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Abstract

We have been studying a symbolic-numeric optimization for estimation of parameters in biological
kinetic models by quantifier elimination (QE), in combination with numerical simulation methods. The
optimization method was applied to a model for the inhibition kinetics of HIV proteinase with ten param-
eters and nine variables. We apply this optimization procedure to three sets of observed data and obtain
kinetic parameters by using only one point of each set of the data.

1 Intrbduction

Many methods for local and global optimization have been developed to model and simulate the global
network of biological molecules in a cell {1, 2], and some simulators based on various optimization methods
have also been designed (e.g. [3]). In the optimization methods, the estimation of kinetic parameters plays
a key role in the development of kinetic models, which, in turn, promotes functional understanding at the
system level, for example, in several biological pathways [4, 5. An answer to the estimation of kinetic
parameters is our symbolic-numeric optimization which combines symbolic QE with numerical simulation
[6, 7]. In this paper, firstly, we show our procedure of the optimization for the inhibition kinetics of HIV
proteinase (8], which includes an enhanced procedure of the offset computation. Secondly, we show that
the kinetic parameters for three sets of observed data can be estimated by using only one point of each
set of the data.
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2 MATERIALS AND METHODS
2.1 Mathematical Framework

Problem: In this paper, we consider the following fitting problem: the biological kinetic model analyzed
here is of the form:

;= 'Ui(X’K) (1)
where X = {z1,+++,%n,} is & set of variables, and K = {ki,-,kn,} is & set of parameters. The problem
is to fit the parameters K of the model to the observed data X= {#t}for,i=1,--+,ns, t=0,1,--+,ng,
under the following additional condltlons

(i) Conservation laws: hi(X) =

(i) Variable ranges: z; € D;, where D; = [a,b), a,b € RU {o0}.
Basic Formula Here we set up the leading formula of this paper. As mentioned above, we have the
following constraints ¥ with error variables ei from kinetic models: W= A;;, where ; = &; —v;(X, K) +
e; = 0. For the error variables we introduce a new variable, e,,az, which means the magnitude of the
error variables: |e;| < €mas. Moreover, for the variables whose observed data is given, we consider the
following objective conditions: X ®) X () — 0, to achieve fitting. Then the “basic formula” is given as

F(X, X, K, emaz, &) = (T Ah(X) = 0A i € Di Ales] < emae A X = X[ =0), )

We apply our symbolic-numeric approach to formulas derived by slightly modifying the basic formula
according to various purposes.

2.2 Optimization Procedure

We explain the concrete procedure of symbolic-numeric optimization, which consists of six parts as
illustrated in Figure 1.

(1) Numerical simulation First we prepare simulation data for &; and z;, for which we lack observed
data, by performing a numerical simulation of the kinetic models.

1. Set initial conditions X© and starting values for unknown parameters K@ as follows: X =
{#0)i = 1,--,n,} and KO = KPUKY, where K = (%{,... k;-o)} are starting values, and

(0) = {kﬂl, . (o)} are given fixed parameters.

2. By numerical simulation of the kinetic model (1), we obtain a time series for z; and ;: X,-(‘) =
5 (1) -
(zPli=1,,nt=0,1,--,n} and X; = {5 }i=1,--,m5,t=0,1,-++,ne}.

(2) Formulation After choosing some variables from X, we call them “ focusing variables ", Y, and
substitute observed/simulated data into the remaining variables:

1. Choose a subset Y of X : YCX.
. . . =(t) . .
2. Substitute X, X \ Y, in F by the values of X, X at a time point t: X; — X; ,X; — X9, where

z; € X, X\ Y. Then we denote the new formula as F'(Y, K1, €maz, €;). We note by performing a QE
computation for the formula, 3Y 3K, 3emqr3ei(F'),
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(1) Numerical simulation

w1
» ‘I

l (2) Formulation
[ I F.’ "
E] ~.(3)QE T

) l
(4) QE N 1(af)Sel)

Set initial values

Figure 1: Flowchart of symbolic-numeric optimization. The variables and values are enclosed by the boxes, and
the procedures are numbered corresponding to the description in the text.

