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Abstract

In this article, we present some new applications of unit equations and linear forms in
logarithms to obtain a simple upper bound for the number of the purely exponential
Diophantine equations. The main idea essentially relies on a refined result of a bound
for the number of the solutions to S-unit equations, due to F. Beukers and H. P.
Schlickewei as well as that by J. -H. Evertse, H. P. Schlickewei and W.M. Schmidt
[Be-Schl] [E-Schl-Schm]. The tool to obtain a bound for the size of the solutions is
the theory of linear forms in m-adic logarithms where m denotes a positive integer
not necessarily a prime.

Keywords: Diophantine approximation, Unit equation, Linear forms in logarithms,
Exponential Diophantine equations.

1 Introduction
Let us denote by Z the set of the rational integers. Let a,b,c € Z where a, b,c > 2
and (a,b,c) = 1.
Consider the exponential Diophantine equation
a®+v=c (1)
in unknowns a,b,¢,z,y,2 € Z, z,y,z > 1.

In this case, we see (a,b,c) =1 <= (a,b) =1 &= (a,c) =1 <= (b,c) = 1.

Let us recall a conjecture due to Tijdeman (éometimes called Beal’s conjecture):



Conjecture 1. (Tijdeman) The equation a®+b¥ = ¢* has no solutions in (a,b,c,z,y,2) €
Z5 with a,b,c > 2,x,y,2 > 3.

The equation in the conjecture concerns 6 unknowns. It is known that the abc-
conjecture of Masser-Osterlé type implies that there is an effective positive number
H which depends only on the € > 0 in the abc-conjecture such that Conjecture 1 is
true for z,y,2 > H.

It is also investigated by Darmon-Granville, Darmon-Merel, Kraus, Bennett and

others that the number of the solutions a, b, ¢ to (1) is finite if z, y, 2 are fixed with

1 1 1
-+-+-<1
T Yy =z

When we consider again the six numbers as unknowns, a slightly different ques-
tion is asked;

Conjecture 2. (Fermat-Catalan) If % + % +-§ < 1 then the number of the solutions
in (a,b,c,z,y,2) € Z® with a,b,c > 2,x,y,z > 2 13 finite.

For example some solutions to the equation of Conjecture 2 including large ones
found by Beukers-Zagier are as follows.

Example 1. 2% + 72 = 34
734132 =29
2T +17% =712
3% 4+ 114 = 1222
177 + 76271°% = 210639282
14143 + 22134592 = 657
92623 + 153122832 = 1137
43% + 962223 = 300429072
33% + 15490342 = 156138,

2 Our problem

Up to now, we assume till the end of the text that the integers a, b, ¢ are fixed.
We then consider z,y,2 as unknowns only. Precisely, let us fix a,b,c € Z with
a,b,c > 2,(a,b,c) =1 and consider the equation

o+ =¢ ()

in unknowns z,y, 2 € Z with z,y,2 > 2.
In 1993, K. Malher used p-adic Thue-Siegel method to show that the solutions
T,y, 2 to (2) are only finitely many. The bound for the number of the solutions should

depend on w(abc) the number of the primes dividing abc. A. O. Gel’fond gave in
1940 a lower bound of linear forms in p-adic logarithms and then a bound for the



size of the solutions, namely an effectively calculable constant C' > 0 depending only
on a, b, ¢ such that max{|z|, |yl, 2|} < C.

Around 1994, Terai and Jésmanowicz conjectured (see for example [Cao-Dong])
that if there exists a solution (zo, yo, 20) then this is the only solution:

Conjecture 3. (Terai and Jésmanowicz) The number of the solutions to the equa-
tion (2) is at most 1.

There are several investigations concerning with Conjecture 3 by N. Terai, Z. Li,
or others. They essentially show that there exist particular examples of a, b, c where
Conjecture 3 holds. Remark that the identity 2" +2" = 2"*+! does not give infinitely
many solutions. It is also noted that there are trivial identities:

24+ (2" -1 =(2"+1)? (a=20ra=2""b=2"—1,c=2"+1)
214+2"-1=2"+1 (a=2,b=2"-1,c=2"+1).

Among the knowns, we quote an example of Conjecture 3 which is made by
Terai;

Example 2. (Terai)

Suppose that u is even, a = u® —3u, b = 3u? — 1, b is a prime, ¢ = u? + 1,
and that there ezsists a prime | such that | divides u®> — 3 with 3|e for an integer
e > 0 satisfying 2° — 1 is divisible by l. Then the equation (2) has the only solution
(2,2,3).

