0986 0.OC250
$\mathrm{g}$ 0.00466 28,0 149.5 9.805 1241 0.110 0.0970 0.00835

$\infty \mathrm{o}\mathrm{n}\mathrm{d}\mathrm{r}$ $-$ 0.005470 26.79 201.1 7.352 1171 1.31BsO4 $\mathrm{S}.\infty \mathrm{B}+4$ 0.00513
&bn
Kuzmic $-$ 179.7 9.46 1117 0.0831 0.1224

For reference, the values related to the present optimization are ako cited &om previous studies $[8, 9]$ .

parameters in the above five inequalities, $[P]$ is included in the objective function, and $[S]$ is a large
value relative to the other variables in the reaction molecules. Except for the last three inequalities
including $[P]$ and $[S]$ , only $[EI]$ appears in the terms related to the unknown parameters in the first
two inequalities. Thus, the focusing variables $\mathrm{Y}$ are defined as $[P],$ $[S]$ , and $[EI]$ in the present model.
All symbolic computations by QE in this study are performed by REDUCE $(\mathrm{v}\mathrm{e}\mathrm{r}. 3.7)$ (http://www.uni-
$\mathrm{k}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{n}.\mathrm{d}\mathrm{e}/\mathrm{R}\mathrm{E}\mathrm{D}\mathrm{U}\mathrm{C}\mathrm{E}/)$ . In addition, the conservation laws in the present model are obtained by Gepasi [3],
a tool for estimating the kinetic flux in a given model, as follows: $h_{1}(X)=[S]+[ES]+[P]+[EP]-S_{1n:\iota}=0$

and $h_{2}(X)=[M]+\mathit{2}[E]-2[S]-\mathit{2}[P]+2[EI]+2[EJ]-(\mathit{2}E:\hslash\{\ell-2S_{1n:\ell})=0$ .
The computation of offset by QE ((3) of 2.2) is reahzed by eliminating all of the vaniables by $\mathrm{Q}\mathrm{E}$ ,

except for offset in $F_{off\cdot \mathrm{e}t}’$ . By the elimination, the following three equations composed of the initial
values and the observed values are obtain\’e in the present model: $\mu(offset)=[E]+[EI]+[EJ]+$
$[M]/\mathit{2}-[Einit]-[Sinit]=0,$ $[EP]+[ES]+[P]+[S]-[Sinit]=0,an\ ffset+3/125[P]-x_{1}=0$ .
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From the last two equations, we can obtain of$fset=\overline{x}_{1}-3/125*([Sinit]-[S]-[EP]-[ES])$ .
By considering the properties of the kinetic model, this equation can be approximated with the

observed data. In the initial state, $[EP]$ and [ES] are much less than $[S]$ , and as the reaction proceeds,
$[S]$ decreases steadily. Therefore, [Sinit] $>>[S]-[EP]-[ES]$ at a steady state. Thus, we can obtain

of$fset=(\overline{x}_{1})_{\epsilon t\epsilon ady}-3/125*[Sinit]$ , where $(\overline{x}_{1})_{\epsilon teady}$ is a value of $\tilde{x}_{1}$ . In the present study, we used the
value of $(\overline{x}_{1})_{\epsilon\ell\epsilon ady}$ at $t=3600$ as the value of $(\overline{x}_{1})_{\iota t\mathrm{e}ady}$ .

Using $F’$ of $Y$ and the offset obtained above, we can estimate emax $\mathrm{a}\mathrm{n}\mathrm{d}K_{1}$ by QE (in (4) of 2.2).

Note that 403 sets of emax and$K_{1}$ are obtained by the corresponding sets of $E_{1nit}$ and $s_{::t}\hslash$ . Since the
fitting of simulated data strongly depends on the initial values, we further simulate numerically $E_{:nit}$ and
$S_{1nit}$ within the above ranges of $E_{\dot{*}n:\iota}$ and $s_{:n}:\ell$ ; by a standard technique of the bisection method, $E_{1n}:\iota$

and $S_{1nil}$ for each set of emax $\mathrm{a}\mathrm{n}\mathrm{d}K_{1}$ are estimated to minimize the $SSq$ that is calculated for 300 values
of $[P]$ (in (5) of 2.2). Finally, we obtain a set of $e_{\max},K_{1},$ $E_{in}:\iota$ and $s_{:n:\iota}$ by selecting a minimum $SSq$

among the 403 $SSq’ \mathrm{s}$ .
To judge whether the loop in Figure 1 terminates or not (in (6) of 2.2), the minimum of $SSq’ \mathrm{s}$ is

compared with the threshold $\theta$ . The threshold is set to 0.04 in the present study.