(3) Computation of offset by QE Observed data often contain an offset. Therefore, we must first
determine the offset value. Here we consider the case that the offset appears linearly. For the sake of sim-
plicity, we assume that only £; has an offset. Let F, (.., be the formula obtained by putting &} —of fset
into .'E(l") of F’, where of fset is a variable for offset. By performing QE for 3X 3K13emaz3ei(Foppet)s
we obtain the quantifier-free formula 7 (of fset), which stands for the feasible ranges of of fset. Then
we substitute the minimum value of the offset for the variable offset in F’, and we denote it again by
F'(Y, Kl, €maz, e,-).

(4) Estimation of emaz by QE First, we use QE to find the magnitude of emaz as small as possible.
By computing QE for F'(Y, K}, e;), we obtain a quantifier-free formula m(emaz) describing the feasible
ranges of emazr. Next, we put the minimum value of emg; into emqz in F’, and denote the resulting
formula as F"'(Y, K1, &;).

And Estimation of K; by QE We obtain a quantifier-free formula 7(K;) describing the feasible
ranges of K; by computing QE for Y3e;(F"), Actually, the feasible ranges of K; are usually sufficiently
narrow intervals (e.g., about 10~6) to choose an appropriate specific value of K.

(5) Computation of sum of squares (§5¢) by numerical simulation We estimate the goodness-
of-fit for the obtained parameter valuesK; from the feasible ranges ofK; in terms of SSg.

1. Set initial conditions X(© and K;.
2. Perform numerical simulation of kinetic model (1).

3. Compute SSq: SS¢=7Y. t(zg“) iy
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(6)Termination If §Sq is smaller than a specific level 4, output K. Otherwise, set new initial values
and go to (1). ‘

2.3 Biological Model

We analyzed a model for the inhibition kinetics of
HIV proteinase [8], as shown in Figure 2. The pro-

teinase monomer (M) is inactive, but the enzyme (E) M+M & E k(=) k(<)
. .. . . . S+E & ES ka1, k2

is active in the dimeric form. The dimer catalyzes £5 > E+P Kk

the conversion of the substrate (S) to the product (P). E+P & EP ky ;42

The inhibitor (J) is competitive for the substrate and E+1 2 EI kg ks

the product, and the inhibitor-binding enzyme is irre- EI > EJ ke

versibly deactivated (EJ). In the model, there are ten

ameters and ni i . i i-
parameters and nine varisbles. According to the previ- L. o yietic model for the inhibitor of HIV

ous studies (8, 9], five parameters (k11, k12, k21, k41,k51) proteinase. The start values for ten parameters
are given, and the remaining five unknown parameters and the initial values for nine 4vm‘iﬁtbles [9] are as
(ka2, k3, ka2, ksa, ke), two initial values (Einst, Siniz) and gz)l(l)?::: :“m":"kg;l’:lfoz l:i ;k"?o; ktgo’:”l(;
the offset of the fluorimeter are estimated by the present | ks, = 0.1, andke = 0.1;%, = 0, %3 = 0.004, %3 =
method. The experimental data of the product [P], 25.0,&« = 0,2 = 0,% = 0,27 = 0.003,Zs =
which are composed of 300 data points measured from 0,andzo = 0.

0 to 3600 seconds, were downloaded from a web site

(http://www.gepasi.org/tutorials/opt/hivfit.html).

3 RESULTS

First, we will describe the practical procedure for parameter optimization in the kinetic model for HIV
proteinase, and then we will evaluate the optimized parameters by using only one point of the observed
data.

3.1 Procedure for Optimizing Parameters in HIV inhibition Model

To perform the numerical simulation (in (1) of 2.2),K; and K3, are defined as the five unknown
parameters and the five given parameters, and the nine variables are allocated to [P}, [E], [S], [ES], [M],
[EP), 1], [EI), and [EJ]. Then we set the start value K(® and the initial value X©. The start values
for ten parameters and the initial values for nine variables are cited from the previous study [9] (see the
legend in Figure 2). Also, the two initial values, Einit and Sinit, are changed within a limited range with
reference to the previous studies [8, 9): 31 discrete values for ([E] =0.00350, 0.00355, **-, 0.00500) and 13
values for ([S] =23.0, 23.5, *-*, 29.0). The focusing variables Y (in (2) of 2.2) are simply obtained by the
symbolic computation with QE from the relationship between X andK; in the model. In the inequality
v;(X, K)At + 2t > 0, the elimination of At by QE outputs five inequalities including five parameters:
100+ [E] [ = k52%[EI) ~k6+ [EI] > 0, 100%[E]*[I] - k52%[EI] > 0, 100%E][P]— k42%[EP]—k3+[ES] <
0,100 [E] * [P] — k42 [EP] > 0,and100 * [E] * [S] — k22 % [ES] — k3 * [ES] > 0. Among the five unknown
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Table 1: Goodness of fit with optimized parameters by symbolic-numeric method. (a) is in the case of
I=0, which means no inhibition. (b) is in the case of I=0.0015. (c) is in the case of I=0.003. Itr is the
iterations number of the symbolic-numeric optimization.