3 Our statement
Firstly we state a theorem which is quick to obtain.
Theorem 1. Let N be the number of the solutions to (2). Then we have

N < 2%,

The advantage of Theorem 1 is the fact that the number N is independent of the
number a, b, ¢ especially of w(abc).

It might be possible to refine the bound in Theorem 1 ; we will prove this by a
forthcoming article.

Secondly we show a bound for the size of the solutions:
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Theorem 2. Suppose that c is odd and that c has the prime decomposition ¢ =
PI'ps? -+ p)'. Suppose that there exists an integer g € Z, g > 2 coprime with ¢ such
that

v (af —1) 2> 7

and
Upi(bg - 1) 21

for any prime p;lc. Then we have

max{|z/, |yl |2]} < 2%8Vabe(log(abc))®.

4 Outline of the proof

Theorem 1 is easily implied by the following theorem due to F. Beukers and H. P.
Schlickewei [Be-Schl]. Their result corresponds to a refinement in a low-dimensional

case of a theorem by J. -H. Evertse, H. P. Schlickewei and W.M. Schmidt [E-Schl-Schm].

Theorem 3. (Evertse-Schlickewei-Schmidt) Let n € Z,n > 1. Let K be an al-
gebraic closed field with characteristic 0, T' be a finitely generated subgroup of the
multiplicative group (K — {0})". Denote by r < oo the number of the generators of
I. Let a; € K — {0}. Consider the equation a; X, + - -+ + an Xn = 1 in unknowns
X1, , Xy in T supposed the subsum satisfying Licra; X; # 0 for any non-empty
proper subset I of {1,2,--- ,n}. Then we have that the number of the solutions
(@1,+++ ,xn) € T to the equation a1 Xy + -+ -anX, = 1 is at most

exp ((6n)**(r + 1)) .

When n = 2, a refinement of the above is as follows:

Theorem 4. (Beukers-Schlickewei) Let n = 2. Then we have that the number of
the solutions (z1,x;) € I'? to the equation a; X, + a2 X, = 1 is at most

29(r+1) )

Proof of Theorem 1

It is enough to apply the theorem of Beukers-Schlickewei. Our equation is a® +
b = ¢*, thus -
a
—+==1
We see that it turns out to consider the equation X +Y = 1 with X,Y in “a,b,c-
units”, namely in I' =< a,b,¢c >= {a*b'c™|k,l.m € Z}. Thus just use Beukers-
Schlickewei with r = 3 to arrive at 236,
When a, b, ¢ are distinct primes, then we may use Evertse’ bound 3 - 7*2.
If we consider S = {p|abc} we do not get independence of w(abc) in the statement.
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Proof of Theorem 2

Let m be an integer > 2 not necessarily a prime. The concept of linear forms in
m-adic logarithms is basically introduced by Malher and is revisited by Y. Bugeaud.
Recall the definition of m-adic valuation. Let m = p(* - - - p' where p; < -+~ < p,

are primes, ry -+ ,7 € Z,> 0. Let £ € Z,x # 0. We recall that the p-adic valuation
is vp(x) := the greatest integer v > 0 such that p®|z. Following this, we define

V() := the greatest integer v > 0 such that m®|x

= min[*2)

where [-] denotes the Gauss’ symbol.
For a rational number 2 # 0, a,b € Z,(a,b) = 1, we define vm( ) = Up(a) —
Um (D).

We state a variant of a lemma of Y. Bugeaud by removing some specific condi-
tions. Denote here by h(-) the absolute logarithmic height. Theorem 2 is deduced
by using Lemma 1:

Lemma 1. LetA = ol — o # 0 where a;, a5 € Q, 0 # £1,by,bg € Z, by, by > 0.
Let m = pP*- . Suppose vp‘(al) = vy (ag) = 0 for any p;lm. Suppose further
that there exists an integer g € Z,g > 0, coprime with m such that

va(ag -1)=r,
’ ”p.-(ag - 1) 21

and moreover
Uz(ag - 1) 2 27

’Uz(a‘g - 1) Z 2

if 2lm. Then there exists an effectively computable constant C > 0 depending on the
data with

Cm? |b1| ‘b'-’l 2 ‘
[ — <+
'Um(A) (1 ,1)2 (10g (1 ) ] |2 lOg A1 IOg A2

where log A; > max(h(a;),logm) (i =1,2).
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