3.2 Observed Data Fitting with the Optimized Parameters

The optimized parameters with the six sets of observed data are listed in Table 1, together with the
iteration number, the goodness of fit measured by $SSq$, the initial values of $E_{lnit}$ and $S_{1\mathfrak{n}’ 1}$, and the o&et.
In addition, the fittings of simulated values to the observed data in six cases are described in Figure 3.

One of the remarkable features of the present fitting is that only one point of the observed data are
sufficient to fit 300 data points with an $SSq$ value of less than 0.03. The data point for the optimization
is randomly chosen from 300 points of data, and all fittings attain the threshold by one or two iterations
of the loop. In one of the six cases, two rounds of iterations were required, but the first fitting in the case
agreed well with the observed data This is partly because QE powerfully restricts the possible ranges
of the parameters and the variables, and partly because the present model is simpler than that expected
from the complex kinetics of ten parameters and nine variables. These points will be discussed in the
following section.

Another feature is that the values of the parameters agree well with those in the previous studies
$[8, 9]$ . In particular, the highlighted parameters in this model, the inhibitor bindlng constant $(k_{52})$ and
the deactivation rate constant $(k_{6})$ , are about 0.10 and 0.097 in the six cases, which are similar values
to the constants in one previous study [8]. In contrast, the constants are enormously large in the other
previous study [9]. In comparison with both cases, the value in the latter case is unreasonably large for

the analysis to be acceptable. Thus, the large dissociation and deactivation rate constants suggest that
the potency of the inhibitor is overestimated in terms of the inhibitor reaction.

4 DISCUSSION
Two problems in the present optimization remain: the first of them is the choice of the observed data

for the optimization, and the second of them is the choice of $(\tilde{x}_{1})_{\iota t\epsilon ady}$ in the offset computation. As

for the first problem, the data showing a flat slope in the kinetic curve seem intuitively inadequate for
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Figure 3: Fitting to observed data with optimized parameters. The amount of product $[P]$ is multiplied by a
coefficient (0.024), according to [9]. The experimental data are denoted by the dots. a and $\mathrm{b}$ are in the case of
$I=0$. a is the carve of minimum $SSq(=0.00758)$ and $\mathrm{b}$ is the carve of maximum $SSq(=0.W951)$ in the (a) of
Table 1. $\mathrm{c}$ and $\mathrm{d}$ are in the case of $I=0.W15$. $\mathrm{c}$ is $SSq=0.03\mathit{2}1$ and $\mathrm{d}$ is $SSq=0.03\mathit{2}0$ in the (b) of kble 1.
$\mathrm{e}$ and $\mathrm{f}$ are in the case of $I=0.003$. $\mathrm{e}$ is the carve of minimum $SSq(=0.\alpha 1795)$ and $\mathrm{f}$ ls the carve of maximum
$SSq(=0.\mathrm{m}835)$ in the (c) of Table 1. The arrow of each flgure denotes the time of the observed value used for
the symbolic-numeric optimization: $\mathrm{a},$ $t=336;\mathrm{b},$ $t=1848;\mathrm{c},$ $t=336;\mathrm{d},$ $t=984;\mathrm{e},$ $t=9u;\mathrm{f},$ $t=1848$.
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the optimization. Indeed, by using the data of more than $t=2500$ in Figure 3, QE frequently outputs
false ‘ ; this means no parameter and variable spaces for the initial conditions in $F’$ . Any data, except

for those in the steady states, may possibly output true’ for the optimization by $\mathrm{Q}\mathrm{E}$ . As for the second
problem, fluctuation of data in steady Itates is the cause of large $SSq$ value. In the case of $I=0$ and
$I=$ 0.003 (see a, $\mathrm{b},$

$\mathrm{e},$

$\mathrm{f}$ of Figure 3), there is small fluctuation in the steady states. However, large
fluctuation appears in the case of $I=0.0015$ (see $\mathrm{c},$

$\mathrm{d}$ of Figure 3) and $(\tilde{x}_{1})_{\epsilon tead\mathrm{y}}$ of $t=3600$ is a lower
value of the steady state. The estimated curve is adjusted to the point is the problem. A rule of data
selection is required to attain more good $SSq$ value.
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