(a)

time Itr  Emr Sne koo ks 7 ksz ke S5q
336 1 000350 255 2152 9872 1082 - - 0.00758
984 1 000350 23255 140.3 9807 573.8 - - 0.00824

1848 1 0.00350 255 144.2 9935 5442 - - 0.00951
Mendes - 0.004389 24.79 201.1 7.352 1171 1.31E+04 3.00E+4 0.00347
& Kell ‘
Kurmic - - - 179.7 9.46 1117 0.0831 0.1224 -
(b)

time Jtr  Eian Siwe ke ks ke ks ks SSq

336 1 000360 230 1955 6.809 1878 0.103 0.0972  0.0321
984 1 000350 235 1119 9971 870.1 0.105 0.0960 0.0320

1848 1 - - - - - - - -

Mendes - 0.004537 26.79 201.1 7.352 1171 1.31E+04 3.00E+4 0.00985

& Kell

Kuzmic - - - 176.7 946 1117 0.0831 0.1224 -

{c)

time Itr  Ean Sexr kx ks ke ksg ks SSq

336 1 0.00495 275 2509 9.776 12086 0.103 0.0969  0.0089%

984 1 000470 280 1628 9.980 1134 0.102 0.0982 0.00795

1848 1 000390 290 3867 989 1342 0.101 0.0986  0.04250
2 000465 280 1495 9.805 1241 0.110 0.0870  0.00835

Mendes - 0005470 26.79 201.1 7.352 1171 1.31E+04 3.00E+4 000513

& Kell

Kuzmic - - - 179.7 8.46 1117 0.0831 0.122¢ -

For reference, the values related to the present optimization are also cited from previous studies (8, 9].

parameters in the above five inequalities, [P] is included in the objective function, and [S] is a large
value relative to the other variables in the reaction molecules. Except for the last three inequalities
including [P] and [S], only [EI] appears in the terms related to the unknown parameters in the first
two inequalities. Thus, the focusing variables Y are defined as [P}, [S], and [EI] in the present model.
All symbolic computations by QE in this study are performed by REDUCE (ver. 3.7) (http://www.uni-
koeln.de/REDUCE/). In addition, the conservation laws in the present model are obtained by Gepasi 3]
a tool for estimating the kinetic flux in a given model, as follows: hy (X) = [S]+[ES]|+[P)+[EP]~Sinit =0
and hy(X) = [M] + 2[E] - 2[8] — 2|P] + 2(EI] + 2[EJ] ~ (2Eintt = 2Sinit) = 0.

The computation of offset by QE ((3) of 2.2) is realized by eliminating all of the variables by QE,
except for of fset in Fy((,,,. By the elimination, the following three equations composed of the initial
values and the observed values are obtained in the present model: p(of fset) = [E] + [EI] + [EJ] +
[M]/2 — [Einit] — [Sinit] = 0, [EP] + [ES] + [P] + [S] — [Sinit] = 0,andof fset + 3/125[P] — z; = 0.
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From the last two equations, we can obtain of fset = £, — 3/125 « ([Sinit] — [S] - [EP] - [ES]).

By considering the properties of the kinetic model, this equation can be approximated with the
observed data. In the initial state, [EP) and [ES) are much less than [S], and as the reaction proceeds,
[S] decreases steadily. Therefore, [Sinit] >> [S] — [EP] — [ES] at a steady state. Thus, we can obtain
of fset = (%1)steady — 3/125 * [Sinit], where (Z1)steaqy is & value of Z;. In the present study, we used the
value of (Z1)steady 86 t = 3600 as the value of (Z1)steqdy-

Using F' of Y and the offset obtained above, we can estimate emax andK; by QE (in (4) of 2.2).
Note that 403 sets of emax and K are obtained by the corresponding sets of E;ni: and Sini:. Since the
fitting of simulated data strongly depends on the initial values, we further simulate numerically E;n;; and
Sinit Within the above ranges of Ej;; and Sinit; by a standard technique of the bisection method, Ejni:
and S;n;; for each set of emax andK; are estimated to minimize the SSq that is calculated for 300 values
of [P] (in (5) of 2.2). Finally, we obtain a set of emaz,K1, Finit and Sini¢ by selecting a minimum SSg
among the 403 SS¢’s.

To judge whether the loop in Figure 1 terminates or not (in (6) of 2.2), the minimum of SS¢’s is
compared with the threshold §. The threshold is set to 0.04 in the present study.

3.2 Observed Data Fitting with the Optimized Parameters

The optimized parameters with the six sets of observed data are listed in Table 1, together with the
iteration number, the goodness of fit measured by SSq, the initial values of Einis and Sinis, and the offset.
In addition, the fittings of simulated values to the observed data in six cases are described in Figure 3.

One of the remarkable features of the present fitting is that only one point of the observed data are
sufficient to fit 300 data points with an $Sq value of less than 0.03. The data point for the optimization
is randomly chosen from 300 points of data, and all fittings attain the threshold by one or two iterations
of the loop. In one of the six cases, two rounds of iterations were required, but the first fitting in the case
agreed well with the observed data. This is partly because QE powerfully restricts the possible ranges
of the parameters and the variables, and partly because the present model is simpler than that expected
from the complex kinetics of ten parameters and nine variables. These points will be discussed in the
following section.

Another feature is that the values of the parameters agree well with those in the previous studies
[8, 9]. In particular, the highlighted parameters in this model, the inhibitor binding constant (ks2) and
the deactivation rate constant (kg), are about 0.10 and 0.097 in the six cases, which are similar values
to the constants in one previous study [8]. In contrast, the constants are enormously large in the other
previous study [9]. In comparison with both cases, the value in the latter case is unreasonably large for
the analysis to be acceptable. Thus, the large dissociation and deactivation rate constants suggest that
the potency of the inhibitor is overestimated in terms of the inhibitor reaction.

4 DISCUSSION

Two problems in the present optimization remain: the first of them is the choice of the observed data
for the optimization, and the second of them is the choice of (£1)steady in the offset computation. As
for the first probiem, the data showing a flat slope in the kinetic curve seem intuitively inadequate for
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Figure 3: Fitting to observed data with optimized parameters. The amount of product [P} is multiplied by a
coefficient (0.024), according to [9]. The experimental data are denoted by the dots. a and b are in the case of
I =0. ais the carve of minimum §Sq (=0.00758) and b is the carve of maximum SSgq (=0.00951) in the (a) of
Table 1. ¢ and d are in the case of I = 0.0015. ¢ is SS¢ = 0.0321 and d is SSg = 0.0320 in the (b) of Table 1.
e and f are in the case of I = 0.003. e is the carve of minimum $Sgq (=0.00795) and f is the carve of maximum
$8¢ (=0.00835) in the (c) of Table 1. The arrow of each figure denotes the time of the observed value used for

4000

the symbolic-numeric optimization: a, t =336; b, t =1848; c, t =336; d, t =984; e, t =984; f, ¢t =1848,
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the optimization. Indeed, by using the data of more than ¢t =2500 in Figure 3, QE frequently outputs
‘ false * ; this means no parameter and variable spaces for the initial conditions in F’. Any data, except
for those in the steady states, may possibly output ‘true’ for the optimization by QE. As for the second
problem, fluctuation of data in steady states is the cause of large 9Sg value. In the case of ] = 0 and
I = 0.003 (see a, b, e, f of Figure 3), there is small fluctuation in the steady states. However, large
fluctuation appears in the case of I = 0.0015 (see ¢, d of Figure 3) and (&1)steady of t = 3600 is a lower
value of the steady state. The estimated curve is adjusted to the pomt is the problem. A rule of data
selection is required to attain more good SSq value.
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